File: EdmistonRuedenberg.cpp

package info (click to toggle)
chemps2 1.8.12-5
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 5,432 kB
  • sloc: cpp: 38,521; python: 1,116; f90: 215; makefile: 45; sh: 23
file content (493 lines) | stat: -rw-r--r-- 20,722 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
/*
   CheMPS2: a spin-adapted implementation of DMRG for ab initio quantum chemistry
   Copyright (C) 2013-2018 Sebastian Wouters

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License along
   with this program; if not, write to the Free Software Foundation, Inc.,
   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/

#include <stdlib.h>
#include <assert.h>
#include <iostream>
#include <math.h>
#include <algorithm>

#include "EdmistonRuedenberg.h"
#include "DMRGSCFrotations.h"
#include "Lapack.h"

using std::cout;
using std::endl;
using std::max;

CheMPS2::EdmistonRuedenberg::EdmistonRuedenberg( const FourIndex * Vmat, const int group, const int printLevelIn ){

   VMAT_ORIG = Vmat;
   printLevel = printLevelIn;
   SymmInfo.setGroup( group );
   
   int * Isizes = new int[ SymmInfo.getNumberOfIrreps() ];
   int * Zeroes = new int[ SymmInfo.getNumberOfIrreps() ];
   int L = 0;
   for ( int irrep = 0; irrep < SymmInfo.getNumberOfIrreps(); irrep++ ){
      Isizes[ irrep ] = VMAT_ORIG->get_irrep_size( irrep );
      Zeroes[ irrep ] = 0;
      L += Isizes[ irrep ];
   }
   
   iHandler = new DMRGSCFindices( L, group, Zeroes, Isizes, Zeroes ); //Supposes all orbitals are active
   unitary  = new DMRGSCFunitary( iHandler );
   VmatRotated = new FourIndex( group, Isizes );
   
   delete [] Zeroes;
   delete [] Isizes;

}

CheMPS2::EdmistonRuedenberg::~EdmistonRuedenberg(){

   delete unitary; //unitary needs iHandler in its destructor!
   delete VmatRotated;
   delete iHandler;
      
}

double CheMPS2::EdmistonRuedenberg::Optimize(double * temp1, double * temp2, const bool startFromRandomUnitary, const double gradThreshold, const int maxIter){

   //Clear the unitary
   unitary->identity();

   //Setting up the variables for the gradient
   double gradNorm = 1.0;
   const int numVariables = iHandler->getROTparamsize();
   double * gradient = new double[numVariables];
   for (int cnt=0; cnt<numVariables; cnt++){ gradient[cnt] = 0.0; }

   //Randomize the unitary if asked
   if (startFromRandomUnitary){
      for (int cnt=0; cnt<numVariables; cnt++){ gradient[cnt] = ((double) rand())/RAND_MAX - 0.5; }
      unitary->updateUnitary(temp1, temp2, gradient, false, false); //multiply = compact = false
      for (int cnt=0; cnt<numVariables; cnt++){ gradient[cnt] = 0.0; }
   }

   const int mem_size = iHandler->getL() * iHandler->getL() * iHandler->getL() * iHandler->getL();
   DMRGSCFrotations::rotate( VMAT_ORIG, VmatRotated, NULL, 'F', 'F', 'F', 'F', iHandler, unitary, temp1, temp2, mem_size, "edmistonruedenberg" );

   //Setting up the variables for the cost function
   double Icost = costFunction();
   if (printLevel>0){ cout << "   EdmistonRuedenberg::Optimize : Cost function at start = " << Icost << endl; }
   double Icost_previous = 0.0;
   
   int nIterations = 0;
   
   while ((gradNorm > gradThreshold) && (nIterations < maxIter)){
   
      nIterations++;
   
      //Update the unitary
      unitary->updateUnitary(temp1, temp2, gradient, true, false); //multiply = true; compact = false
   
