File: Davidson.cpp

package info (click to toggle)
chemps2 1.8.12-5
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 5,432 kB
  • sloc: cpp: 38,521; python: 1,116; f90: 215; makefile: 45; sh: 23
file content (538 lines) | stat: -rw-r--r-- 21,224 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
/*
   CheMPS2: a spin-adapted implementation of DMRG for ab initio quantum chemistry
   Copyright (C) 2013-2018 Sebastian Wouters

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License along
   with this program; if not, write to the Free Software Foundation, Inc.,
   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/

#include <math.h>
#include <stdlib.h>
#include <iostream>
#include <assert.h>

#include "Davidson.h"
#include "Lapack.h"

using std::cout;
using std::endl;

CheMPS2::Davidson::Davidson( const int veclength, const int MAX_NUM_VEC, const int NUM_VEC_KEEP, const double RTOL, const double DIAG_CUTOFF, const bool debug_print, const char problem_type ){

   assert( ( problem_type == 'E' ) || ( problem_type == 'L' ) );

   this->debug_print  = debug_print;
   this->veclength    = veclength;
   this->problem_type = problem_type;
   this->MAX_NUM_VEC  = MAX_NUM_VEC;
   this->NUM_VEC_KEEP = NUM_VEC_KEEP;
   this->DIAG_CUTOFF  = DIAG_CUTOFF;
   this->RTOL         = RTOL;

   state = 'I'; // <I>nitialized Davidson
   nMultiplications = 0;

   // To store the vectors and the matrix x vectors
   num_vec = 0;
   vecs  = new double*[ MAX_NUM_VEC ];
   Hvecs = new double*[ MAX_NUM_VEC ];
   num_allocated = 0;

   // The projected problem
   mxM       = new double[ MAX_NUM_VEC * MAX_NUM_VEC ];
   mxM_eigs  = new double[ MAX_NUM_VEC ];
   mxM_vecs  = new double[ MAX_NUM_VEC * MAX_NUM_VEC ];
   mxM_lwork = 3 * MAX_NUM_VEC - 1;
   mxM_work  = new double[ mxM_lwork ];
   mxM_rhs   = (( problem_type == 'L' ) ? new double[ MAX_NUM_VEC ] : NULL );

   // Vector spaces
   diag     = new double[ veclength ];
   t_vec    = new double[ veclength ];
   u_vec    = new double[ veclength ];
   work_vec = new double[ veclength ];
   RHS      = (( problem_type == 'L' ) ? new double[ veclength ] : NULL );

   // For the deflation
   Reortho_Lowdin       = NULL;
   Reortho_Overlap_eigs = NULL;
   Reortho_Overlap      = NULL;
   Reortho_Eigenvecs    = NULL;

}

CheMPS2::Davidson::~Davidson(){

   for (int cnt = 0; cnt < num_allocated; cnt++){
      delete [] vecs[cnt];
      delete [] Hvecs[cnt];
   }
   delete [] vecs;
   delete [] Hvecs;

   delete [] mxM;
   delete [] mxM_eigs;
   delete [] mxM_vecs;
   delete [] mxM_work;
   if ( mxM_rhs != NULL ){ delete [] mxM_rhs; }

   delete [] diag;
   delete [] t_vec;
   delete [] u_vec;
   delete [] work_vec;
   if ( RHS != NULL ){ delete [] RHS; }

   if ( Reortho_Lowdin       != NULL ){ delete [] Reortho_Lowdin; }
   if ( Reortho_Overlap_eigs != NULL ){ delete [] Reortho_Overlap_eigs; }
   if ( Reortho_Overlap      != NULL ){ delete [] Reortho_Overlap; }
   if ( Reortho_Eigenvecs    != NULL ){ delete [] Reortho_Eigenvecs; }

}

int CheMPS2::Davidson::GetNumMultiplications() const{ return nMultiplications; }

char CheMPS2::Davidson::FetchInstruction( double ** pointers ){

   /* 
      Possible states:
       - I : just initialized
       - U : just before the big loop, the initial guess and the diagonal are set
       - N : a new vector has just been added to the list and a matrix-vector multiplication has been performed
       - F : the space has been deflated and a few matrix-vector multiplications are required
       - C : convergence was reached

