1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
|
/*
CheMPS2: a spin-adapted implementation of DMRG for ab initio quantum chemistry
Copyright (C) 2013-2018 Sebastian Wouters
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <stdlib.h>
#include <math.h>
#include <algorithm>
#include <assert.h>
#include <string>
#include "DMRGSCFrotations.h"
#include "Lapack.h"
using std::min;
using std::max;
using std::string;
void CheMPS2::DMRGSCFrotations::fetch( double * eri, const FourIndex * ORIG_VMAT, const int irrep1, const int irrep2, const int irrep3, const int irrep4, DMRGSCFindices * idx, const int start, const int stop, const bool pack ){
if ( pack ){
assert( irrep1 == irrep2 );
assert( irrep3 == irrep4 );
const int NORB12 = idx->getNORB( irrep1 );
const int NORB34 = idx->getNORB( irrep3 );
int counter = 0; // counter = cnt3 + ( cnt4 * ( cnt4 + 1 )) / 2
for ( int cnt4 = 0; cnt4 < NORB34; cnt4++ ){
for ( int cnt3 = 0; cnt3 <= cnt4; cnt3++ ){
if (( start <= counter ) && ( counter < stop )){
for ( int cnt2 = 0; cnt2 < NORB12; cnt2++ ){
for ( int cnt1 = 0; cnt1 < NORB12; cnt1++ ){
eri[ cnt1 + NORB12 * ( cnt2 + NORB12 * ( counter - start ) ) ]
= ORIG_VMAT->get( irrep1, irrep3, irrep2, irrep4, cnt1, cnt3, cnt2, cnt4 );
// Indices (12) and indices (34) are Coulomb pairs
}
}
}
counter++;
}
}
} else {
assert( Irreps::directProd( irrep1, irrep2 ) == Irreps::directProd( irrep3, irrep4 ) );
const int NORB1 = idx->getNORB( irrep1 );
const int NORB2 = idx->getNORB( irrep2 );
const int NORB3 = idx->getNORB( irrep3 );
const int NORB4 = idx->getNORB( irrep4 );
int counter = 0; // counter = cnt3 + NORB3 * cnt4
for ( int cnt4 = 0; cnt4 < NORB4; cnt4++ ){
for ( int cnt3 = 0; cnt3 < NORB3; cnt3++ ){
if (( start <= counter ) && ( counter < stop )){
for ( int cnt2 = 0; cnt2 < NORB2; cnt2++ ){
for ( int cnt1 = 0; cnt1 < NORB1; cnt1++ ){
eri[ cnt1 + NORB1 * ( cnt2 + NORB2 * ( counter - start ) ) ]
= ORIG_VMAT->get( irrep1, irrep3, irrep2, irrep4, cnt1, cnt3, cnt2, cnt4 );
// Indices (12) and indices (34) are Coulomb pairs
}
}
}
counter++;
}
}
}
}
void CheMPS2::DMRGSCFrotations::write( double * eri, FourIndex * NEW_VMAT, DMRGSCFintegrals * ROT_TEI, const char space1, const char space2, const char space3, const char space4, const int irrep1, const int irrep2, const int irrep3, const int irrep4, DMRGSCFindices * idx, const int start, const int stop, const bool pack ){
bool written = false;
if (( space1 == space2 ) && ( space1 == space3 ) && ( space1 == space4 )){ // All four spaces equal
if ( pack ){
assert( irrep1 == irrep2 );
assert( irrep3 == irrep4 );
const int NEW12 = dimension( idx, irrep1, space1 );
const int NEW34 = dimension( idx, irrep3, space3 );
const int SIZE = stop - start;
int counter = 0; // counter = cnt1 + ( cnt2 * ( cnt2 + 1 )) / 2
for ( int cnt2 = 0; cnt2 < NEW12; cnt2++ ){
for ( int cnt1 = 0; cnt1 <= cnt2; cnt1++ ){
if (( start <= counter ) && ( counter < stop )){
for ( int cnt4 = 0; cnt4 < NEW34; cnt4++ ){
for ( int cnt3 = 0; cnt3 <= cnt4; cnt3++ ){
NEW_VMAT->set( irrep1, irrep3, irrep2, irrep4, cnt1, cnt3, cnt2, cnt4,
eri[ ( counter - start ) + SIZE * ( cnt3 + NEW34 * cnt4 ) ] );
// Indices (12) and indices (34) are Coulomb pairs
}
}
}
counter++;
}
}
written = true;
} else {
assert( Irreps::directProd( irrep1, irrep2 ) == Irreps::directProd( irrep3, irrep4 ) );
const int NEW1 = dimension( idx, irrep1, space1 );
