1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
|
/*
CheMPS2: a spin-adapted implementation of DMRG for ab initio quantum chemistry
Copyright (C) 2013-2018 Sebastian Wouters
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <stdlib.h>
#include <sys/time.h>
#include <assert.h>
#include "DMRG.h"
#include "MPIchemps2.h"
#include "Special.h"
void CheMPS2::DMRG::update_safe_3rdm_operators(const int boundary){
/*
indices 0 <= j <= k <= l < boundary
tensor_3rdm[ boundary - 1 == index ][ k - j ][ l - k ][ boundary - 1 - l ]
**************************
* anni / anni / anni *
**************************
1/ j == k == l is forbidden ( no three annihilators on the same site )
2/ if j == k, J1 must be zero ( Sigma_J1 does not exist then )
3/ if k == l, J2 must be 1/2
tensor_3rdm_a_J0_doublet --> j <= k < l & j < k == l ( or NOT j == k == l )
tensor_3rdm_a_J1_doublet --> j < k <= l
tensor_3rdm_a_J1_quartet --> j < k < l
**************************
* anni / anni / crea *
**************************
1/ j <= k < l is allowed ( k == l is part of tensor_3rdm_c )
2/ if j == k, J1 must be zero ( Sigma_J1 does not exist then )
tensor_3rdm_b_J0_doublet --> j <= k < l
tensor_3rdm_b_J1_doublet --> j < k < l
tensor_3rdm_b_J1_quartet --> j < k < l
**************************
* anni / crea / anni *
**************************
1/ j == k == l is forbidden ( j == k == l is part of tensor_3rdm_d )
tensor_3rdm_c_J0_doublet --> j <= k < l & j < k == l ( or NOT j == k == l )
tensor_3rdm_c_J1_doublet --> j <= k < l & j < k == l ( or NOT j == k == l )
tensor_3rdm_c_J1_quartet --> j <= k < l & j < k == l ( or NOT j == k == l )
**************************
* crea / anni / anni *
**************************
1/ j <= k <= l is allowed
2/ if k == l, J2 must be 1/2
tensor_3rdm_d_J0_doublet --> j <= k <= l
tensor_3rdm_d_J1_doublet --> j <= k <= l
tensor_3rdm_d_J1_quartet --> j <= k < l
*/
allocate_3rdm_operators( boundary );
update_3rdm_operators( boundary );
if ( boundary >= 2 ){ delete_3rdm_operators( boundary - 1 ); }
}
void CheMPS2::DMRG::update_3rdm_operators(const int boundary){
struct timeval start, end;
gettimeofday(&start, NULL);
const int index = boundary - 1;
const int dimL = denBK->gMaxDimAtBound(boundary-1);
const int dimR = denBK->gMaxDimAtBound(boundary);
#ifdef CHEMPS2_MPI_COMPILATION
const int MPIRANK = MPIchemps2::mpi_rank();
#endif
#pragma omp parallel
{
double * workmem = new double[dimL*dimR];
#ifdef CHEMPS2_MPI_COMPILATION //######( loop j<=k<=l MPI )######//
/* Strategy for MPI:
- outer loop is (j,k)
- everyone has a temporary duplicate of S_jk and F_jk
*/
for ( int orb_j = 0; orb_j < boundary; orb_j++ ){
for ( int orb_k = orb_j; orb_k < boundary; orb_k++ ){
const int irrjk = Irreps::directProd( denBK->gIrrep( orb_j ), denBK->gIrrep( orb_k ) );
const int cnt1 = orb_k - orb_j;
#pragma omp single
