1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
|
/*
CheMPS2: a spin-adapted implementation of DMRG for ab initio quantum chemistry
Copyright (C) 2013-2018 Sebastian Wouters
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <stdlib.h>
#include <assert.h>
#include <iostream>
#include <math.h>
#include <algorithm>
#include "EdmistonRuedenberg.h"
#include "DMRGSCFrotations.h"
#include "Lapack.h"
using std::cout;
using std::endl;
using std::max;
CheMPS2::EdmistonRuedenberg::EdmistonRuedenberg( const FourIndex * Vmat, const int group, const int printLevelIn ){
VMAT_ORIG = Vmat;
printLevel = printLevelIn;
SymmInfo.setGroup( group );
int * Isizes = new int[ SymmInfo.getNumberOfIrreps() ];
int * Zeroes = new int[ SymmInfo.getNumberOfIrreps() ];
int L = 0;
for ( int irrep = 0; irrep < SymmInfo.getNumberOfIrreps(); irrep++ ){
Isizes[ irrep ] = VMAT_ORIG->get_irrep_size( irrep );
Zeroes[ irrep ] = 0;
L += Isizes[ irrep ];
}
iHandler = new DMRGSCFindices( L, group, Zeroes, Isizes, Zeroes ); //Supposes all orbitals are active
unitary = new DMRGSCFunitary( iHandler );
VmatRotated = new FourIndex( group, Isizes );
delete [] Zeroes;
delete [] Isizes;
}
CheMPS2::EdmistonRuedenberg::~EdmistonRuedenberg(){
delete unitary; //unitary needs iHandler in its destructor!
delete VmatRotated;
delete iHandler;
}
double CheMPS2::EdmistonRuedenberg::Optimize(double * temp1, double * temp2, const bool startFromRandomUnitary, const double gradThreshold, const int maxIter){
//Clear the unitary
unitary->identity();
//Setting up the variables for the gradient
double gradNorm = 1.0;
const int numVariables = iHandler->getROTparamsize();
double * gradient = new double[numVariables];
for (int cnt=0; cnt<numVariables; cnt++){ gradient[cnt] = 0.0; }
//Randomize the unitary if asked
if (startFromRandomUnitary){
for (int cnt=0; cnt<numVariables; cnt++){ gradient[cnt] = ((double) rand())/RAND_MAX - 0.5; }
unitary->updateUnitary(temp1, temp2, gradient, false, false); //multiply = compact = false
for (int cnt=0; cnt<numVariables; cnt++){ gradient[cnt] = 0.0; }
}
const int mem_size = iHandler->getL() * iHandler->getL() * iHandler->getL() * iHandler->getL();
DMRGSCFrotations::rotate( VMAT_ORIG, VmatRotated, NULL, 'F', 'F', 'F', 'F', iHandler, unitary, temp1, temp2, mem_size, "edmistonruedenberg" );
//Setting up the variables for the cost function
double Icost = costFunction();
if (printLevel>0){ cout << " EdmistonRuedenberg::Optimize : Cost function at start = " << Icost << endl; }
double Icost_previous = 0.0;
int nIterations = 0;
while ((gradNorm > gradThreshold) && (nIterations < maxIter)){
nIterations++;
//Update the unitary
unitary->updateUnitary(temp1, temp2, gradient, true, false); //multiply = true; compact = false
//Rotate the Vmat
Icost_previous = Icost;
DMRGSCFrotations::rotate( VMAT_ORIG, VmatRotated, NULL, 'F', 'F', 'F', 'F', iHandler, unitary, temp1, temp2, mem_size, "edmistonruedenberg" );
Icost = costFunction();
/* What if the cost function has dimished? Then make the rotation step a bit smaller!
Rotate back ever closer to unitary_effective = I; untill Icost_previous < Icost
1 - 0.5 - 0.5^2 - 0.5^3 - 0.5^4 - ... = 2 - ( 1 + 0.5 + 0.5^2 + ... ) = 2 - 1/(1-0.5) = 0 */
if (Icost_previous > Icost){
if (printLevel>1){ cout << " WARNING : Icost = " << Icost << " < Icost_previous = " << Icost_previous << endl; }
for (int cnt=0; cnt<numVariables; cnt++){ gradient[cnt] = -gradient[cnt]; } //Switch the sign of the update : rotate back!