const int NEW2 = dimension( idx, irrep2, space2 );
const int NEW3 = dimension( idx, irrep3, space3 );
const int NEW4 = dimension( idx, irrep4, space4 );
const int SIZE = stop - start;
int counter = 0; // counter = cnt1 + NEW1 * cnt2
for ( int cnt2 = 0; cnt2 < NEW2; cnt2++ ){
for ( int cnt1 = 0; cnt1 < NEW1; cnt1++ ){
if (( start <= counter ) && ( counter < stop )){
for ( int cnt4 = 0; cnt4 < NEW4; cnt4++ ){
for ( int cnt3 = 0; cnt3 < NEW3; cnt3++ ){
NEW_VMAT->set( irrep1, irrep3, irrep2, irrep4, cnt1, cnt3, cnt2, cnt4,
eri[ ( counter - start ) + SIZE * ( cnt3 + NEW3 * cnt4 ) ] );
// Indices (12) and indices (34) are Coulomb pairs
}
}
}
counter++;
}
}
written = true;
}
}
if (( space1 == 'C' ) && ( space2 == 'C' ) && ( space3 == 'F' ) && ( space4 == 'F' )){
if ( pack ){
assert( irrep1 == irrep2 );
assert( irrep3 == irrep4 );
const int NEW12 = dimension( idx, irrep1, space1 );
const int NEW34 = dimension( idx, irrep3, space3 );
const int SIZE = stop - start;
int counter = 0; // counter = cnt1 + ( cnt2 * ( cnt2 + 1 )) / 2
for ( int cnt2 = 0; cnt2 < NEW12; cnt2++ ){
for ( int cnt1 = 0; cnt1 <= cnt2; cnt1++ ){
if (( start <= counter ) && ( counter < stop )){
for ( int cnt4 = 0; cnt4 < NEW34; cnt4++ ){
for ( int cnt3 = 0; cnt3 <= cnt4; cnt3++ ){
ROT_TEI->set_coulomb( irrep1, irrep2, irrep3, irrep4, cnt1, cnt2, cnt3, cnt4,
eri[ ( counter - start ) + SIZE * ( cnt3 + NEW34 * cnt4 ) ] );
// Indices (12) and indices (34) are Coulomb pairs
}
}
}
counter++;
}
}
written = true;
} else {
assert( Irreps::directProd( irrep1, irrep2 ) == Irreps::directProd( irrep3, irrep4 ) );
const int NEW1 = dimension( idx, irrep1, space1 );
const int NEW2 = dimension( idx, irrep2, space2 );
const int NEW3 = dimension( idx, irrep3, space3 );
const int NEW4 = dimension( idx, irrep4, space4 );
const int SIZE = stop - start;
int counter = 0; // counter = cnt1 + NEW1 * cnt2
for ( int cnt2 = 0; cnt2 < NEW2; cnt2++ ){
for ( int cnt1 = 0; cnt1 < NEW1; cnt1++ ){
if (( start <= counter ) && ( counter < stop )){
for ( int cnt4 = 0; cnt4 < NEW4; cnt4++ ){
for ( int cnt3 = 0; cnt3 < NEW3; cnt3++ ){
ROT_TEI->set_coulomb( irrep1, irrep2, irrep3, irrep4, cnt1, cnt2, cnt3, cnt4,
eri[ ( counter - start ) + SIZE * ( cnt3 + NEW3 * cnt4 ) ] );
// Indices (12) and indices (34) are Coulomb pairs
}
}
}
counter++;
}
}
written = true;
}
}
if (( space1 == 'C' ) && ( space2 == 'V' ) && ( space3 == 'C' ) && ( space4 == 'V' )){ // ( C V | C V )
assert( pack == false );
assert( Irreps::directProd( irrep1, irrep2 ) == Irreps::directProd( irrep3, irrep4 ) );
const int NEW1 = dimension( idx, irrep1, space1 );
const int NEW2 = dimension( idx, irrep2, space2 );
const int NEW3 = dimension( idx, irrep3, space3 );
const int NEW4 = dimension( idx, irrep4, space4 );
const int JUMP2 = jump( idx, irrep2, space2 );
const int JUMP4 = jump( idx, irrep4, space4 );
const int SIZE = stop - start;
int counter = 0; // counter = cnt1 + NEW1 * cnt2
for ( int cnt2 = 0; cnt2 < NEW2; cnt2++ ){
for ( int cnt1 = 0; cnt1 < NEW1; cnt1++ ){
if (( start <= counter ) && ( counter < stop )){
for ( int cnt4 = 0; cnt4 < NEW4; cnt4++ ){
for ( int cnt3 = 0; cnt3 < NEW3; cnt3++ ){
ROT_TEI->set_exchange( irrep1, irrep3, irrep2, irrep4, cnt1, cnt3, JUMP2 + cnt2, JUMP4 + cnt4,
eri[ ( counter - start ) + SIZE * ( cnt3 + NEW3 * cnt4 ) ] );
// Indices (12) and indices (34) are Coulomb pairs