      Possible instructions:
       - A : copy the initial guess to pointers[0], the diagonal to pointers[1], and if problem_type=='L' the right-hand side of the linear problem to pointers[2]
       - B : perform pointers[1] = symmetric matrix times pointers[0]
       - C : copy the converged solution from pointers[0] back; pointers[1][0] contains the converged energy if problem_type=='E' and the residual norm if problem_type=='L'
       - D : there was an error
   */

   if ( state == 'I' ){
      pointers[ 0 ] = t_vec;
      pointers[ 1 ] = diag;
      if ( problem_type == 'L' ){ pointers[ 2 ] = RHS; }
      state = 'U';
      return 'A';
   }

   if ( state == 'U' ){
      SafetyCheckGuess();
      AddNewVec();
      pointers[ 0 ] =  vecs[ num_vec ];
      pointers[ 1 ] = Hvecs[ num_vec ];
      nMultiplications++;
      state = 'N';
      return 'B';
   }

   if ( state == 'N' ){
      const double rnorm = DiagonalizeSmallMatrixAndCalcResidual();
      // if ( debug_print ){ cout << "WARNING AT DAVIDSON : Current residual norm = " << rnorm << endl; }
      if ( rnorm > RTOL ){ // Not yet converged
         CalculateNewVec();
         if ( num_vec == MAX_NUM_VEC ){
            Deflation();
            pointers[ 0 ] =  vecs[ num_vec ];
            pointers[ 1 ] = Hvecs[ num_vec ];
            nMultiplications++;
            num_vec++;
            state = 'F';
            return 'B';
         }
         AddNewVec();
         pointers[ 0 ] =  vecs[ num_vec ];
         pointers[ 1 ] = Hvecs[ num_vec ];
         nMultiplications++;
         state = 'N';
         return 'B';
      } else { // Converged
         state = 'C';
         pointers[ 0 ] = u_vec;
         pointers[ 1 ] = work_vec;
         if ( problem_type == 'E' ){ work_vec[ 0 ] = mxM_eigs[ 0 ]; }
         if ( problem_type == 'L' ){ work_vec[ 0 ] = rnorm; }
         return 'C';
      }
   }

   if ( state == 'F' ){
      if ( num_vec == NUM_VEC_KEEP ){
         MxMafterDeflation();
         AddNewVec();
         pointers[ 0 ] =  vecs[ num_vec ];
         pointers[ 1 ] = Hvecs[ num_vec ];
         nMultiplications++;
         state = 'N';
         return 'B';
      } else {
         pointers[ 0 ] =  vecs[ num_vec ];
         pointers[ 1 ] = Hvecs[ num_vec ];
         nMultiplications++;
         num_vec++;
         state = 'F';
         return 'B';
      }
   }

   return 'D';

}

double CheMPS2::Davidson::FrobeniusNorm( double * current_vector ){

   char frobenius = 'F';
   int inc1 = 1;
   const double twonorm = dlange_( &frobenius, &veclength, &inc1, current_vector, &veclength, NULL ); // Work is not referenced for Frobenius norm
   return twonorm;

}

void CheMPS2::Davidson::SafetyCheckGuess(){

   const double twonorm = FrobeniusNorm( t_vec );
   if ( twonorm == 0.0 ){
      for ( int cnt = 0; cnt < veclength; cnt++ ){ t_vec[ cnt ] = ( (double) rand() ) / RAND_MAX; }
      if ( debug_print ){
         cout << "WARNING AT DAVIDSON : Initial guess was a zero-vector. Now it is overwritten with random numbers." << endl;
      }
   }

}

void CheMPS2::Davidson::AddNewVec(){

   int inc1 = 1;

   // Orthogonalize the new vector w.r.t. the old basis
   for ( int cnt = 0; cnt < num_vec; cnt++ ){
      double minus_overlap = - ddot_( &veclength, t_vec, &inc1, vecs[ cnt ], &inc1 );
      daxpy_( &veclength, &minus_overlap, vecs[ cnt ], &inc1, t_vec, &inc1 );
   }