      //Rotate the Vmat
      Icost_previous = Icost;
      DMRGSCFrotations::rotate( VMAT_ORIG, VmatRotated, NULL, 'F', 'F', 'F', 'F', iHandler, unitary, temp1, temp2, mem_size, "edmistonruedenberg" );
      Icost = costFunction();
      
      /* What if the cost function has dimished? Then make the rotation step a bit smaller!
         Rotate back ever closer to unitary_effective = I; untill Icost_previous < Icost
         1 - 0.5 - 0.5^2 - 0.5^3 - 0.5^4 - ... = 2 - ( 1 + 0.5 + 0.5^2 + ... ) = 2 - 1/(1-0.5) = 0  */
      if (Icost_previous > Icost){
         if (printLevel>1){ cout << "                                     WARNING : Icost = " << Icost << " < Icost_previous = " << Icost_previous << endl; }
         for (int cnt=0; cnt<numVariables; cnt++){ gradient[cnt] = -gradient[cnt]; } //Switch the sign of the update : rotate back!
         int nIterationsBACK = 0;
         while ((Icost_previous > Icost) && (nIterationsBACK < CheMPS2::EDMISTONRUED_maxIterBackTfo)){
            nIterationsBACK++;
            for (int cnt=0; cnt<numVariables; cnt++){ gradient[cnt] *= 0.5; }
            unitary->updateUnitary(temp1, temp2, gradient, true, false); //multiply = true; compact = false
            DMRGSCFrotations::rotate( VMAT_ORIG, VmatRotated, NULL, 'F', 'F', 'F', 'F', iHandler, unitary, temp1, temp2, mem_size, "edmistonruedenberg" );
            Icost = costFunction();
         }
         if (printLevel>1){ cout << "                                     WARNING : Rotated back a bit. Now Icost = " << Icost << endl; }
      }
      
      //Calculate the gradient and Hessian and update
      gradNorm = augmentedHessianNewtonRaphson(gradient, temp1, temp2);
      
      if (printLevel>1){
         cout << "                                  After iteration " << nIterations << " : Icost = " << Icost << " has gradNorm = " << gradNorm << endl; 
      }
   
   }
   
   delete [] gradient;
   
   if (printLevel>0){
      cout << "                                  Cost function at stop  = " << Icost << endl;
      cout << "                                  Gradient norm = " << gradNorm << " after " << nIterations << " iterations." << endl;
   }
   
   return Icost;

}

CheMPS2::DMRGSCFunitary * CheMPS2::EdmistonRuedenberg::getUnitary(){ return unitary; }

double CheMPS2::EdmistonRuedenberg::costFunction() const{

   double Cost = 0.0;
   for (int irrep=0; irrep<SymmInfo.getNumberOfIrreps(); irrep++){
      for (int orb=0; orb<iHandler->getNORB(irrep); orb++){
         Cost += VmatRotated->get(irrep,irrep,irrep,irrep,orb,orb,orb,orb);
      }
   }
   return Cost;

}

double CheMPS2::EdmistonRuedenberg::calcGradientValue(const int irrep, const int p, const int q) const{

   return 4 * ( VmatRotated->get(irrep, irrep, irrep, irrep, p, p, p, q) - VmatRotated->get(irrep, irrep, irrep, irrep, q, q, q, p) );

}

double CheMPS2::EdmistonRuedenberg::calcHessianValue(const int irrep, const int p, const int q, const int r, const int s) const{