}
}
}
counter++;
}
}
written = true;
}
assert( written == true );
}
void CheMPS2::DMRGSCFrotations::blockwise_first( double * origin, double * target, int orig1, int dim2, const int dim34, double * umat1, int new1, int lda1 ){
char notrans = 'N';
double one = 1.0;
double set = 0.0;
int right_dim = dim2 * dim34;
dgemm_( ¬rans, ¬rans, &new1, &right_dim, &orig1, &one, umat1, &lda1, origin, &orig1, &set, target, &new1 );
}
void CheMPS2::DMRGSCFrotations::blockwise_second( double * origin, double * target, int dim1, int orig2, const int dim34, double * umat2, int new2, int lda2 ){
char trans = 'T';
char notrans = 'N';
double one = 1.0;
double set = 0.0;
const int jump_old = dim1 * orig2;
const int jump_new = dim1 * new2;
#pragma omp parallel for schedule(static)
for ( int index = 0; index < dim34; index++ ){
dgemm_( ¬rans, &trans, &dim1, &new2, &orig2, &one, origin + jump_old * index, &dim1, umat2, &lda2, &set, target + jump_new * index, &dim1 );
}
}
void CheMPS2::DMRGSCFrotations::blockwise_third( double * origin, double * target, const int dim12, int orig3, const int dim4, double * umat3, int new3, int lda3 ){
char trans = 'T';
char notrans = 'N';
double one = 1.0;
double set = 0.0;
int left_dim = dim12;
const int jump_old = dim12 * orig3;
const int jump_new = dim12 * new3;
#pragma omp parallel for schedule(static)
for ( int index = 0; index < dim4; index++ ){
dgemm_( ¬rans, &trans, &left_dim, &new3, &orig3, &one, origin + jump_old * index, &left_dim, umat3, &lda3, &set, target + jump_new * index, &left_dim );
}
}
void CheMPS2::DMRGSCFrotations::blockwise_fourth( double * origin, double * target, const int dim12, int dim3, int orig4, double * umat4, int new4, int lda4 ){
char trans = 'T';
char notrans = 'N';
double one = 1.0;
double set = 0.0;
int left_dim = dim12 * dim3;
dgemm_( ¬rans, &trans, &left_dim, &new4, &orig4, &one, origin, &left_dim, umat4, &lda4, &set, target, &left_dim );
}
void CheMPS2::DMRGSCFrotations::open_file( hid_t * file_id, hid_t * dspc_id, hid_t * dset_id, const int first, const int second, const string filename ){
file_id[0] = H5Fcreate( filename.c_str(), H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT );
hsize_t fdim_h5[] = { (hsize_t) second, (hsize_t) first }; // C is row major: [ col + ncol * row ] is assumed
dspc_id[0] = H5Screate_simple( 2, fdim_h5, NULL );
dset_id[0] = H5Dcreate( file_id[0], "storage", H5T_NATIVE_DOUBLE, dspc_id[0], H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT );
}
void CheMPS2::DMRGSCFrotations::close_file( hid_t file_id, hid_t dspc_id, hid_t dset_id ){
H5Dclose( dset_id );
H5Sclose( dspc_id );
H5Fclose( file_id );
}
void CheMPS2::DMRGSCFrotations::write_file( hid_t dspc_id, hid_t dset_id, double * eri, const int start, const int size, const int first_write ){
hsize_t stride_h5[] = { 1, 1 };
hsize_t count_h5[] = { 1, 1 };
hsize_t start_h5[] = { (hsize_t) start, 0 };
hsize_t block_h5[] = { (hsize_t) size, (hsize_t) first_write };
H5Sselect_hyperslab( dspc_id, H5S_SELECT_SET, start_h5, stride_h5, count_h5, block_h5 );
hsize_t mem_h5 = size * first_write; // Should be OK to multiply as integers as it is smaller than mem_size
hid_t mem_id = H5Screate_simple( 1, &mem_h5, NULL );
H5Dwrite( dset_id, H5T_NATIVE_DOUBLE, mem_id, dspc_id, H5P_DEFAULT, eri );
H5Sclose( mem_id );
}