   // Normalize the new vector
   double alpha = 1.0 / FrobeniusNorm( t_vec );
   dscal_( &veclength, &alpha, t_vec, &inc1 );

   // The new vector becomes part of vecs
   if ( num_vec < num_allocated ){
      double * temp = vecs[ num_vec ];
      vecs[ num_vec ] = t_vec;
      t_vec = temp;
   } else {
      vecs[ num_allocated ] = t_vec;
      Hvecs[ num_allocated ] = new double[ veclength ];
      t_vec = new double[ veclength ];
      num_allocated++;
   }

}

double CheMPS2::Davidson::DiagonalizeSmallMatrixAndCalcResidual(){

   int inc1 = 1;

   if ( problem_type == 'E' ){ // EIGENVALUE PROBLEM
      // mxM contains V^T . A . V
      for ( int cnt = 0; cnt < num_vec; cnt++ ){
         mxM[ cnt + MAX_NUM_VEC * num_vec ] = ddot_( &veclength, vecs[ num_vec ], &inc1, Hvecs[ cnt ], &inc1 );
         mxM[ num_vec + MAX_NUM_VEC * cnt ] = mxM[ cnt + MAX_NUM_VEC * num_vec ];
      }
      mxM[ num_vec + MAX_NUM_VEC * num_vec ] = ddot_( &veclength, vecs[ num_vec ], &inc1, Hvecs[ num_vec ], &inc1 );
   } else { // LINEAR PROBLEM
      // mxM contains V^T . A^T . A . V
      for ( int cnt = 0; cnt < num_vec; cnt++ ){
         mxM[ cnt + MAX_NUM_VEC * num_vec ] = ddot_( &veclength, Hvecs[ num_vec ], &inc1, Hvecs[ cnt ], &inc1 );
         mxM[ num_vec + MAX_NUM_VEC * cnt ] = mxM[ cnt + MAX_NUM_VEC * num_vec ];
      }
      mxM[ num_vec + MAX_NUM_VEC * num_vec ] = ddot_( &veclength, Hvecs[ num_vec ], &inc1, Hvecs[ num_vec ], &inc1 );
      // mxM_rhs contains V^T . A^T . RHS
      mxM_rhs[ num_vec ] = ddot_( &veclength, Hvecs[ num_vec ], &inc1, RHS, &inc1 );
   }

   // When t-vec was added to vecs, the number of vecs was actually increased by one. Now the number is incremented.
   num_vec++;

   // Diagonalize mxM ( always )
   char jobz = 'V';
   char uplo = 'U';
   int info;
   for ( int cnt1 = 0; cnt1 < num_vec; cnt1++ ){
      for ( int cnt2 = 0; cnt2 < num_vec; cnt2++ ){
         mxM_vecs[ cnt1 + MAX_NUM_VEC * cnt2 ] = mxM[ cnt1 + MAX_NUM_VEC * cnt2 ];
      }
   }
   dsyev_( &jobz, &uplo, &num_vec, mxM_vecs, &MAX_NUM_VEC, mxM_eigs, mxM_work, &mxM_lwork, &info ); // Ascending order of eigenvalues