if ( orb_k < index-1 ){ // All processes own Fx/Sx[ index - 1 ][ k - j ][ index - 1 - k == 0 ]
const int own_S_jk = MPIchemps2::owner_absigma( orb_j, orb_k );
const int own_F_jk = MPIchemps2::owner_cdf( L, orb_j, orb_k );
if ( MPIRANK != own_F_jk ){ F0tensors[index-1][cnt1][index-orb_k-1] = new TensorF0( index, irrjk, true, denBK );
F1tensors[index-1][cnt1][index-orb_k-1] = new TensorF1( index, irrjk, true, denBK ); }
if ( MPIRANK != own_S_jk ){ S0tensors[index-1][cnt1][index-orb_k-1] = new TensorS0( index, irrjk, true, denBK );
if ( cnt1 > 0 ){ S1tensors[index-1][cnt1][index-orb_k-1] = new TensorS1( index, irrjk, true, denBK ); }}
MPIchemps2::broadcast_tensor( F0tensors[index-1][cnt1][index-orb_k-1], own_F_jk );
MPIchemps2::broadcast_tensor( F1tensors[index-1][cnt1][index-orb_k-1], own_F_jk );
MPIchemps2::broadcast_tensor( S0tensors[index-1][cnt1][index-orb_k-1], own_S_jk );
if ( cnt1 > 0 ){ MPIchemps2::broadcast_tensor( S1tensors[index-1][cnt1][index-orb_k-1], own_S_jk ); }
}
#pragma omp for schedule(dynamic)
for ( int orb_l = orb_k; orb_l < boundary; orb_l++ ){
if ( MPIchemps2::owner_3rdm_diagram( L, orb_j, orb_k, orb_l ) == MPIRANK ){
const int cnt2 = orb_l - orb_k;
const int cnt3 = index - orb_l;
#else //######( loop j<=k<=l MPI )######//
const int upperbound = (boundary*(boundary+1)*(boundary+2))/6;
int jkl[] = { 0, 0, 0 };
#pragma omp for schedule(static)
for ( int global = 0; global < upperbound; global++ ){
Special::invert_triangle_three( global, jkl );
const int orb_j = jkl[ 0 ];
const int orb_k = jkl[ 1 ];
const int orb_l = jkl[ 2 ];
const int recalculate_global = orb_j + (orb_k*(orb_k+1))/2 + (orb_l*(orb_l+1)*(orb_l+2))/6;
assert( global == recalculate_global );
const int cnt1 = orb_k - orb_j;
const int cnt2 = orb_l - orb_k;
const int cnt3 = index - orb_l;
#endif //######( loop j<=k<=l MPI )######//
/* PERFORM THE UPDATES */
if ( cnt3 == 0 ){ // Create tensors
if ( cnt2 > 0 ){
tensor_3rdm_a_J0_doublet[index][cnt1][cnt2][0]->a1(S0tensors[index-1][cnt1][cnt2-1], MPS[index], workmem);
if (cnt1>0){ tensor_3rdm_a_J1_doublet[index][cnt1][cnt2][0]->a1(S1tensors[index-1][cnt1][cnt2-1], MPS[index], workmem);
tensor_3rdm_a_J1_quartet[index][cnt1][cnt2][0]->a1(S1tensors[index-1][cnt1][cnt2-1], MPS[index], workmem); }
tensor_3rdm_b_J0_doublet[index][cnt1][cnt2][0]->b1(S0tensors[index-1][cnt1][cnt2-1], MPS[index], workmem);
if (cnt1>0){ tensor_3rdm_b_J1_doublet[index][cnt1][cnt2][0]->b1(S1tensors[index-1][cnt1][cnt2-1], MPS[index], workmem);
tensor_3rdm_b_J1_quartet[index][cnt1][cnt2][0]->b1(S1tensors[index-1][cnt1][cnt2-1], MPS[index], workmem); }
tensor_3rdm_c_J0_doublet[index][cnt1][cnt2][0]->c1(F0tensors[index-1][cnt1][cnt2-1], MPS[index], workmem);
tensor_3rdm_c_J1_doublet[index][cnt1][cnt2][0]->c1(F1tensors[index-1][cnt1][cnt2-1], MPS[index], workmem);
tensor_3rdm_c_J1_quartet[index][cnt1][cnt2][0]->c1(F1tensors[index-1][cnt1][cnt2-1], MPS[index], workmem);