void CheMPS2::DMRGSCFrotations::read_file( hid_t dspc_id, hid_t dset_id, double * eri, const int start, const int size, const int second_read ){
hsize_t stride_h5[] = { 1, 1 };
hsize_t count_h5[] = { 1, 1 };
hsize_t start_h5[] = { 0, (hsize_t) start };
hsize_t block_h5[] = { (hsize_t) second_read, (hsize_t) size };
H5Sselect_hyperslab( dspc_id, H5S_SELECT_SET, start_h5, stride_h5, count_h5, block_h5 );
hsize_t mem_h5 = second_read * size; // Should be OK to multiply as integers as it is smaller than mem_size
hid_t mem_id = H5Screate_simple( 1, &mem_h5, NULL );
H5Dread( dset_id, H5T_NATIVE_DOUBLE, mem_id, dspc_id, H5P_DEFAULT, eri );
H5Sclose( mem_id );
}
int CheMPS2::DMRGSCFrotations::dimension( DMRGSCFindices * idx, const int irrep, const char space ){
if ( space == 'O' ){ return idx->getNOCC( irrep ); }
if ( space == 'A' ){ return idx->getNDMRG( irrep ); }
if ( space == 'V' ){ return idx->getNVIRT( irrep ); }
if ( space == 'C' ){ return ( idx->getNOCC( irrep ) + idx->getNDMRG( irrep ) ); }
if ( space == 'F' ){ return idx->getNORB( irrep ); }
return -1;
}
int CheMPS2::DMRGSCFrotations::jump( DMRGSCFindices * idx, const int irrep, const char space ){
if ( space == 'A' ){ return idx->getNOCC( irrep ); }
if ( space == 'V' ){ return idx->getNOCC( irrep ) + idx->getNDMRG( irrep ); }
return 0; // O, F, C
}
void CheMPS2::DMRGSCFrotations::unpackage_second( double * mem1, double * mem2, const int SIZE, const int ORIG ){
#pragma omp parallel for schedule(static)
for ( int cnt4 = 0; cnt4 < ORIG; cnt4++ ){
for ( int cnt3 = 0; cnt3 < ORIG; cnt3++ ){
const int combined = (( cnt3 < cnt4 ) ? ( cnt3 + ( cnt4 * ( cnt4 + 1 )) / 2 )
: ( cnt4 + ( cnt3 * ( cnt3 + 1 )) / 2 ));
#pragma omp simd
for ( int cnt12 = 0; cnt12 < SIZE; cnt12++ ){
mem2[ cnt12 + SIZE * ( cnt3 + ORIG * cnt4 ) ] = mem1[ cnt12 + SIZE * combined ];
}
}
}
}
void CheMPS2::DMRGSCFrotations::package_first( double * mem1, double * mem2, const int NEW, const int PACKED, const int SIZE ){
#pragma omp parallel for schedule(static)
for ( int cnt34 = 0; cnt34 < SIZE; cnt34++ ){
for ( int cnt2 = 0; cnt2 < NEW; cnt2++ ){
#pragma omp simd
for ( int cnt1 = 0; cnt1 <= cnt2; cnt1++ ){
mem2[ cnt1 + ( cnt2 * ( cnt2 + 1 ))/2 + PACKED * cnt34 ] = mem1[ cnt1 + NEW * ( cnt2 + NEW * cnt34 ) ];
}
}
}
}
void CheMPS2::DMRGSCFrotations::rotate( const FourIndex * ORIG_VMAT, FourIndex * NEW_VMAT, DMRGSCFintegrals * ROT_TEI, const char space1, const char space2, const char space3, const char space4, DMRGSCFindices * idx, DMRGSCFunitary * umat, double * mem1, double * mem2, const int mem_size, const string filename ){
/* Matrix elements ( 1 2 | 3 4 ) */
assert(( space1 == 'O' ) || ( space1 == 'A' ) || ( space1 == 'V' ) || ( space1 == 'C' ) || ( space1 == 'F' ));
assert(( space2 == 'O' ) || ( space2 == 'A' ) || ( space2 == 'V' ) || ( space2 == 'C' ) || ( space2 == 'F' ));
assert(( space3 == 'O' ) || ( space3 == 'A' ) || ( space3 == 'V' ) || ( space3 == 'C' ) || ( space3 == 'F' ));
assert(( space4 == 'O' ) || ( space4 == 'A' ) || ( space4 == 'V' ) || ( space4 == 'C' ) || ( space4 == 'F' ));
const int num_irreps = idx->getNirreps();
const bool equal12 = ( space1 == space2 );
const bool equal34 = ( space3 == space4 );
const bool eightfold = (( space1 == space3 ) && ( space2 == space4 ));
for ( int irrep1 = 0; irrep1 < num_irreps; irrep1++ ){
for ( int irrep2 = (( equal12 ) ? irrep1 : 0 ); irrep2 < num_irreps; irrep2++ ){ // irrep2 >= irrep1 if space1 == space2