   // If problem_type == linear, solve the linear problem in least-squares sense!
   if ( problem_type == 'L' ){
      double one = 1.0;
      double set = 0.0;
      char trans = 'T';
      char notra = 'N';
      dgemm_( &trans, &notra, &num_vec, &inc1, &num_vec, &one, mxM_vecs, &MAX_NUM_VEC, mxM_rhs, &MAX_NUM_VEC, &set, mxM_work, &MAX_NUM_VEC ); // mxM_work = mxM_vecs^T * mxM_rhs
      for ( int cnt = 0; cnt < num_vec; cnt++ ){
         double current_eigenvalue = mxM_eigs[ cnt ];
         if ( fabs( current_eigenvalue ) < DIAG_CUTOFF ){
            current_eigenvalue = DIAG_CUTOFF * (( current_eigenvalue < 0.0 ) ? -1 : 1 );
            if ( debug_print ){
               cout << "WARNING AT DAVIDSON : The eigenvalue " << mxM_eigs[ cnt ] << " to solve Ax = b has been overwritten with " << current_eigenvalue << "." << endl;
            }
         }
         mxM_work[ cnt ] = mxM_work[ cnt ] / current_eigenvalue;
      }
      dgemm_( &notra, &notra, &num_vec, &inc1, &num_vec, &one, mxM_vecs, &MAX_NUM_VEC, mxM_work, &MAX_NUM_VEC, &set, mxM_work + MAX_NUM_VEC, &MAX_NUM_VEC );
      for ( int cnt = 0; cnt < num_vec; cnt++ ){ mxM_vecs[ cnt ] = mxM_work[ MAX_NUM_VEC + cnt ]; } // mxM_vecs = U * eigs^{-1} * U^T * RHS
   }

   // Calculate u and r. r is stored in t_vec, u in u_vec.
   for ( int cnt = 0; cnt < veclength; cnt++ ){ t_vec[ cnt ] = 0.0; }
   for ( int cnt = 0; cnt < veclength; cnt++ ){ u_vec[ cnt ] = 0.0; }
   for ( int cnt = 0; cnt < num_vec; cnt++ ){
      double alpha = mxM_vecs[ cnt ]; // Eigenvector with lowest eigenvalue, hence mxM_vecs[ cnt + MAX_NUM_VEC * 0 ]
      daxpy_( &veclength, &alpha, Hvecs[ cnt ], &inc1, t_vec, &inc1 );
      daxpy_( &veclength, &alpha,  vecs[ cnt ], &inc1, u_vec, &inc1 );
   }
   if ( problem_type == 'E' ){ // t_vec = H * x - lambda * x
      double alpha = - mxM_eigs[ 0 ];
      daxpy_( &veclength, &alpha, u_vec, &inc1, t_vec, &inc1 );
   } else { // t_vec = H * x - RHS
      double alpha = -1.0;
      daxpy_( &veclength, &alpha, RHS, &inc1, t_vec, &inc1 );
   }

   // Calculate the norm of r
   const double rnorm = FrobeniusNorm( t_vec );
   //cout << "    Davidson :: rnorm = " << rnorm << endl;
   return rnorm;

}

void CheMPS2::Davidson::CalculateNewVec(){

   int inc1 = 1;
   const double shift = (( problem_type == 'E' ) ? mxM_eigs[ 0 ] : 0.0 );

   // Calculate the new t_vec based on the residual of the lowest eigenvalue, to add to the vecs.
   for ( int cnt = 0; cnt < veclength; cnt++ ){
      const double difference = diag[ cnt ] - shift;
      const double fabsdiff   = fabs( difference );
      if ( fabsdiff > DIAG_CUTOFF ){
         work_vec[ cnt ] = u_vec[ cnt ] / difference; // work_vec = K^(-1) u_vec
      } else {
         work_vec[ cnt ] = u_vec[ cnt ] / DIAG_CUTOFF;
         if ( debug_print ){ cout << "WARNING AT DAVIDSON : fabs( precon[" << cnt << "] ) = " << fabsdiff << endl; }
      }
   }
   double alpha = - ddot_( &veclength, work_vec, &inc1, t_vec, &inc1 ) / ddot_( &veclength, work_vec, &inc1, u_vec, &inc1 ); // alpha = - (u^T K^(-1) r) / (u^T K^(-1) u)
   daxpy_( &veclength, &alpha, u_vec, &inc1, t_vec, &inc1 ); // t_vec = r - (u^T K^(-1) r) / (u^T K^(-1) u) u
   for ( int cnt = 0; cnt < veclength; cnt++ ){
      const double difference = diag[ cnt ] - shift;
      const double fabsdiff   = fabs( difference );
       if ( fabsdiff > DIAG_CUTOFF ){
         t_vec[ cnt ] = - t_vec[ cnt ] / difference; // t_vec = - K^(-1) (r - (u^T K^(-1) r) / (u^T K^(-1) u) u)
      } else {
         t_vec[ cnt ] = - t_vec[ cnt ] / DIAG_CUTOFF;
      }
   }