tensor_3rdm_d_J0_doublet[index][cnt1][cnt2][0]->d1(F0tensors[index-1][cnt1][cnt2-1], MPS[index], workmem);
tensor_3rdm_d_J1_doublet[index][cnt1][cnt2][0]->d1(F1tensors[index-1][cnt1][cnt2-1], MPS[index], workmem);
tensor_3rdm_d_J1_quartet[index][cnt1][cnt2][0]->d1(F1tensors[index-1][cnt1][cnt2-1], MPS[index], workmem);
} else {
if ( cnt1 > 0 ){
tensor_3rdm_a_J0_doublet[index][cnt1][0][0]->extra2(Ltensors[index-1][cnt1-1], MPS[index], workmem);
tensor_3rdm_a_J1_doublet[index][cnt1][0][0]->extra2(Ltensors[index-1][cnt1-1], MPS[index], workmem);
tensor_3rdm_c_J0_doublet[index][cnt1][0][0]->extra4(Ltensors[index-1][cnt1-1], MPS[index], workmem);
tensor_3rdm_c_J1_doublet[index][cnt1][0][0]->extra4(Ltensors[index-1][cnt1-1], MPS[index], workmem);
tensor_3rdm_c_J1_quartet[index][cnt1][0][0]->extra4(Ltensors[index-1][cnt1-1], MPS[index], workmem);
tensor_3rdm_d_J0_doublet[index][cnt1][0][0]->extra3(Ltensors[index-1][cnt1-1], MPS[index], workmem);
tensor_3rdm_d_J1_doublet[index][cnt1][0][0]->extra3(Ltensors[index-1][cnt1-1], MPS[index], workmem);
} else {
tensor_3rdm_d_J0_doublet[index][0][0][0]->extra1(MPS[index]);
tensor_3rdm_d_J1_doublet[index][0][0][0]->extra1(MPS[index]);
}
}
} else { // Update tensors
if (cnt1+cnt2>0){ tensor_3rdm_a_J0_doublet[index][cnt1][cnt2][cnt3]->update(tensor_3rdm_a_J0_doublet[index-1][cnt1][cnt2][cnt3-1], MPS[index], MPS[index], workmem); }
if (cnt1>0) { tensor_3rdm_a_J1_doublet[index][cnt1][cnt2][cnt3]->update(tensor_3rdm_a_J1_doublet[index-1][cnt1][cnt2][cnt3-1], MPS[index], MPS[index], workmem); }
if (cnt1*cnt2>0){ tensor_3rdm_a_J1_quartet[index][cnt1][cnt2][cnt3]->update(tensor_3rdm_a_J1_quartet[index-1][cnt1][cnt2][cnt3-1], MPS[index], MPS[index], workmem); }
if (cnt2>0) { tensor_3rdm_b_J0_doublet[index][cnt1][cnt2][cnt3]->update(tensor_3rdm_b_J0_doublet[index-1][cnt1][cnt2][cnt3-1], MPS[index], MPS[index], workmem); }
if (cnt1*cnt2>0){ tensor_3rdm_b_J1_doublet[index][cnt1][cnt2][cnt3]->update(tensor_3rdm_b_J1_doublet[index-1][cnt1][cnt2][cnt3-1], MPS[index], MPS[index], workmem); }
if (cnt1*cnt2>0){ tensor_3rdm_b_J1_quartet[index][cnt1][cnt2][cnt3]->update(tensor_3rdm_b_J1_quartet[index-1][cnt1][cnt2][cnt3-1], MPS[index], MPS[index], workmem); }
if (cnt1+cnt2>0){ tensor_3rdm_c_J0_doublet[index][cnt1][cnt2][cnt3]->update(tensor_3rdm_c_J0_doublet[index-1][cnt1][cnt2][cnt3-1], MPS[index], MPS[index], workmem); }
if (cnt1+cnt2>0){ tensor_3rdm_c_J1_doublet[index][cnt1][cnt2][cnt3]->update(tensor_3rdm_c_J1_doublet[index-1][cnt1][cnt2][cnt3-1], MPS[index], MPS[index], workmem); }
if (cnt1+cnt2>0){ tensor_3rdm_c_J1_quartet[index][cnt1][cnt2][cnt3]->update(tensor_3rdm_c_J1_quartet[index-1][cnt1][cnt2][cnt3-1], MPS[index], MPS[index], workmem); }
tensor_3rdm_d_J0_doublet[index][cnt1][cnt2][cnt3]->update(tensor_3rdm_d_J0_doublet[index-1][cnt1][cnt2][cnt3-1], MPS[index], MPS[index], workmem);