const int product_symm = Irreps::directProd( irrep1, irrep2 );
for ( int irrep3 = (( eightfold ) ? irrep1 : 0 ); irrep3 < num_irreps; irrep3++ ){
const int irrep4 = Irreps::directProd( product_symm, irrep3 );
if ( irrep4 >= (( equal34 ) ? irrep3 : 0 ) ){ // irrep4 >= irrep3 if space3 == space4
const int NEW1 = dimension( idx, irrep1, space1 );
const int NEW2 = dimension( idx, irrep2, space2 );
const int NEW3 = dimension( idx, irrep3, space3 );
const int NEW4 = dimension( idx, irrep4, space4 );
if (( NEW1 > 0 ) && ( NEW2 > 0 ) && ( NEW3 > 0 ) && ( NEW4 > 0 )){
const int ORIG1 = idx->getNORB( irrep1 );
const int ORIG2 = idx->getNORB( irrep2 );
const int ORIG3 = idx->getNORB( irrep3 );
const int ORIG4 = idx->getNORB( irrep4 );
double * umat1 = umat->getBlock( irrep1 ) + jump( idx, irrep1, space1 );
double * umat2 = umat->getBlock( irrep2 ) + jump( idx, irrep2, space2 );
double * umat3 = umat->getBlock( irrep3 ) + jump( idx, irrep3, space3 );
double * umat4 = umat->getBlock( irrep4 ) + jump( idx, irrep4, space4 );
const int block_size1 = mem_size / ( ORIG1 * ORIG2 ); // Floor of amount of times orig( first ) fits in mem_size
const int block_size2 = mem_size / ( ORIG3 * ORIG4 ); // Floor of amount of times orig( second ) fits in mem_size
assert( block_size1 > 0 );
assert( block_size2 > 0 );
const bool pack_first = (( equal12 ) && ( irrep1 == irrep2 ));
const bool pack_second = (( equal34 ) && ( irrep3 == irrep4 ));
const int first_size = (( pack_first ) ? ( NEW1 * ( NEW1 + 1 )) / 2 : NEW1 * NEW2 );
const int second_size = (( pack_second ) ? ( ORIG3 * ( ORIG3 + 1 )) / 2 : ORIG3 * ORIG4 );
const bool io_free = (( block_size1 >= second_size ) && ( block_size2 >= first_size ));
hid_t file_id, dspc_id, dset_id;
if ( io_free == false ){
assert( filename.compare( "edmistonruedenberg" ) != 0 );
open_file( &file_id, &dspc_id, &dset_id, first_size, second_size, filename );
}
// First half transformation
int start = 0;
while ( start < second_size ){
const int stop = min( start + block_size1, second_size );
const int size = stop - start;
fetch( mem1, ORIG_VMAT, irrep1, irrep2, irrep3, irrep4, idx, start, stop, pack_second );
blockwise_first( mem1, mem2, ORIG1, ORIG2, size, umat1, NEW1, ORIG1 );
blockwise_second( mem2, mem1, NEW1, ORIG2, size, umat2, NEW2, ORIG2 );
if ( pack_first ){
package_first( mem1, mem2, NEW1, first_size, size );
double * temp = mem1;
mem1 = mem2;
mem2 = temp;
}
if ( io_free == false ){ write_file( dspc_id, dset_id, mem1, start, size, first_size ); }
start += size;
}
assert( start == second_size );
// Do the second half transformation
start = 0;
while ( start < first_size ){
const int stop = min( start + block_size2, first_size );
const int size = stop - start;
if ( io_free == false ){ read_file( dspc_id, dset_id, mem1, start, size, second_size ); }
if ( pack_second ){
unpackage_second( mem1, mem2, size, ORIG3 );
double * temp = mem1;
mem1 = mem2;
mem2 = temp;
}
blockwise_fourth( mem1, mem2, size, ORIG3, ORIG4, umat4, NEW4, ORIG4 );
blockwise_third( mem2, mem1, size, ORIG3, NEW4, umat3, NEW3, ORIG3 );
write( mem1, NEW_VMAT, ROT_TEI, space1, space2, space3, space4, irrep1, irrep2, irrep3, irrep4, idx, start, stop, pack_first );
start += size;
}
assert( start == first_size );
if ( io_free == false ){ close_file( file_id, dspc_id, dset_id ); }
}
}
}
}
}
}
|