int nIterationsBACK = 0;
while ((Icost_previous > Icost) && (nIterationsBACK < CheMPS2::EDMISTONRUED_maxIterBackTfo)){
nIterationsBACK++;
for (int cnt=0; cnt<numVariables; cnt++){ gradient[cnt] *= 0.5; }
unitary->updateUnitary(temp1, temp2, gradient, true, false); //multiply = true; compact = false
DMRGSCFrotations::rotate( VMAT_ORIG, VmatRotated, NULL, 'F', 'F', 'F', 'F', iHandler, unitary, temp1, temp2, mem_size, "edmistonruedenberg" );
Icost = costFunction();
}
if (printLevel>1){ cout << " WARNING : Rotated back a bit. Now Icost = " << Icost << endl; }
}
//Calculate the gradient and Hessian and update
gradNorm = augmentedHessianNewtonRaphson(gradient, temp1, temp2);
if (printLevel>1){
cout << " After iteration " << nIterations << " : Icost = " << Icost << " has gradNorm = " << gradNorm << endl;
}
}
delete [] gradient;
if (printLevel>0){
cout << " Cost function at stop = " << Icost << endl;
cout << " Gradient norm = " << gradNorm << " after " << nIterations << " iterations." << endl;
}
return Icost;
}
CheMPS2::DMRGSCFunitary * CheMPS2::EdmistonRuedenberg::getUnitary(){ return unitary; }
double CheMPS2::EdmistonRuedenberg::costFunction() const{
double Cost = 0.0;
for (int irrep=0; irrep<SymmInfo.getNumberOfIrreps(); irrep++){
for (int orb=0; orb<iHandler->getNORB(irrep); orb++){
Cost += VmatRotated->get(irrep,irrep,irrep,irrep,orb,orb,orb,orb);
}
}
return Cost;
}
double CheMPS2::EdmistonRuedenberg::calcGradientValue(const int irrep, const int p, const int q) const{
return 4 * ( VmatRotated->get(irrep, irrep, irrep, irrep, p, p, p, q) - VmatRotated->get(irrep, irrep, irrep, irrep, q, q, q, p) );
}
double CheMPS2::EdmistonRuedenberg::calcHessianValue(const int irrep, const int p, const int q, const int r, const int s) const{
double value = 0.0;
if (p==r){
value += ( 8*VmatRotated->get(irrep, irrep, irrep, irrep, p, p, q, s)
+ 4*VmatRotated->get(irrep, irrep, irrep, irrep, p, q, p, s)
- 2*VmatRotated->get(irrep, irrep, irrep, irrep, q, q, q, s)
- 2*VmatRotated->get(irrep, irrep, irrep, irrep, s, s, s, q) );
}
if (q==s){
value += ( 8*VmatRotated->get(irrep, irrep, irrep, irrep, q, q, p, r)
+ 4*VmatRotated->get(irrep, irrep, irrep, irrep, q, p, q, r)
- 2*VmatRotated->get(irrep, irrep, irrep, irrep, p, p, p, r)
- 2*VmatRotated->get(irrep, irrep, irrep, irrep, r, r, r, p) );
}
if (p==s){
value -= ( 8*VmatRotated->get(irrep, irrep, irrep, irrep, p, p, q, r)
+ 4*VmatRotated->get(irrep, irrep, irrep, irrep, p, q, p, r)
- 2*VmatRotated->get(irrep, irrep, irrep, irrep, q, q, q, r)
- 2*VmatRotated->get(irrep, irrep, irrep, irrep, r, r, r, q) );
}
if (q==r){
value -= ( 8*VmatRotated->get(irrep, irrep, irrep, irrep, q, q, p, s)
+ 4*VmatRotated->get(irrep, irrep, irrep, irrep, q, p, q, s)
- 2*VmatRotated->get(irrep, irrep, irrep, irrep, p, p, p, s)
- 2*VmatRotated->get(irrep, irrep, irrep, irrep, s, s, s, p) );
}
return value;
}
double CheMPS2::EdmistonRuedenberg::augmentedHessianNewtonRaphson(double * gradient, double * temp1, double * temp2) const{
int jump = 0;
double gradNorm = 0.0;
for (int irrep=0; irrep<SymmInfo.getNumberOfIrreps(); irrep++){
int linsize = iHandler->getNORB(irrep);
if (linsize>1){
int hessianlinearsize = linsize*(linsize-1)/2 + 1;
/* linsize linsize^4 hesslinsize hesslinsize^2 3*hesslinsize-1 4*hesslinsize-1 (hesslinsize+1)*hesslinsize
2 16 2 4 5 7 6
3 81 4 16 11 15 20
