1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
|
/*
CheMPS2: a spin-adapted implementation of DMRG for ab initio quantum chemistry
Copyright (C) 2013-2018 Sebastian Wouters
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <stdlib.h>
#include <assert.h>
#include <iostream>
#include <math.h>
#include "Lapack.h"
#include "DMRGSCFunitary.h"
using std::cout;
using std::endl;
CheMPS2::DMRGSCFunitary::DMRGSCFunitary( const DMRGSCFindices * iHandler ) : DMRGSCFmatrix( iHandler ){
this->identity();
//Find the unique indices for OCC-ACT, OCC-VIRT, and ACT-VIRT rotations
x_linearlength = 0;
jumper = new int*[ num_irreps ];
for ( int irrep = 0; irrep < num_irreps; irrep++ ){
jumper[ irrep ] = new int[ 3 ];
const int NOCC = iHandler->getNOCC( irrep );
const int NACT = iHandler->getNDMRG( irrep );
const int NVIR = iHandler->getNVIRT( irrep );
jumper[ irrep ][ 0 ] = x_linearlength;
x_linearlength += NOCC * NACT;
jumper[ irrep ][ 1 ] = x_linearlength;
x_linearlength += NACT * NVIR;
jumper[ irrep ][ 2 ] = x_linearlength;
x_linearlength += NOCC * NVIR;
}
}
CheMPS2::DMRGSCFunitary::~DMRGSCFunitary(){
for ( int irrep = 0; irrep < num_irreps; irrep++ ){ delete [] jumper[ irrep ]; }
delete [] jumper;
}
int CheMPS2::DMRGSCFunitary::getNumVariablesX() const{ return x_linearlength; }
void CheMPS2::DMRGSCFunitary::buildSkewSymmX( const int irrep, double * result, double * Xelem, const bool compact ) const{
const int linsize = iHandler->getNORB( irrep );
const int NOCC = iHandler->getNOCC( irrep );
const int NACT = iHandler->getNDMRG( irrep );
const int NVIR = iHandler->getNVIRT( irrep );
for ( int cnt = 0; cnt < linsize * linsize; cnt++ ){ result[ cnt ] = 0.0; }
if ( compact ){
for ( int occ = 0; occ < NOCC; occ++ ){
for ( int act = 0; act < NACT; act++ ){
const int xsolindex = jumper[ irrep ][ 0 ] + act + NACT * occ;
const int index1 = NOCC + act;
result[ index1 + linsize * occ ] = Xelem[ xsolindex ];
result[ occ + linsize * index1 ] = - Xelem[ xsolindex ];
}
}
for ( int act = 0; act < NACT; act++ ){
for ( int vir = 0; vir < NVIR; vir++ ){
const int xsolindex = jumper[ irrep ][ 1 ] + vir + NVIR * act;
const int index1 = NOCC + NACT + vir;
const int index2 = NOCC + act;
result[ index1 + linsize * index2 ] = Xelem[ xsolindex ];
result[ index2 + linsize * index1 ] = - Xelem[ xsolindex ];
}
}
for ( int occ = 0; occ < NOCC; occ++ ){
for ( int vir = 0; vir < NVIR; vir++ ){
const int xsolindex = jumper[ irrep ][ 2 ] + vir + NVIR * occ;
const int index1 = NOCC + NACT + vir;
result[ index1 + linsize * occ ] = Xelem[ xsolindex ];
result[ occ + linsize * index1 ] = - Xelem[ xsolindex ];
}
}
} else { //NOT compact
int jump = 0;
for ( int cnt = 0; cnt < irrep; cnt++ ){
const int NORBx = iHandler->getNORB( cnt );
jump += ( NORBx * ( NORBx - 1 ) ) / 2;
}
for ( int row = 0; row < linsize; row++ ){
for ( int col = row+1; col < linsize; col++ ){
result[ row + linsize * col ] = Xelem[ jump + row + ( col * ( col - 1 ) ) / 2 ];
result[ col + linsize * row ] = - Xelem[ jump + row + ( col * ( col - 1 ) ) / 2 ];
}
}
}
}