   double value = 0.0;
   if (p==r){
      value += ( 8*VmatRotated->get(irrep, irrep, irrep, irrep, p, p, q, s)
               + 4*VmatRotated->get(irrep, irrep, irrep, irrep, p, q, p, s)
               - 2*VmatRotated->get(irrep, irrep, irrep, irrep, q, q, q, s)
               - 2*VmatRotated->get(irrep, irrep, irrep, irrep, s, s, s, q) );
   }
   if (q==s){
      value += ( 8*VmatRotated->get(irrep, irrep, irrep, irrep, q, q, p, r)
               + 4*VmatRotated->get(irrep, irrep, irrep, irrep, q, p, q, r)
               - 2*VmatRotated->get(irrep, irrep, irrep, irrep, p, p, p, r)
               - 2*VmatRotated->get(irrep, irrep, irrep, irrep, r, r, r, p) );
   }
   if (p==s){
      value -= ( 8*VmatRotated->get(irrep, irrep, irrep, irrep, p, p, q, r)
               + 4*VmatRotated->get(irrep, irrep, irrep, irrep, p, q, p, r)
               - 2*VmatRotated->get(irrep, irrep, irrep, irrep, q, q, q, r)
               - 2*VmatRotated->get(irrep, irrep, irrep, irrep, r, r, r, q) );
   }
   if (q==r){
      value -= ( 8*VmatRotated->get(irrep, irrep, irrep, irrep, q, q, p, s)
               + 4*VmatRotated->get(irrep, irrep, irrep, irrep, q, p, q, s)
               - 2*VmatRotated->get(irrep, irrep, irrep, irrep, p, p, p, s)
               - 2*VmatRotated->get(irrep, irrep, irrep, irrep, s, s, s, p) );
   }
   return value;

}

double CheMPS2::EdmistonRuedenberg::augmentedHessianNewtonRaphson(double * gradient, double * temp1, double * temp2) const{

   int jump = 0;
   double gradNorm = 0.0;
   
   for (int irrep=0; irrep<SymmInfo.getNumberOfIrreps(); irrep++){
      
      int linsize = iHandler->getNORB(irrep);
      
      if (linsize>1){
      
         int hessianlinearsize = linsize*(linsize-1)/2 + 1;
         
         /*   linsize    linsize^4    hesslinsize    hesslinsize^2   3*hesslinsize-1   4*hesslinsize-1   (hesslinsize+1)*hesslinsize
              2          16           2              4               5                 7                 6
              3          81           4              16              11                15                20
              4          256          7              49              20                27                56
              5          625          11             121             32                43                132
              6          1296         16             256             47                63                272
              
              Conclusion : - temp1 is large enough for hessian (hessianlinearsize^2)
                           - temp2 is large enough for workspace (max(hesslinsize^2, 3*hesslinsize-1)) AND eigenvecs (hesslinsize)
         */
         
         double * hessian = temp1;
         double * eigen   = temp2;
         double * work    = temp2 + hessianlinearsize;
         int lwork        = linsize*linsize*linsize*linsize - hessianlinearsize;
      
         /*   Maximizing the cost function  O(x) =  O(0) + g^T * x + x^T * H * x / 2
         ==   Minimizing the cost function -O(x) = -O(0) - g^T * x - x^T * H * x / 2 */
         for (int row=0; row<linsize; row++){
            for (int col=row+1; col<linsize; col++){
               const double waarde = calcGradientValue(irrep, row, col);
               gradient[jump + row + col*(col-1)/2] = waarde;
               gradNorm += waarde * waarde;
               for (int row2=0; row2<linsize; row2++){
                  for (int col2=row2+1; col2<linsize; col2++){
                     const double value = calcHessianValue(irrep, row, col, row2, col2);
                     hessian[row + col*(col-1)/2 + hessianlinearsize * (row2 + col2*(col2-1)/2)] = - value; //MINUS SIGN FOR OTHER DIRECTION
                  }
               }
            }
         }
         
         for (int cnt=0; cnt<hessianlinearsize-1; cnt++){
            hessian[hessianlinearsize-1 + hessianlinearsize * cnt]   = - gradient[jump + cnt]; //MINUS SIGN FOR OTHER DIRECTION
            hessian[cnt + hessianlinearsize * (hessianlinearsize-1)] = - gradient[jump + cnt]; //MINUS SIGN FOR OTHER DIRECTION
         }
         hessian[hessianlinearsize*hessianlinearsize-1] = 0.0;
   