}

void CheMPS2::Davidson::Deflation(){

   int inc1 = 1;

   // When the maximum number of vectors is reached: construct the one with lowest eigenvalue & restart
   if ( NUM_VEC_KEEP <= 1 ){

      double alpha = 1.0 / FrobeniusNorm( u_vec );
      dscal_( &veclength, &alpha, u_vec, &inc1 );
      dcopy_( &veclength, u_vec, &inc1, vecs[ 0 ], &inc1 );

   } else {

      if ( problem_type == 'L' ){ SolveLinearSystemDeflation( NUM_VEC_KEEP ); }

      if ( Reortho_Eigenvecs    == NULL ){ Reortho_Eigenvecs    = new double[    veclength * NUM_VEC_KEEP ]; }
      if ( Reortho_Overlap      == NULL ){ Reortho_Overlap      = new double[ NUM_VEC_KEEP * NUM_VEC_KEEP ]; }
      if ( Reortho_Overlap_eigs == NULL ){ Reortho_Overlap_eigs = new double[ NUM_VEC_KEEP                ]; }
      if ( Reortho_Lowdin       == NULL ){ Reortho_Lowdin       = new double[ NUM_VEC_KEEP * NUM_VEC_KEEP ]; }
   
      // Construct the lowest NUM_VEC_KEEP eigenvectors
      dcopy_( &veclength, u_vec, &inc1, Reortho_Eigenvecs, &inc1 );
      for ( int cnt = 1; cnt < NUM_VEC_KEEP; cnt++ ){
         for ( int irow = 0; irow < veclength; irow++ ){
            Reortho_Eigenvecs[ irow + veclength * cnt ] = 0.0;
            for ( int ivec = 0; ivec < MAX_NUM_VEC; ivec++ ){
               Reortho_Eigenvecs[ irow + veclength * cnt ] += vecs[ ivec ][ irow ] * mxM_vecs[ ivec + MAX_NUM_VEC * cnt ];
            }
         }
      }

      // Calculate the overlap matrix
      char trans  = 'T';
      char notr   = 'N';
      double one  = 1.0;
      double zero = 0.0; //set
      dgemm_( &trans, &notr, &NUM_VEC_KEEP, &NUM_VEC_KEEP, &veclength, &one, Reortho_Eigenvecs, &veclength, Reortho_Eigenvecs, &veclength, &zero, Reortho_Overlap, &NUM_VEC_KEEP );

      // Calculate the Lowdin tfo
      char jobz = 'V';
      char uplo = 'U';
      int info;
      dsyev_( &jobz, &uplo, &NUM_VEC_KEEP, Reortho_Overlap, &NUM_VEC_KEEP, Reortho_Overlap_eigs, mxM_work, &mxM_lwork, &info ); // Ascending order of eigs
      for ( int icnt = 0; icnt < NUM_VEC_KEEP; icnt++ ){
         Reortho_Overlap_eigs[ icnt ] = pow( Reortho_Overlap_eigs[ icnt ], -0.25 );
         dscal_( &NUM_VEC_KEEP, Reortho_Overlap_eigs + icnt, Reortho_Overlap + NUM_VEC_KEEP * icnt, &inc1 );
      }
      dgemm_( &notr, &trans, &NUM_VEC_KEEP, &NUM_VEC_KEEP, &NUM_VEC_KEEP, &one, Reortho_Overlap, &NUM_VEC_KEEP, Reortho_Overlap, &NUM_VEC_KEEP, &zero, Reortho_Lowdin, &NUM_VEC_KEEP );

      // Reortho: Put the Lowdin tfo eigenvecs in vecs
      for ( int ivec = 0; ivec < NUM_VEC_KEEP; ivec++ ){
         for ( int loop = 0; loop < veclength; loop++ ){ vecs[ ivec ][ loop ] = 0.0; }
         for ( int ivec2 = 0; ivec2 < NUM_VEC_KEEP; ivec2++ ){
            daxpy_( &veclength, Reortho_Lowdin + ivec2 + NUM_VEC_KEEP * ivec, Reortho_Eigenvecs + veclength * ivec2, &inc1, vecs[ ivec ], &inc1 );
         }
      }
   }

   num_vec = 0;