void CheMPS2::DMRGSCFunitary::updateUnitary( double * temp1, double * temp2, double * vector, const bool multiply, const bool compact ){
for ( int irrep = 0; irrep < num_irreps; irrep++ ){
int linsize = iHandler->getNORB(irrep);
int size = linsize * linsize;
if ( linsize > 1 ){ //linsize is op z'n minst 2 dus temp1, temp1+size, temp1+2*size,temp1+3*size zijn zeker ok
double * xblock = temp1; //linsize*linsize
double * Bmat = temp1 + size; //linsize*linsize
double * work1 = temp1 + 2 * size; //linsize*linsize
double * work2 = temp1 + 3 * size; //linsize*linsize
double * workLARGE = temp2; //4*size
int lworkLARGE = 4 * size; //4*size = 4*linsize*linsize > 3*linsize-1
// Construct the antisymmetric x-matrix
buildSkewSymmX( irrep, xblock, vector, compact );
//Bmat <= xblock * xblock
char notrans = 'N';
double one = 1.0;
double set = 0.0;
dgemm_( ¬rans, ¬rans, &linsize, &linsize, &linsize, &one, xblock, &linsize, xblock, &linsize, &set, Bmat, &linsize );
//Bmat * work1 * Bmat^T <= xblock * xblock
char uplo = 'U';
char jobz = 'V';
int info;
dsyev_( &jobz, &uplo, &linsize, Bmat, &linsize, work1, workLARGE, &lworkLARGE, &info );
//work2 <= Bmat^T * xblock * Bmat
dgemm_( ¬rans, ¬rans, &linsize, &linsize, &linsize, &one, xblock, &linsize, Bmat, &linsize, &set, work1, &linsize );
char trans = 'T';
dgemm_( &trans, ¬rans, &linsize, &linsize, &linsize, &one, Bmat, &linsize, work1, &linsize, &set, work2, &linsize );
if (CheMPS2::DMRGSCF_debugPrint){
cout << " DMRGSCFunitary::updateUnitary : Lambdas of irrep block " << irrep << " : " << endl;
for (int cnt=0; cnt<linsize/2; cnt++){
cout << " block = [ " << work2[2*cnt + linsize*2*cnt] << " , " << work2[2*cnt + linsize*(2*cnt+1)] << " ] " << endl;
cout << " [ " << work2[2*cnt+1 + linsize*2*cnt] << " , " << work2[2*cnt+1 + linsize*(2*cnt+1)] << " ] " << endl;
}
}
//work1 <= values of the antisymmetric 2x2 blocks
for ( int cnt = 0; cnt < linsize/2; cnt++ ){
work1[cnt] = 0.5 * ( work2[ 2 * cnt + linsize * ( 2 * cnt + 1 ) ]
- work2[ 2 * cnt + 1 + linsize * ( 2 * cnt ) ] );
}
if ( CheMPS2::DMRGSCF_debugPrint ){
for ( int cnt = 0; cnt < linsize/2; cnt++ ){
work2[ 2 * cnt + linsize * ( 2 * cnt + 1 ) ] -= work1[ cnt ];
work2[ 2 * cnt + 1 + linsize * ( 2 * cnt ) ] += work1[ cnt ];
}
double rms_diff = 0.0;
for ( int cnt = 0; cnt < size; cnt++ ){ rms_diff += work2[ cnt ] * work2[ cnt ]; }
rms_diff = sqrt( rms_diff );
cout << " DMRGSCFunitary::updateUnitary : RMSdeviation of irrep block " << irrep << " (should be 0.0) = " << rms_diff << endl;
}
//work2 <= exp(Bmat^T * xblock * Bmat)
for ( int cnt = 0; cnt < size; cnt++ ){ work2[ cnt ] = 0.0; }
for ( int cnt = 0; cnt < linsize/2; cnt++ ){
double cosine = cos( work1[ cnt ] );
double sine = sin( work1[ cnt ] );
work2[ 2 * cnt + linsize * ( 2 * cnt ) ] = cosine;
work2[ 2 * cnt + 1 + linsize * ( 2 * cnt + 1) ] = cosine;
work2[ 2 * cnt + linsize * ( 2 * cnt + 1) ] = sine;
work2[ 2 * cnt + 1 + linsize * ( 2 * cnt ) ] = -sine;
}
for ( int cnt = 2*(linsize/2); cnt < linsize; cnt++ ){ work2[ cnt * (linsize + 1) ] = 1.0; }
//work2 <= Bmat * exp(Bmat^T * xblock * Bmat) * Bmat^T = exp(xblock)