         //Find its lowest eigenvalue and vector
         char jobz = 'V';
         char uplo = 'U';
         int info;
         dsyev_(&jobz,&uplo,&hessianlinearsize,hessian,&hessianlinearsize,eigen,work,&lwork,&info);
   
         double scalar = 1.0/hessian[hessianlinearsize-1];
         int inc = 1;
         dscal_(&hessianlinearsize,&scalar,hessian,&inc);
         
         for (int cnt=0; cnt<hessianlinearsize-1; cnt++){ gradient[jump + cnt] = hessian[cnt]; }
         
         jump += hessianlinearsize-1;
      
      }
   
   }
   
   gradNorm = sqrt(gradNorm);
   
   return gradNorm;

}

void CheMPS2::EdmistonRuedenberg::Fiedler(const int irrep, int * reorder, double * laplacian, double * temp2){

   //For information on the Fiedler vector: see http://web.eecs.utk.edu/~mberry/order/node9.html

   int linsize = iHandler->getNORB(irrep);
   assert( linsize>=2 );
   
   //Preamble: linsize>=2 at this point
   double * work = temp2;             //temp2 at least of size 4*linsize*linsize
   int lwork     = 3*linsize*linsize; //3*linsize*linsize > 3*linsize-1 for linsize>=2
   double * eigs = temp2 + lwork;     //has size linsize*linsize > linsize for linsize>=2
   
   //Calculate the eigenspectrum of the Laplacian
   char jobz = 'V';
   char uplo = 'U';
   int info;
   dsyev_(&jobz, &uplo, &linsize, laplacian, &linsize, eigs, work, &lwork, &info);
   if (printLevel>1){
      cout << "   EdmistonRuedenberg::Fiedler : Smallest eigs(Laplacian[" << irrep << "]) = [ " << eigs[0] << "  ,  " << eigs[1] << " ]." << endl;
   }
   
   //The second eigenvector is the Fiedler vector
   double * FiedlerVector     = laplacian + linsize;
   double * FiedlerVectorCopy = laplacian;
   for (int cnt=0; cnt<linsize; cnt++){ FiedlerVectorCopy[cnt] = FiedlerVector[cnt]; }
   
   //Find the Fiedler ordering
   const double upperBound = 2.0; //Sum_i FiedlerVector[i]^2 = 1 --> fabs(FiedlerVector[i]) <= 1.0
   for (int value=0; value<linsize; value++){
      int index=0;
      for (int cnt=1; cnt<linsize; cnt++){
         if (FiedlerVectorCopy[cnt] < FiedlerVectorCopy[index]){ index = cnt; }
      } //Index now corresponds to the smallest value in FiedlerVectorCopy
      reorder[value] = index;
      FiedlerVectorCopy[index] = upperBound; //Remove from the interesting entries in FiedlerVectorCopy
   }
   
   if (printLevel>1){
      bool isOK = true;
      for (int cnt=0; cnt<linsize-1; cnt++){
         if (FiedlerVector[reorder[cnt]] > FiedlerVector[reorder[cnt+1]]){ isOK = false; }
      }
      assert( isOK );
      cout << "                                 Reorder[" << irrep << "] = [ ";
      for (int cnt=0; cnt<linsize-1; cnt++){ cout << reorder[cnt] << "  ,  "; }
      cout << reorder[linsize-1] << " ]." << endl;
   }
   
   //Reorder the vectors in the unitary
   double * blockU = unitary->getBlock(irrep);
   for (int row=0; row<linsize; row++){
      for (int col=0; col<linsize; col++){
         work[row + linsize * col] = blockU[reorder[row] + linsize * col];
      }
   }
   
   int size = linsize*linsize;
   int inc = 1;
   dcopy_(&size, work, &inc, blockU, &inc);
   
   if (printLevel>1){
      char trans = 'T';
      char notrans = 'N';
      double alpha = 1.0;
      double beta = 0.0;
      dgemm_(&trans, &notrans, &linsize, &linsize, &linsize, &alpha, blockU, &linsize, blockU, &linsize, &beta, work, &linsize);
      double sum = 0.0;
      for (int row=0; row<linsize; row++){
         sum += (work[row+linsize*row]-1.0)*(work[row+linsize*row]-1.0);
         for (int col=row+1; col<linsize; col++){
            sum += work[row+linsize*col]*work[row+linsize*col] + work[col+linsize*row]*work[col+linsize*row];
         }
      }
      sum = sqrt(sum);
      cout << "                                 2-norm of Unitary[" << irrep << "]^T * Unitary[" << irrep << "] - I = " << sum << endl;
   }