4 256 7 49 20 27 56
5 625 11 121 32 43 132
6 1296 16 256 47 63 272
Conclusion : - temp1 is large enough for hessian (hessianlinearsize^2)
- temp2 is large enough for workspace (max(hesslinsize^2, 3*hesslinsize-1)) AND eigenvecs (hesslinsize)
*/
double * hessian = temp1;
double * eigen = temp2;
double * work = temp2 + hessianlinearsize;
int lwork = linsize*linsize*linsize*linsize - hessianlinearsize;
/* Maximizing the cost function O(x) = O(0) + g^T * x + x^T * H * x / 2
== Minimizing the cost function -O(x) = -O(0) - g^T * x - x^T * H * x / 2 */
for (int row=0; row<linsize; row++){
for (int col=row+1; col<linsize; col++){
const double waarde = calcGradientValue(irrep, row, col);
gradient[jump + row + col*(col-1)/2] = waarde;
gradNorm += waarde * waarde;
for (int row2=0; row2<linsize; row2++){
for (int col2=row2+1; col2<linsize; col2++){
const double value = calcHessianValue(irrep, row, col, row2, col2);
hessian[row + col*(col-1)/2 + hessianlinearsize * (row2 + col2*(col2-1)/2)] = - value; //MINUS SIGN FOR OTHER DIRECTION
}
}
}
}
for (int cnt=0; cnt<hessianlinearsize-1; cnt++){
hessian[hessianlinearsize-1 + hessianlinearsize * cnt] = - gradient[jump + cnt]; //MINUS SIGN FOR OTHER DIRECTION
hessian[cnt + hessianlinearsize * (hessianlinearsize-1)] = - gradient[jump + cnt]; //MINUS SIGN FOR OTHER DIRECTION
}
hessian[hessianlinearsize*hessianlinearsize-1] = 0.0;
//Find its lowest eigenvalue and vector
char jobz = 'V';
char uplo = 'U';
int info;
dsyev_(&jobz,&uplo,&hessianlinearsize,hessian,&hessianlinearsize,eigen,work,&lwork,&info);
double scalar = 1.0/hessian[hessianlinearsize-1];
int inc = 1;
dscal_(&hessianlinearsize,&scalar,hessian,&inc);
for (int cnt=0; cnt<hessianlinearsize-1; cnt++){ gradient[jump + cnt] = hessian[cnt]; }
jump += hessianlinearsize-1;
}
}
gradNorm = sqrt(gradNorm);
return gradNorm;
}
void CheMPS2::EdmistonRuedenberg::Fiedler(const int irrep, int * reorder, double * laplacian, double * temp2){
//For information on the Fiedler vector: see http://web.eecs.utk.edu/~mberry/order/node9.html
int linsize = iHandler->getNORB(irrep);
assert( linsize>=2 );
//Preamble: linsize>=2 at this point
double * work = temp2; //temp2 at least of size 4*linsize*linsize
int lwork = 3*linsize*linsize; //3*linsize*linsize > 3*linsize-1 for linsize>=2
double * eigs = temp2 + lwork; //has size linsize*linsize > linsize for linsize>=2
//Calculate the eigenspectrum of the Laplacian
char jobz = 'V';
char uplo = 'U';
int info;
dsyev_(&jobz, &uplo, &linsize, laplacian, &linsize, eigs, work, &lwork, &info);
if (printLevel>1){
cout << " EdmistonRuedenberg::Fiedler : Smallest eigs(Laplacian[" << irrep << "]) = [ " << eigs[0] << " , " << eigs[1] << " ]." << endl;
}
//The second eigenvector is the Fiedler vector
double * FiedlerVector = laplacian + linsize;
double * FiedlerVectorCopy = laplacian;
for (int cnt=0; cnt<linsize; cnt++){ FiedlerVectorCopy[cnt] = FiedlerVector[cnt]; }
//Find the Fiedler ordering
const double upperBound = 2.0; //Sum_i FiedlerVector[i]^2 = 1 --> fabs(FiedlerVector[i]) <= 1.0
for (int value=0; value<linsize; value++){
int index=0;
for (int cnt=1; cnt<linsize; cnt++){
if (FiedlerVectorCopy[cnt] < FiedlerVectorCopy[index]){ index = cnt; }
} //Index now corresponds to the smallest value in FiedlerVectorCopy
reorder[value] = index;