dgemm_( ¬rans, ¬rans, &linsize, &linsize, &linsize, &one, Bmat, &linsize, work2, &linsize, &set, work1, &linsize );
dgemm_( ¬rans, &trans, &linsize, &linsize, &linsize, &one, work1, &linsize, Bmat, &linsize, &set, work2, &linsize );
int inc1 = 1;
if ( multiply ){ //U <-- exp(x) * U
dgemm_( ¬rans, ¬rans, &linsize, &linsize, &linsize, &one, work2, &linsize, entries[ irrep ], &linsize, &set, work1, &linsize );
dcopy_( &size, work1, &inc1, entries[ irrep ], &inc1 );
} else { //U <-- exp(x)
dcopy_( &size, work2, &inc1, entries[ irrep ], &inc1 );
}
}
}
if (CheMPS2::DMRGSCF_debugPrint){ CheckDeviationFromUnitary( temp2 ); }
}
void CheMPS2::DMRGSCFunitary::rotateActiveSpaceVectors( double * eigenvecs, double * work ){
int passed = 0;
int tot_dmrg = iHandler->getDMRGcumulative( num_irreps );
for ( int irrep = 0; irrep < num_irreps; irrep++ ){
int NDMRG = iHandler->getNDMRG( irrep );
int NOCC = iHandler->getNOCC( irrep );
int NORB = iHandler->getNORB( irrep );
if ( NDMRG > 1 ){
double * rotation = eigenvecs + passed * ( tot_dmrg + 1 );
char trans = 'T';
char notrans = 'N';
double one = 1.0;
double set = 0.0;
dgemm_( &trans, ¬rans, &NDMRG, &NORB, &NDMRG, &one, rotation, &tot_dmrg, entries[ irrep ] + NOCC, &NORB, &set, work, &NDMRG );
for ( int row = 0; row < NDMRG; row++ ){
for ( int col = 0; col < NORB; col++ ){
entries[ irrep ][ NOCC + row + NORB * col ] = work[ row + NDMRG * col ];
}
}
}
passed += NDMRG;
}
if (CheMPS2::DMRGSCF_debugPrint){ CheckDeviationFromUnitary( work ); }
}
void CheMPS2::DMRGSCFunitary::CheckDeviationFromUnitary( double * work ) const{
char trans = 'T';
char notrans = 'N';
double one = 1.0;
double set = 0.0;
for ( int irrep = 0; irrep < num_irreps; irrep++ ){
int linsize = iHandler->getNORB( irrep );
if ( linsize > 0 ){
dgemm_( &trans, ¬rans, &linsize, &linsize, &linsize, &one, entries[ irrep ], &linsize, entries[ irrep ], &linsize, &set, work, &linsize );
for ( int diag = 0; diag < linsize; diag++ ){
work[ diag * ( 1 + linsize ) ] -= 1.0;
}
double rms_diff = 0.0;
for ( int cnt = 0; cnt < linsize * linsize; cnt++ ){
rms_diff += work[ cnt ] * work[ cnt ];
}
rms_diff = sqrt( rms_diff );
cout << " DMRGSCFunitary::CheckDeviationFromUnitary : 2-norm of U[" << irrep << "]^T * U[" << irrep << "] - I = " << rms_diff << endl;
}
}
}
double CheMPS2::DMRGSCFunitary::get_determinant( const int irrep, double * work1, double * work2, double * work_eig, int lwork_eig ) const{
int NORB = iHandler->getNORB( irrep );
// S = U + U^T --> work1
for ( int row = 0; row < NORB; row++ ){
for ( int col = 0; col < NORB; col++ ){
work1[ row + NORB * col ] = ( entries[ irrep ][ row + NORB * col ]
+ entries[ irrep ][ col + NORB * row ] );
}
}
// Get the eigenvectors of S = U + U^T: eigvals in work2, eigvecs in work1
char jobz = 'V';
char uplo = 'U';
int info;
dsyev_( &jobz, &uplo, &NORB, work1, &NORB, work2, work_eig, &lwork_eig, &info );
// Transform the original orthogonal matrix with the real orthonormal eigenbasis of S --> the result V^T U V is stored in work2
char trans = 'T';
char notrans = 'N';