}

double CheMPS2::EdmistonRuedenberg::FiedlerExchangeCost() const{

   double Cost = 0.0;
   
   for (int irrep=0; irrep<SymmInfo.getNumberOfIrreps(); irrep++){
      const int linsize = iHandler->getNORB(irrep);
      if (linsize>1){
         for (int row=0; row<linsize; row++){
            for (int col=row+1; col<linsize; col++){
               Cost += 2 * VmatRotated->get(irrep,irrep,irrep,irrep,row,col,col,row) * (col-row) * (col-row);
            }
         }
      }
   }
   
   return Cost;

}

void CheMPS2::EdmistonRuedenberg::FiedlerExchange(const int maxlinsize, double * temp1, double * temp2){

   //For information on the Fiedler vector: see http://web.eecs.utk.edu/~mberry/order/node9.html

   const int mem_size = iHandler->getL() * iHandler->getL() * iHandler->getL() * iHandler->getL();
   DMRGSCFrotations::rotate( VMAT_ORIG, VmatRotated, NULL, 'F', 'F', 'F', 'F', iHandler, unitary, temp1, temp2, mem_size, "edmistonruedenberg" );

   if (printLevel>0){ cout << "   EdmistonRuedenberg::FiedlerExchange : Cost function at start = " << FiedlerExchangeCost() << endl; }
   
   int * reorder = new int[maxlinsize];

   for (int irrep=0; irrep<SymmInfo.getNumberOfIrreps(); irrep++){
      
      const int linsize = iHandler->getNORB(irrep);
      if (linsize>1){
      
         //temp1 and temp2 both at least of size 4*linsize*linsize
         double * laplacian = temp1;
         
         //Fill the weighted graph Laplacian
         for (int row=0; row<linsize; row++){
            laplacian[row*(1+linsize)] = 0.0;
            for (int col=row+1; col<linsize; col++){
               laplacian[row + linsize*col]  = - VmatRotated->get(irrep,irrep,irrep,irrep,row,col,col,row); //minus the exchange matrix
               laplacian[col + linsize*row]  = laplacian[row + linsize*col]; //Symmetric matrix
               laplacian[row + linsize*row] -= laplacian[row + linsize*col]; //On diagonal : Minus the sum of the other terms on that row
            }
            for (int col=0; col<row; col++){
               laplacian[row + linsize*row] -= laplacian[row + linsize*col]; //On diagonal : Minus the sum of the other terms on that row
            }
         }
         
         Fiedler(irrep, reorder, laplacian, temp2);
         
      }
   }
   
   delete [] reorder;

   DMRGSCFrotations::rotate( VMAT_ORIG, VmatRotated, NULL, 'F', 'F', 'F', 'F', iHandler, unitary, temp1, temp2, mem_size, "edmistonruedenberg" );

   if (printLevel>0){ cout << "   EdmistonRuedenberg::FiedlerExchange : Cost function at end   = " << FiedlerExchangeCost() << endl; }