tensor_3rdm_d_J1_doublet[index][cnt1][cnt2][cnt3]->update(tensor_3rdm_d_J1_doublet[index-1][cnt1][cnt2][cnt3-1], MPS[index], MPS[index], workmem);
if (cnt2>0) { tensor_3rdm_d_J1_quartet[index][cnt1][cnt2][cnt3]->update(tensor_3rdm_d_J1_quartet[index-1][cnt1][cnt2][cnt3-1], MPS[index], MPS[index], workmem); }
}
#ifdef CHEMPS2_MPI_COMPILATION //######( close loop j<=k<=l MPI )######//
}
}
#pragma omp single
if ( orb_k < index - 1 ){ // All processes own Fx/Sx[ index - 1 ][ k - j ][ index - 1 - k == 0 ]
const int own_S_jk = MPIchemps2::owner_absigma( orb_j, orb_k );
const int own_F_jk = MPIchemps2::owner_cdf( L, orb_j, orb_k );
if ( MPIRANK != own_F_jk ){ delete F0tensors[index-1][cnt1][index-orb_k-1]; F0tensors[index-1][cnt1][index-orb_k-1] = NULL;
delete F1tensors[index-1][cnt1][index-orb_k-1]; F1tensors[index-1][cnt1][index-orb_k-1] = NULL; }
if ( MPIRANK != own_S_jk ){ delete S0tensors[index-1][cnt1][index-orb_k-1]; S0tensors[index-1][cnt1][index-orb_k-1] = NULL;
if ( cnt1 > 0 ){ delete S1tensors[index-1][cnt1][index-orb_k-1]; S1tensors[index-1][cnt1][index-orb_k-1] = NULL; }}
}
}
}
#else //######( close loop j<=k<=l MPI )######//
}
#endif //######( close loop j<=k<=l MPI )######//
delete [] workmem;
}
gettimeofday(&end, NULL);
timings[ CHEMPS2_TIME_TENS_CALC ] += (end.tv_sec - start.tv_sec) + 1e-6 * (end.tv_usec - start.tv_usec);
}
void CheMPS2::DMRG::allocate_3rdm_operators(const int boundary){
struct timeval start, end;
gettimeofday(&start, NULL);
#ifdef CHEMPS2_MPI_COMPILATION
const int MPIRANK = MPIchemps2::mpi_rank();
#endif
const int index = boundary - 1;
tensor_3rdm_a_J0_doublet[ index ] = new Tensor3RDM***[ boundary ];
tensor_3rdm_a_J1_doublet[ index ] = new Tensor3RDM***[ boundary ];
tensor_3rdm_a_J1_quartet[ index ] = new Tensor3RDM***[ boundary ];
tensor_3rdm_b_J0_doublet[ index ] = new Tensor3RDM***[ boundary ];
tensor_3rdm_b_J1_doublet[ index ] = new Tensor3RDM***[ boundary ];
tensor_3rdm_b_J1_quartet[ index ] = new Tensor3RDM***[ boundary ];
tensor_3rdm_c_J0_doublet[ index ] = new Tensor3RDM***[ boundary ];
tensor_3rdm_c_J1_doublet[ index ] = new Tensor3RDM***[ boundary ];
tensor_3rdm_c_J1_quartet[ index ] = new Tensor3RDM***[ boundary ];
tensor_3rdm_d_J0_doublet[ index ] = new Tensor3RDM***[ boundary ];
tensor_3rdm_d_J1_doublet[ index ] = new Tensor3RDM***[ boundary ];
tensor_3rdm_d_J1_quartet[ index ] = new Tensor3RDM***[ boundary ];
for ( int cnt1 = 0; cnt1 < boundary; cnt1++ ){ // cnt1 = k - j < boundary
tensor_3rdm_a_J0_doublet[ index ][ cnt1 ] = new Tensor3RDM**[ boundary - cnt1 ];
tensor_3rdm_a_J1_doublet[ index ][ cnt1 ] = new Tensor3RDM**[ boundary - cnt1 ];
tensor_3rdm_a_J1_quartet[ index ][ cnt1 ] = new Tensor3RDM**[ boundary - cnt1 ];
tensor_3rdm_b_J0_doublet[ index ][ cnt1 ] = new Tensor3RDM**[ boundary - cnt1 ];
tensor_3rdm_b_J1_doublet[ index ][ cnt1 ] = new Tensor3RDM**[ boundary - cnt1 ];