double one = 1.0;
double set = 0.0;
dgemm_( &trans, ¬rans, &NORB, &NORB, &NORB, &one, work1, &NORB, entries[ irrep ], &NORB, &set, work_eig, &NORB );
dgemm_( ¬rans, ¬rans, &NORB, &NORB, &NORB, &one, work_eig, &NORB, work1, &NORB, &set, work2, &NORB );
/* Work2 should contain
* 1x1 blocks containing [-1]
* 2x2 blocks containing [[cos(u) sin(u)][-sin(u) cos(u)]]
* 1x1 blocks containing [+1]
and is hence TRIDIAGONAL. Its determinant is easy to compute:
*/
double f_low = 1.0;
double f_high = work2[ 0 ];
for ( int diag = 1; diag < NORB; diag++ ){
double temp = work2[ diag * ( 1 + NORB ) ] * f_high - work2[ diag + NORB * ( diag - 1 ) ] * work2[ diag - 1 + NORB * diag ] * f_low;
f_low = f_high;
f_high = temp;
}
const double determinant = f_high;
if ( CheMPS2::DMRGSCF_debugPrint ){
cout << " DMRGSCFunitary::get_determinant : det( U[" << irrep << "] ) = " << determinant << endl;
}
return determinant;
}
void CheMPS2::DMRGSCFunitary::getLog( double * vector, double * temp1, double * temp2 ) const{
int jump = 0;
for ( int irrep = 0; irrep < num_irreps; irrep++ ){
int linsize = iHandler->getNORB( irrep );
int size = linsize * linsize;
if ( linsize > 1 ){
/* linsize >= 2; hence temp1 is at least of size 4*linsize*linsize
if linsize <= 1; there corresponds no block in xmatrix to it */
double * work1 = temp1; //linsize * linsize
double * work2 = temp1 + size; //linsize * linsize
double * work3 = temp1 + 2 * size; //linsize * linsize
double * work4 = temp1 + 3 * size; //linsize * linsize
double * workLARGE = temp2;
int lworkLARGE = 4 * size;
// work1 contains eigvec( U + U^T )
// work3 contains eigvec( U + U^T )^T * U * eigvec( U + U^T ) ( TRIDIAGONAL matrix )
const double determinant = get_determinant( irrep, work1, work3, workLARGE, lworkLARGE );
assert( determinant > 0.0 );
//Fill work2 with ln(V^T U V) = ln(work3).
for ( int cnt = 0; cnt < size; cnt++ ){ work2[ cnt ] = 0.0; }
for ( int cnt = 0; cnt < linsize/2; cnt++ ){ //2x2 blocks
const double cosinus = 0.5 * ( work3[ 2 * cnt + linsize * ( 2 * cnt ) ] + work3[ 2 * cnt + 1 + linsize * ( 2 * cnt + 1 ) ] );
const double sinus = 0.5 * ( work3[ 2 * cnt + linsize * ( 2 * cnt + 1 ) ] - work3[ 2 * cnt + 1 + linsize * ( 2 * cnt ) ] );
const double theta = atan2( sinus, cosinus );
if (CheMPS2::DMRGSCF_debugPrint){
cout << " DMRGSCFunitary::getLog : block = [ " << work3[ 2 * cnt + linsize * ( 2 * cnt ) ] << " , "
<< work3[ 2 * cnt + linsize * ( 2 * cnt + 1 ) ] << " ]" << endl;
cout << " [ " << work3[ 2 * cnt + 1 + linsize * ( 2 * cnt ) ] << " , "
<< work3[ 2 * cnt + 1 + linsize * ( 2 * cnt + 1 ) ] << " ] and corresponds to theta = " << theta << endl;
}
work3[ 2 * cnt + linsize * ( 2 * cnt ) ] -= cosinus;
work3[ 2 * cnt + 1 + linsize * ( 2 * cnt + 1 ) ] -= cosinus;
work3[ 2 * cnt + linsize * ( 2 * cnt + 1 ) ] -= sinus;
work3[ 2 * cnt + 1 + linsize * ( 2 * cnt ) ] += sinus;
work2[ 2 * cnt + linsize * ( 2 * cnt + 1 ) ] = theta;
work2[ 2 * cnt + 1 + linsize * ( 2 * cnt ) ] = -theta;
} //The rest are 1x1 blocks, corresponding to eigenvalue 1 --> ln(1) = 0 --> work2 does not need to be updated.