}

void CheMPS2::Davidson::SolveLinearSystemDeflation( const int NUM_SOLUTIONS ){

   assert( problem_type == 'L' );
   assert( num_vec == MAX_NUM_VEC );
   assert( NUM_SOLUTIONS <= MAX_NUM_VEC );
   assert( 2 <= NUM_SOLUTIONS );

   double * work1 = new double[ MAX_NUM_VEC * MAX_NUM_VEC ];   // projector
   double * work3 = new double[ MAX_NUM_VEC * MAX_NUM_VEC ];   // projector times mxM_rhs
   double * work2 = new double[ MAX_NUM_VEC * NUM_SOLUTIONS ]; // solutions

   for ( int solution = 0; solution < NUM_SOLUTIONS; solution++ ){

      // work1 = ( 1 - sum_j v_j v_j^T ) = projector
      for ( int cntr = 0; cntr < MAX_NUM_VEC * MAX_NUM_VEC; cntr++ ){ work1[ cntr ] = 0.0; }
      for ( int diag = 0; diag < MAX_NUM_VEC; diag++ ){ work1[ diag * ( 1 + MAX_NUM_VEC ) ] = 1.0; }
      for ( int prev = 0; prev < solution; prev++ ){
         for ( int col = 0; col < MAX_NUM_VEC; col++ ){
            for ( int row = 0; row < MAX_NUM_VEC; row++ ){
               work1[ row + MAX_NUM_VEC * col ] -= work2[ row + MAX_NUM_VEC * prev ] * work2[ col + MAX_NUM_VEC * prev ];
            }
         }
      }

      // work3    = ( 1 - sum_j v_j v_j^T ) * [ U^T * A^T * b ]                               = work1 * mxM_rhs
      // mxM_vecs = ( 1 - sum_j v_j v_j^T ) * [ U^T * A^T * A * U ] * ( 1 - sum_j v_j v_j^T ) = work1 * mxM * work1
      {
         double one = 1.0;
         double set = 0.0;
         char notrans = 'N';
         int inc1 = 1;
         dgemm_( &notrans, &notrans, &MAX_NUM_VEC, &MAX_NUM_VEC, &MAX_NUM_VEC, &one, work1, &MAX_NUM_VEC, mxM,     &MAX_NUM_VEC, &set, work3,    &MAX_NUM_VEC );
         dgemm_( &notrans, &notrans, &MAX_NUM_VEC, &MAX_NUM_VEC, &MAX_NUM_VEC, &one, work3, &MAX_NUM_VEC, work1,   &MAX_NUM_VEC, &set, mxM_vecs, &MAX_NUM_VEC );
         dgemm_( &notrans, &notrans, &MAX_NUM_VEC, &inc1,        &MAX_NUM_VEC, &one, work1, &MAX_NUM_VEC, mxM_rhs, &MAX_NUM_VEC, &set, work3,    &MAX_NUM_VEC );
      }

      // Diagonalize mxM_vecs = V * lambda * V^T   ===>   Ascending order of eigenvalues   &    ( V, lambda ) = ( mxM_vecs, mxM_eigs )
      {
         char jobz = 'V';
         char uplo = 'U';
         int info;
         dsyev_( &jobz, &uplo, &MAX_NUM_VEC, mxM_vecs, &MAX_NUM_VEC, mxM_eigs, mxM_work, &mxM_lwork, &info );
      }