tensor_3rdm_b_J1_quartet[ index ][ cnt1 ] = new Tensor3RDM**[ boundary - cnt1 ];
tensor_3rdm_c_J0_doublet[ index ][ cnt1 ] = new Tensor3RDM**[ boundary - cnt1 ];
tensor_3rdm_c_J1_doublet[ index ][ cnt1 ] = new Tensor3RDM**[ boundary - cnt1 ];
tensor_3rdm_c_J1_quartet[ index ][ cnt1 ] = new Tensor3RDM**[ boundary - cnt1 ];
tensor_3rdm_d_J0_doublet[ index ][ cnt1 ] = new Tensor3RDM**[ boundary - cnt1 ];
tensor_3rdm_d_J1_doublet[ index ][ cnt1 ] = new Tensor3RDM**[ boundary - cnt1 ];
tensor_3rdm_d_J1_quartet[ index ][ cnt1 ] = new Tensor3RDM**[ boundary - cnt1 ];
for ( int cnt2 = 0; cnt2 < boundary - cnt1; cnt2++ ){ // cnt2 = l - k < boundary - k = boundary - cnt1 - j <= boundary - cnt1
tensor_3rdm_a_J0_doublet[ index ][ cnt1 ][ cnt2 ] = new Tensor3RDM*[ boundary - cnt1 - cnt2 ];
tensor_3rdm_a_J1_doublet[ index ][ cnt1 ][ cnt2 ] = new Tensor3RDM*[ boundary - cnt1 - cnt2 ];
tensor_3rdm_a_J1_quartet[ index ][ cnt1 ][ cnt2 ] = new Tensor3RDM*[ boundary - cnt1 - cnt2 ];
tensor_3rdm_b_J0_doublet[ index ][ cnt1 ][ cnt2 ] = new Tensor3RDM*[ boundary - cnt1 - cnt2 ];
tensor_3rdm_b_J1_doublet[ index ][ cnt1 ][ cnt2 ] = new Tensor3RDM*[ boundary - cnt1 - cnt2 ];
tensor_3rdm_b_J1_quartet[ index ][ cnt1 ][ cnt2 ] = new Tensor3RDM*[ boundary - cnt1 - cnt2 ];
tensor_3rdm_c_J0_doublet[ index ][ cnt1 ][ cnt2 ] = new Tensor3RDM*[ boundary - cnt1 - cnt2 ];
tensor_3rdm_c_J1_doublet[ index ][ cnt1 ][ cnt2 ] = new Tensor3RDM*[ boundary - cnt1 - cnt2 ];
tensor_3rdm_c_J1_quartet[ index ][ cnt1 ][ cnt2 ] = new Tensor3RDM*[ boundary - cnt1 - cnt2 ];
tensor_3rdm_d_J0_doublet[ index ][ cnt1 ][ cnt2 ] = new Tensor3RDM*[ boundary - cnt1 - cnt2 ];
tensor_3rdm_d_J1_doublet[ index ][ cnt1 ][ cnt2 ] = new Tensor3RDM*[ boundary - cnt1 - cnt2 ];
tensor_3rdm_d_J1_quartet[ index ][ cnt1 ][ cnt2 ] = new Tensor3RDM*[ boundary - cnt1 - cnt2 ];
for ( int cnt3 = 0; cnt3 < boundary - cnt1 - cnt2; cnt3++ ){ // cnt3 = boundary - 1 - l < boundary - ( l - k ) - ( k - j ) = boundary - cnt1 - cnt2
const int orb_l = boundary - 1 - cnt3;
const int orb_k = orb_l - cnt2;
const int orb_j = orb_k - cnt1;
const int irr = Irreps::directProd( Irreps::directProd( denBK->gIrrep( orb_j ), denBK->gIrrep( orb_k ) ), denBK->gIrrep( orb_l ) );
#ifdef CHEMPS2_MPI_COMPILATION
if ( MPIchemps2::owner_3rdm_diagram( L, orb_j, orb_k, orb_l ) == MPIRANK ){
#endif
tensor_3rdm_a_J0_doublet[index][cnt1][cnt2][cnt3] = (cnt1+cnt2>0) ? new Tensor3RDM(boundary, 0, 1, 3, irr, true, denBK) : NULL; // NOT j == k == l
tensor_3rdm_a_J1_doublet[index][cnt1][cnt2][cnt3] = (cnt1>0) ? new Tensor3RDM(boundary, 2, 1, 3, irr, true, denBK) : NULL; // j < k <= l
tensor_3rdm_a_J1_quartet[index][cnt1][cnt2][cnt3] = (cnt1*cnt2>0) ? new Tensor3RDM(boundary, 2, 3, 3, irr, true, denBK) : NULL; // j < k < l
tensor_3rdm_b_J0_doublet[index][cnt1][cnt2][cnt3] = (cnt2>0) ? new Tensor3RDM(boundary, 0, 1, 1, irr, true, denBK) : NULL; // j <= k < l