for ( int cnt = 2*(linsize/2); cnt < linsize; cnt++ ){ work3[ cnt * ( linsize + 1 ) ] -= 1; }
//Calculate the 2-norm of updated work3 (should be 0.0)
if (CheMPS2::DMRGSCF_debugPrint){
double RMSdeviation = 0.0;
for ( int cnt = 0; cnt < size; cnt++ ){ RMSdeviation += work3[ cnt ] * work3[ cnt ]; }
RMSdeviation = sqrt( RMSdeviation );
cout << " DMRGSCFunitary::getLog : 2-norm of [ V^T*U*V - assumed blocks ] for irrep " << irrep << " (should be 0.0) = " << RMSdeviation << endl;
}
//Calculate V * ln(blocks) * V^T --> work4
char trans = 'T';
char notrans = 'N';
double one = 1.0;
double set = 0.0;
dgemm_(¬rans, ¬rans, &linsize, &linsize, &linsize, &one, work1, &linsize, work2, &linsize, &set, workLARGE, &linsize ); //V*ln(blocks)
dgemm_(¬rans, &trans, &linsize, &linsize, &linsize, &one, workLARGE, &linsize, work1, &linsize, &set, work4, &linsize ); //V*ln(blocks)*V^T
//Fill the vector with the just calculated ln(U) = work4
for ( int row = 0; row < linsize; row++ ){
for ( int col = row + 1; col < linsize; col++ ){
vector[ jump + row + ( col * ( col - 1 ) ) / 2 ] = 0.5 * ( work4[ row + linsize * col ] - work4[ col + linsize * row ] );
}
}
jump += ( linsize * ( linsize - 1 ) ) / 2;
}
}
if ( true ){
DMRGSCFunitary tempU = DMRGSCFunitary( iHandler );
tempU.updateUnitary( temp1, temp2, vector, false, false ); //multiply = compact = false
const double rms_diff = rms_deviation( &tempU );
cout << " DMRGSCFunitary::getLog : 2-norm of [ U - exp(ln(U)) ] (should be 0.0) = " << rms_diff << endl;
}
}
void CheMPS2::DMRGSCFunitary::makeSureAllBlocksDetOne( double * temp1, double * temp2 ){
for ( int irrep = 0; irrep < num_irreps; irrep++ ){
int linsize = iHandler->getNORB( irrep );
int size = linsize * linsize;
if ( linsize > 1 ){
/* linsize >= 2; hence temp1 is at least of size 4*linsize*linsize
if linsize <= 1; there corresponds no block in xmatrix to it */
double * work1 = temp1; //linsize * linsize
double * work2 = temp1 + size; //linsize * linsize
double * workLARGE = temp2;
int lworkLARGE = 4 * size;
const double determinant = get_determinant( irrep, work1, work2, workLARGE, lworkLARGE );
if ( determinant < 0.0 ){ // determinant = -1
// U <-- diag(-1, 1, 1, 1, ...) * U : First row of U changes sign!
for ( int cnt = 0; cnt < linsize; cnt++ ){ entries[ irrep ][ 0 + linsize * cnt ] *= -1; }
}
}
}
}
void CheMPS2::DMRGSCFunitary::saveU( const string filename ) const{
CheMPS2::DMRGSCFmatrix::write( filename, iHandler, entries );
}
void CheMPS2::DMRGSCFunitary::loadU( const string filename ){
CheMPS2::DMRGSCFmatrix::read( filename, num_irreps, entries );
}
|