      // work2[ :, solution ] = [ ( 1 - sum_j v_j v_j^T ) * [ U^T * A^T * A * U ] * ( 1 - sum_j v_j v_j^T ) ]^{-1} * ( 1 - sum_j v_j v_j^T ) * [ U^T * A^T * b ] = V * lambda^{-1} * V^T * work3
      {
         double one = 1.0;
         double set = 0.0;
         char trans = 'T';
         char notrans = 'N';
         int inc1 = 1;
         dgemm_( &trans, &notrans, &MAX_NUM_VEC, &inc1, &MAX_NUM_VEC, &one, mxM_vecs, &MAX_NUM_VEC, work3, &MAX_NUM_VEC, &set, mxM_work, &MAX_NUM_VEC );
         for ( int diag = 0; diag < MAX_NUM_VEC; diag++ ){
            if ( diag < solution ){
               mxM_work[ diag ] = 0.0; // PSEUDOINVERSE
            } else {
               double current_eigenvalue = mxM_eigs[ diag ];
               if ( fabs( current_eigenvalue ) < DIAG_CUTOFF ){
                  current_eigenvalue = DIAG_CUTOFF * (( current_eigenvalue < 0.0 ) ? -1 : 1 );
                  if ( debug_print ){
                     cout << "WARNING AT DAVIDSON : The eigenvalue " << mxM_eigs[ diag ] << " to solve Ax = b has been overwritten with " << current_eigenvalue << "." << endl;
                  }
               }
               mxM_work[ diag ] = mxM_work[ diag ] / current_eigenvalue;
            }
         }
         dgemm_( &notrans, &notrans, &MAX_NUM_VEC, &inc1, &MAX_NUM_VEC, &one, mxM_vecs, &MAX_NUM_VEC, mxM_work, &MAX_NUM_VEC, &set, work2 + MAX_NUM_VEC * solution, &MAX_NUM_VEC );
      }

      // Normalize work2[ :, solution ]
      {
         int inc1 = 1;
         double * ptr = work2 + MAX_NUM_VEC * solution;
         const double twonorm = sqrt( ddot_( &MAX_NUM_VEC, ptr, &inc1, ptr, &inc1 ) );
         /*if ( debug_print ){
            cout << "Davidson :: Deflation :: Norm of solution " << solution << " = " << twonorm << endl;
         }*/
         double factor = 1.0 / twonorm;
         dscal_( &MAX_NUM_VEC, &factor, ptr, &inc1 );
      }

   }

   // Copy over work2 to mxM_vecs
   {
      int inc1 = 1;
      int size = MAX_NUM_VEC * NUM_SOLUTIONS;
      dcopy_( &size, work2, &inc1, mxM_vecs, &inc1 );
   }

   delete [] work1;
   delete [] work2;
   delete [] work3;

}

void CheMPS2::Davidson::MxMafterDeflation(){

   int inc1 = 1;

   if ( problem_type == 'E' ){ // EIGENVALUE PROBLEM
      // mxM contains V^T . A . V
      for ( int ivec = 0; ivec < NUM_VEC_KEEP; ivec++ ){
         for ( int ivec2 = ivec; ivec2 < NUM_VEC_KEEP; ivec2++ ){
            mxM[ ivec + MAX_NUM_VEC * ivec2 ] = ddot_( &veclength, vecs[ ivec ], &inc1, Hvecs[ ivec2 ], &inc1 );
            mxM[ ivec2 + MAX_NUM_VEC * ivec ] = mxM[ ivec + MAX_NUM_VEC * ivec2 ];
         }
      }
   } else { // LINEAR PROBLEM
      // mxM contains V^T . A^T . A . V
      for ( int ivec = 0; ivec < NUM_VEC_KEEP; ivec++ ){
         for ( int ivec2 = ivec; ivec2 < NUM_VEC_KEEP; ivec2++ ){
            mxM[ ivec + MAX_NUM_VEC * ivec2 ] = ddot_( &veclength, Hvecs[ ivec ], &inc1, Hvecs[ ivec2 ], &inc1 );
            mxM[ ivec2 + MAX_NUM_VEC * ivec ] = mxM[ ivec + MAX_NUM_VEC * ivec2 ];
         }
      }
      // mxM_rhs contains V^T . A^T . RHS
      for ( int ivec = 0; ivec < NUM_VEC_KEEP; ivec++ ){
         mxM_rhs[ ivec ] = ddot_( &veclength, Hvecs[ ivec ], &inc1, RHS, &inc1 );
      }
   }

}