tensor_3rdm_b_J1_doublet[index][cnt1][cnt2][cnt3] = (cnt1*cnt2>0) ? new Tensor3RDM(boundary, 2, 1, 1, irr, true, denBK) : NULL; // j < k < l
tensor_3rdm_b_J1_quartet[index][cnt1][cnt2][cnt3] = (cnt1*cnt2>0) ? new Tensor3RDM(boundary, 2, 3, 1, irr, true, denBK) : NULL; // j < k < l
tensor_3rdm_c_J0_doublet[index][cnt1][cnt2][cnt3] = (cnt1+cnt2>0) ? new Tensor3RDM(boundary, 0, 1, 1, irr, true, denBK) : NULL; // NOT j == k == l
tensor_3rdm_c_J1_doublet[index][cnt1][cnt2][cnt3] = (cnt1+cnt2>0) ? new Tensor3RDM(boundary, 2, 1, 1, irr, true, denBK) : NULL; // NOT j == k == l
tensor_3rdm_c_J1_quartet[index][cnt1][cnt2][cnt3] = (cnt1+cnt2>0) ? new Tensor3RDM(boundary, 2, 3, 1, irr, true, denBK) : NULL; // NOT j == k == l
tensor_3rdm_d_J0_doublet[index][cnt1][cnt2][cnt3] = new Tensor3RDM(boundary, 0, 1, 1, irr, false, denBK); // j <= k <= l
tensor_3rdm_d_J1_doublet[index][cnt1][cnt2][cnt3] = new Tensor3RDM(boundary, 2, 1, 1, irr, false, denBK); // j <= k <= l
tensor_3rdm_d_J1_quartet[index][cnt1][cnt2][cnt3] = (cnt2>0) ? new Tensor3RDM(boundary, 2, 3, 1, irr, false, denBK) : NULL; // j <= k < l
#ifdef CHEMPS2_MPI_COMPILATION
} else {
tensor_3rdm_a_J0_doublet[index][cnt1][cnt2][cnt3] = NULL;
tensor_3rdm_a_J1_doublet[index][cnt1][cnt2][cnt3] = NULL;
tensor_3rdm_a_J1_quartet[index][cnt1][cnt2][cnt3] = NULL;
tensor_3rdm_b_J0_doublet[index][cnt1][cnt2][cnt3] = NULL;
tensor_3rdm_b_J1_doublet[index][cnt1][cnt2][cnt3] = NULL;
tensor_3rdm_b_J1_quartet[index][cnt1][cnt2][cnt3] = NULL;
tensor_3rdm_c_J0_doublet[index][cnt1][cnt2][cnt3] = NULL;
tensor_3rdm_c_J1_doublet[index][cnt1][cnt2][cnt3] = NULL;
tensor_3rdm_c_J1_quartet[index][cnt1][cnt2][cnt3] = NULL;
tensor_3rdm_d_J0_doublet[index][cnt1][cnt2][cnt3] = NULL;
tensor_3rdm_d_J1_doublet[index][cnt1][cnt2][cnt3] = NULL;
tensor_3rdm_d_J1_quartet[index][cnt1][cnt2][cnt3] = NULL;
}
#endif
}
}
}
gettimeofday(&end, NULL);
timings[ CHEMPS2_TIME_TENS_ALLOC ] += (end.tv_sec - start.tv_sec) + 1e-6 * (end.tv_usec - start.tv_usec);
}
void CheMPS2::DMRG::delete_3rdm_operators(const int boundary){
struct timeval start, end;
gettimeofday(&start, NULL);
#ifdef CHEMPS2_MPI_COMPILATION
const int MPIRANK = MPIchemps2::mpi_rank();
#endif
const int index = boundary - 1;
for ( int cnt1 = 0; cnt1 < boundary; cnt1++ ){ // cnt1 = k - j < boundary
for ( int cnt2 = 0; cnt2 < boundary - cnt1; cnt2++ ){ // cnt2 = l - k < boundary - k = boundary - cnt1 - j <= boundary - cnt1
for ( int cnt3 = 0; cnt3 < boundary - cnt1 - cnt2; cnt3++ ){ // cnt3 = boundary - 1 - l < boundary - ( l - k ) - ( k - j ) = boundary - cnt1 - cnt2
const int orb_l = boundary - 1 - cnt3;
const int orb_k = orb_l - cnt2;
const int orb_j = orb_k - cnt1;
#ifdef CHEMPS2_MPI_COMPILATION
if ( MPIchemps2::owner_3rdm_diagram( L, orb_j, orb_k, orb_l ) == MPIRANK )
#endif
{
if (cnt1+cnt2>0){ delete tensor_3rdm_a_J0_doublet[index][cnt1][cnt2][cnt3]; }