FiedlerVectorCopy[index] = upperBound; //Remove from the interesting entries in FiedlerVectorCopy
}
if (printLevel>1){
bool isOK = true;
for (int cnt=0; cnt<linsize-1; cnt++){
if (FiedlerVector[reorder[cnt]] > FiedlerVector[reorder[cnt+1]]){ isOK = false; }
}
assert( isOK );
cout << " Reorder[" << irrep << "] = [ ";
for (int cnt=0; cnt<linsize-1; cnt++){ cout << reorder[cnt] << " , "; }
cout << reorder[linsize-1] << " ]." << endl;
}
//Reorder the vectors in the unitary
double * blockU = unitary->getBlock(irrep);
for (int row=0; row<linsize; row++){
for (int col=0; col<linsize; col++){
work[row + linsize * col] = blockU[reorder[row] + linsize * col];
}
}
int size = linsize*linsize;
int inc = 1;
dcopy_(&size, work, &inc, blockU, &inc);
if (printLevel>1){
char trans = 'T';
char notrans = 'N';
double alpha = 1.0;
double beta = 0.0;
dgemm_(&trans, ¬rans, &linsize, &linsize, &linsize, &alpha, blockU, &linsize, blockU, &linsize, &beta, work, &linsize);
double sum = 0.0;
for (int row=0; row<linsize; row++){
sum += (work[row+linsize*row]-1.0)*(work[row+linsize*row]-1.0);
for (int col=row+1; col<linsize; col++){
sum += work[row+linsize*col]*work[row+linsize*col] + work[col+linsize*row]*work[col+linsize*row];
}
}
sum = sqrt(sum);
cout << " 2-norm of Unitary[" << irrep << "]^T * Unitary[" << irrep << "] - I = " << sum << endl;
}
}
double CheMPS2::EdmistonRuedenberg::FiedlerExchangeCost() const{
double Cost = 0.0;
for (int irrep=0; irrep<SymmInfo.getNumberOfIrreps(); irrep++){
const int linsize = iHandler->getNORB(irrep);
if (linsize>1){
for (int row=0; row<linsize; row++){
for (int col=row+1; col<linsize; col++){
Cost += 2 * VmatRotated->get(irrep,irrep,irrep,irrep,row,col,col,row) * (col-row) * (col-row);
}
}
}
}
return Cost;
}
void CheMPS2::EdmistonRuedenberg::FiedlerExchange(const int maxlinsize, double * temp1, double * temp2){
//For information on the Fiedler vector: see http://web.eecs.utk.edu/~mberry/order/node9.html
const int mem_size = iHandler->getL() * iHandler->getL() * iHandler->getL() * iHandler->getL();
DMRGSCFrotations::rotate( VMAT_ORIG, VmatRotated, NULL, 'F', 'F', 'F', 'F', iHandler, unitary, temp1, temp2, mem_size, "edmistonruedenberg" );
if (printLevel>0){ cout << " EdmistonRuedenberg::FiedlerExchange : Cost function at start = " << FiedlerExchangeCost() << endl; }
int * reorder = new int[maxlinsize];
for (int irrep=0; irrep<SymmInfo.getNumberOfIrreps(); irrep++){
const int linsize = iHandler->getNORB(irrep);
if (linsize>1){
//temp1 and temp2 both at least of size 4*linsize*linsize
double * laplacian = temp1;
//Fill the weighted graph Laplacian
for (int row=0; row<linsize; row++){
laplacian[row*(1+linsize)] = 0.0;
for (int col=row+1; col<linsize; col++){
laplacian[row + linsize*col] = - VmatRotated->get(irrep,irrep,irrep,irrep,row,col,col,row); //minus the exchange matrix
laplacian[col + linsize*row] = laplacian[row + linsize*col]; //Symmetric matrix
laplacian[row + linsize*row] -= laplacian[row + linsize*col]; //On diagonal : Minus the sum of the other terms on that row
}
for (int col=0; col<row; col++){
laplacian[row + linsize*row] -= laplacian[row + linsize*col]; //On diagonal : Minus the sum of the other terms on that row
}
}
Fiedler(irrep, reorder, laplacian, temp2);
}
}
delete [] reorder;
DMRGSCFrotations::rotate( VMAT_ORIG, VmatRotated, NULL, 'F', 'F', 'F', 'F', iHandler, unitary, temp1, temp2, mem_size, "edmistonruedenberg" );