}

double CheMPS2::EdmistonRuedenberg::FiedlerGlobalCost( const DMRGSCFindices * idx, const FourIndex * VMAT_LOCAL, int * dmrg2ham ){

   double cost = 0.0;

   for ( int dmrg_row = 0; dmrg_row < idx->getL(); dmrg_row++ ){
      for ( int dmrg_col = 0; dmrg_col < idx->getL(); dmrg_col++ ){
         const int ham_row = dmrg2ham[ dmrg_row ];
         const int ham_col = dmrg2ham[ dmrg_col ];
         const int irrep_row = idx->getOrbitalIrrep( ham_row );
         const int irrep_col = idx->getOrbitalIrrep( ham_col );
         const int rel_row = ham_row - idx->getOrigNOCCstart( irrep_row );
         const int rel_col = ham_col - idx->getOrigNOCCstart( irrep_col );
         cost += VMAT_LOCAL->get( irrep_row, irrep_col, irrep_col, irrep_row, rel_row, rel_col, rel_col, rel_row ) * ( dmrg_row - dmrg_col ) * ( dmrg_row - dmrg_col );
      }
   }

   return cost;

}

void CheMPS2::EdmistonRuedenberg::FiedlerGlobal( int * dmrg2ham ) const{

   // For information on the Fiedler vector: see http://web.eecs.utk.edu/~mberry/order/node9.html

   for ( int orb = 0; orb < iHandler->getL(); orb++ ){ dmrg2ham[ orb ] = orb; }
   if ( printLevel > 0 ){ cout << "   EdmistonRuedenberg::FiedlerGlobal : Cost function at start = " << FiedlerGlobalCost( iHandler, VMAT_ORIG, dmrg2ham ) << endl; }

   // Build the Laplacian
   double * laplacian = new double[ iHandler->getL() * iHandler->getL() ];
   for ( int ham_row = 0; ham_row < iHandler->getL(); ham_row++ ){
      double sum_over_column = 0.0;
      for ( int ham_col = 0; ham_col < iHandler->getL(); ham_col++ ){
         if ( ham_row != ham_col ){
            const int irrep_row = iHandler->getOrbitalIrrep( ham_row );
            const int irrep_col = iHandler->getOrbitalIrrep( ham_col );
            const int rel_row = ham_row - iHandler->getOrigNOCCstart( irrep_row );
            const int rel_col = ham_col - iHandler->getOrigNOCCstart( irrep_col );
            const double value = fabs( VMAT_ORIG->get( irrep_row, irrep_col, irrep_col, irrep_row, rel_row, rel_col, rel_col, rel_row ) );
            laplacian[ ham_row + iHandler->getL() * ham_col ] = - value;
            sum_over_column += value;
         } else {
            laplacian[ ham_row + iHandler->getL() * ham_col ] = 0.0;
         }
      }
      laplacian[ ham_row + iHandler->getL() * ham_row ] = sum_over_column;
   }

   // Calculate the eigenspectrum of the Laplacian
   int lwork     = 3 * iHandler->getL() * iHandler->getL();
   double * work = new double[ lwork ];
   double * eigs = new double[ iHandler->getL() ];
   char jobz     = 'V';
   char uplo     = 'U';
   int linsize   = iHandler->getL();
   int info;
   dsyev_( &jobz, &uplo, &linsize, laplacian, &linsize, eigs, work, &lwork, &info );
   delete [] work;
   delete [] eigs;

   // Fill dmrg2ham
   double * fiedler_vec = laplacian + linsize;
   for ( int dummy = 0; dummy < linsize; dummy++ ){
      int index = 0;
      for ( int orb = 1; orb < linsize; orb++ ){
         if ( fiedler_vec[ orb ] < fiedler_vec[ index ] ){ index = orb; }
      }
      dmrg2ham[ dummy ] = index;
      fiedler_vec[ index ] = 2.0; // Eigenvectors are normalized to 1.0, so certainly OK
   }

   delete [] laplacian;

   if ( printLevel > 0 ){
      cout << "   EdmistonRuedenberg::FiedlerGlobal : Cost function at end   = " << FiedlerGlobalCost( iHandler, VMAT_ORIG, dmrg2ham ) << endl;
      cout << "   EdmistonRuedenberg::FiedlerGlobal : Reordering = [ ";
      for ( int orb = 0; orb < linsize - 1; orb++ ){ cout << dmrg2ham[ orb ] << ", "; }
      cout << dmrg2ham[ linsize - 1 ] << " ]." << endl;
   }

}