if (cnt1>0) { delete tensor_3rdm_a_J1_doublet[index][cnt1][cnt2][cnt3]; }
if (cnt1*cnt2>0){ delete tensor_3rdm_a_J1_quartet[index][cnt1][cnt2][cnt3]; }
if (cnt2>0) { delete tensor_3rdm_b_J0_doublet[index][cnt1][cnt2][cnt3]; }
if (cnt1*cnt2>0){ delete tensor_3rdm_b_J1_doublet[index][cnt1][cnt2][cnt3]; }
if (cnt1*cnt2>0){ delete tensor_3rdm_b_J1_quartet[index][cnt1][cnt2][cnt3]; }
if (cnt1+cnt2>0){ delete tensor_3rdm_c_J0_doublet[index][cnt1][cnt2][cnt3]; }
if (cnt1+cnt2>0){ delete tensor_3rdm_c_J1_doublet[index][cnt1][cnt2][cnt3]; }
if (cnt1+cnt2>0){ delete tensor_3rdm_c_J1_quartet[index][cnt1][cnt2][cnt3]; }
delete tensor_3rdm_d_J0_doublet[index][cnt1][cnt2][cnt3];
delete tensor_3rdm_d_J1_doublet[index][cnt1][cnt2][cnt3];
if (cnt2>0) { delete tensor_3rdm_d_J1_quartet[index][cnt1][cnt2][cnt3]; }
}
}
delete [] tensor_3rdm_a_J0_doublet[ index ][ cnt1 ][ cnt2 ];
delete [] tensor_3rdm_a_J1_doublet[ index ][ cnt1 ][ cnt2 ];
delete [] tensor_3rdm_a_J1_quartet[ index ][ cnt1 ][ cnt2 ];
delete [] tensor_3rdm_b_J0_doublet[ index ][ cnt1 ][ cnt2 ];
delete [] tensor_3rdm_b_J1_doublet[ index ][ cnt1 ][ cnt2 ];
delete [] tensor_3rdm_b_J1_quartet[ index ][ cnt1 ][ cnt2 ];
delete [] tensor_3rdm_c_J0_doublet[ index ][ cnt1 ][ cnt2 ];
delete [] tensor_3rdm_c_J1_doublet[ index ][ cnt1 ][ cnt2 ];
delete [] tensor_3rdm_c_J1_quartet[ index ][ cnt1 ][ cnt2 ];
delete [] tensor_3rdm_d_J0_doublet[ index ][ cnt1 ][ cnt2 ];
delete [] tensor_3rdm_d_J1_doublet[ index ][ cnt1 ][ cnt2 ];
delete [] tensor_3rdm_d_J1_quartet[ index ][ cnt1 ][ cnt2 ];
}
delete [] tensor_3rdm_a_J0_doublet[ index ][ cnt1 ];
delete [] tensor_3rdm_a_J1_doublet[ index ][ cnt1 ];
delete [] tensor_3rdm_a_J1_quartet[ index ][ cnt1 ];
delete [] tensor_3rdm_b_J0_doublet[ index ][ cnt1 ];
delete [] tensor_3rdm_b_J1_doublet[ index ][ cnt1 ];
delete [] tensor_3rdm_b_J1_quartet[ index ][ cnt1 ];
delete [] tensor_3rdm_c_J0_doublet[ index ][ cnt1 ];
delete [] tensor_3rdm_c_J1_doublet[ index ][ cnt1 ];
delete [] tensor_3rdm_c_J1_quartet[ index ][ cnt1 ];
delete [] tensor_3rdm_d_J0_doublet[ index ][ cnt1 ];
delete [] tensor_3rdm_d_J1_doublet[ index ][ cnt1 ];
delete [] tensor_3rdm_d_J1_quartet[ index ][ cnt1 ];
}
delete [] tensor_3rdm_a_J0_doublet[ index ];
delete [] tensor_3rdm_a_J1_doublet[ index ];
delete [] tensor_3rdm_a_J1_quartet[ index ];
delete [] tensor_3rdm_b_J0_doublet[ index ];
delete [] tensor_3rdm_b_J1_doublet[ index ];
delete [] tensor_3rdm_b_J1_quartet[ index ];
delete [] tensor_3rdm_c_J0_doublet[ index ];
delete [] tensor_3rdm_c_J1_doublet[ index ];
delete [] tensor_3rdm_c_J1_quartet[ index ];
delete [] tensor_3rdm_d_J0_doublet[ index ];
delete [] tensor_3rdm_d_J1_doublet[ index ];
delete [] tensor_3rdm_d_J1_quartet[ index ];
gettimeofday(&end, NULL);
timings[ CHEMPS2_TIME_TENS_FREE ] += (end.tv_sec - start.tv_sec) + 1e-6 * (end.tv_usec - start.tv_usec);
}