if (printLevel>0){ cout << " EdmistonRuedenberg::FiedlerExchange : Cost function at end = " << FiedlerExchangeCost() << endl; }
}
double CheMPS2::EdmistonRuedenberg::FiedlerGlobalCost( const DMRGSCFindices * idx, const FourIndex * VMAT_LOCAL, int * dmrg2ham ){
double cost = 0.0;
for ( int dmrg_row = 0; dmrg_row < idx->getL(); dmrg_row++ ){
for ( int dmrg_col = 0; dmrg_col < idx->getL(); dmrg_col++ ){
const int ham_row = dmrg2ham[ dmrg_row ];
const int ham_col = dmrg2ham[ dmrg_col ];
const int irrep_row = idx->getOrbitalIrrep( ham_row );
const int irrep_col = idx->getOrbitalIrrep( ham_col );
const int rel_row = ham_row - idx->getOrigNOCCstart( irrep_row );
const int rel_col = ham_col - idx->getOrigNOCCstart( irrep_col );
cost += VMAT_LOCAL->get( irrep_row, irrep_col, irrep_col, irrep_row, rel_row, rel_col, rel_col, rel_row ) * ( dmrg_row - dmrg_col ) * ( dmrg_row - dmrg_col );
}
}
return cost;
}
void CheMPS2::EdmistonRuedenberg::FiedlerGlobal( int * dmrg2ham ) const{
// For information on the Fiedler vector: see http://web.eecs.utk.edu/~mberry/order/node9.html
for ( int orb = 0; orb < iHandler->getL(); orb++ ){ dmrg2ham[ orb ] = orb; }
if ( printLevel > 0 ){ cout << " EdmistonRuedenberg::FiedlerGlobal : Cost function at start = " << FiedlerGlobalCost( iHandler, VMAT_ORIG, dmrg2ham ) << endl; }
// Build the Laplacian
double * laplacian = new double[ iHandler->getL() * iHandler->getL() ];
for ( int ham_row = 0; ham_row < iHandler->getL(); ham_row++ ){
double sum_over_column = 0.0;
for ( int ham_col = 0; ham_col < iHandler->getL(); ham_col++ ){
if ( ham_row != ham_col ){
const int irrep_row = iHandler->getOrbitalIrrep( ham_row );
const int irrep_col = iHandler->getOrbitalIrrep( ham_col );
const int rel_row = ham_row - iHandler->getOrigNOCCstart( irrep_row );
const int rel_col = ham_col - iHandler->getOrigNOCCstart( irrep_col );
const double value = fabs( VMAT_ORIG->get( irrep_row, irrep_col, irrep_col, irrep_row, rel_row, rel_col, rel_col, rel_row ) );
laplacian[ ham_row + iHandler->getL() * ham_col ] = - value;
sum_over_column += value;
} else {
laplacian[ ham_row + iHandler->getL() * ham_col ] = 0.0;
}
}
laplacian[ ham_row + iHandler->getL() * ham_row ] = sum_over_column;
}
// Calculate the eigenspectrum of the Laplacian
int lwork = 3 * iHandler->getL() * iHandler->getL();
double * work = new double[ lwork ];
double * eigs = new double[ iHandler->getL() ];
char jobz = 'V';
char uplo = 'U';
int linsize = iHandler->getL();
int info;
dsyev_( &jobz, &uplo, &linsize, laplacian, &linsize, eigs, work, &lwork, &info );
delete [] work;
delete [] eigs;
// Fill dmrg2ham
double * fiedler_vec = laplacian + linsize;
for ( int dummy = 0; dummy < linsize; dummy++ ){
int index = 0;
for ( int orb = 1; orb < linsize; orb++ ){
if ( fiedler_vec[ orb ] < fiedler_vec[ index ] ){ index = orb; }
}
dmrg2ham[ dummy ] = index;
fiedler_vec[ index ] = 2.0; // Eigenvectors are normalized to 1.0, so certainly OK
}
delete [] laplacian;
if ( printLevel > 0 ){
cout << " EdmistonRuedenberg::FiedlerGlobal : Cost function at end = " << FiedlerGlobalCost( iHandler, VMAT_ORIG, dmrg2ham ) << endl;
cout << " EdmistonRuedenberg::FiedlerGlobal : Reordering = [ ";
for ( int orb = 0; orb < linsize - 1; orb++ ){ cout << dmrg2ham[ orb ] << ", "; }
cout << dmrg2ham[ linsize - 1 ] << " ]." << endl;
}
}
|