void CheMPS2::DMRG::update_correlations_tensors(const int siteindex){
struct timeval start, end;
const int dimL = denBK->gMaxDimAtBound(siteindex-1);
const int dimR = denBK->gMaxDimAtBound(siteindex);
double * workmemLR = new double[dimL*dimR];
for ( int previousindex = 0; previousindex < siteindex-1; previousindex++ ){
gettimeofday(&start, NULL);
TensorGYZ * newG = new TensorGYZ(siteindex, 'G', denBK);
TensorGYZ * newY = new TensorGYZ(siteindex, 'Y', denBK);
TensorGYZ * newZ = new TensorGYZ(siteindex, 'Z', denBK);
TensorKM * newK = new TensorKM( siteindex, 'K', denBK->gIrrep(previousindex), denBK );
TensorKM * newM = new TensorKM( siteindex, 'M', denBK->gIrrep(previousindex), denBK );
gettimeofday(&end, NULL);
timings[ CHEMPS2_TIME_TENS_ALLOC ] += (end.tv_sec - start.tv_sec) + 1e-6 * (end.tv_usec - start.tv_usec);
gettimeofday(&start, NULL);
newG->update(Gtensors[previousindex], MPS[siteindex-1], MPS[siteindex-1], workmemLR);
newY->update(Ytensors[previousindex], MPS[siteindex-1], MPS[siteindex-1], workmemLR);
newZ->update(Ztensors[previousindex], MPS[siteindex-1], MPS[siteindex-1], workmemLR);
newK->update(Ktensors[previousindex], MPS[siteindex-1], MPS[siteindex-1], workmemLR);
newM->update(Mtensors[previousindex], MPS[siteindex-1], MPS[siteindex-1], workmemLR);
gettimeofday(&end, NULL);
timings[ CHEMPS2_TIME_TENS_CALC ] += (end.tv_sec - start.tv_sec) + 1e-6 * (end.tv_usec - start.tv_usec);
gettimeofday(&start, NULL);
delete Gtensors[previousindex];
delete Ytensors[previousindex];
delete Ztensors[previousindex];
delete Ktensors[previousindex];
delete Mtensors[previousindex];
gettimeofday(&end, NULL);
timings[ CHEMPS2_TIME_TENS_FREE ] += (end.tv_sec - start.tv_sec) + 1e-6 * (end.tv_usec - start.tv_usec);
Gtensors[previousindex] = newG;
Ytensors[previousindex] = newY;
Ztensors[previousindex] = newZ;
Ktensors[previousindex] = newK;
Mtensors[previousindex] = newM;
}
delete [] workmemLR;
gettimeofday(&start, NULL);
Gtensors[siteindex-1] = new TensorGYZ(siteindex, 'G', denBK);
Ytensors[siteindex-1] = new TensorGYZ(siteindex, 'Y', denBK);
Ztensors[siteindex-1] = new TensorGYZ(siteindex, 'Z', denBK);
Ktensors[siteindex-1] = new TensorKM( siteindex, 'K', denBK->gIrrep(siteindex-1), denBK );
Mtensors[siteindex-1] = new TensorKM( siteindex, 'M', denBK->gIrrep(siteindex-1), denBK );
gettimeofday(&end, NULL);
timings[ CHEMPS2_TIME_TENS_ALLOC ] += (end.tv_sec - start.tv_sec) + 1e-6 * (end.tv_usec - start.tv_usec);
gettimeofday(&start, NULL);
Gtensors[siteindex-1]->construct(MPS[siteindex-1]);
Ytensors[siteindex-1]->construct(MPS[siteindex-1]);
Ztensors[siteindex-1]->construct(MPS[siteindex-1]);
Ktensors[siteindex-1]->construct(MPS[siteindex-1]);
Mtensors[siteindex-1]->construct(MPS[siteindex-1]);
gettimeofday(&end, NULL);
timings[ CHEMPS2_TIME_TENS_CALC ] += (end.tv_sec - start.tv_sec) + 1e-6 * (end.tv_usec - start.tv_usec);
}
|