1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
|
/*
CheMPS2: a spin-adapted implementation of DMRG for ab initio quantum chemistry
Copyright (C) 2013-2018 Sebastian Wouters
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <math.h>
#include <stdlib.h>
#include <iostream>
#include <algorithm>
#include <assert.h>
#include "Heff.h"
#include "Davidson.h"
#include "Lapack.h"
#include "MPIchemps2.h"
CheMPS2::Heff::Heff(const SyBookkeeper * denBKIn, const Problem * ProbIn, const double dvdson_rtol_in){
denBK = denBKIn;
Prob = ProbIn;
dvdson_rtol = dvdson_rtol_in;
}
CheMPS2::Heff::~Heff(){
}
void CheMPS2::Heff::makeHeff(double * memS, double * memHeff, const Sobject * denS, TensorL *** Ltensors, TensorOperator **** Atensors, TensorOperator **** Btensors, TensorOperator **** Ctensors, TensorOperator **** Dtensors, TensorS0 **** S0tensors, TensorS1 **** S1tensors, TensorF0 **** F0tensors, TensorF1 **** F1tensors, TensorQ *** Qtensors, TensorX ** Xtensors, int nLower, double ** VeffTilde) const{
const int indexS = denS->gIndex();
const bool atLeft = (indexS==0)?true:false;
const bool atRight = (indexS==Prob->gL()-2)?true:false;
const int DIM = std::max(denBK->gMaxDimAtBound(indexS), denBK->gMaxDimAtBound(indexS+2));
#ifdef CHEMPS2_MPI_COMPILATION
const int MPIRANK = MPIchemps2::mpi_rank();
#endif
//PARALLEL
#pragma omp parallel
{
double * temp = new double[DIM*DIM];
double * temp2 = new double[DIM*DIM];
#pragma omp for schedule(dynamic)
for (int ikappaBIS=0; ikappaBIS<denS->gNKappa(); ikappaBIS++){
const int ikappa = denS->gReorder(ikappaBIS);
for (int cnt=denS->gKappa2index(ikappa); cnt<denS->gKappa2index(ikappa+1); cnt++){ memHeff[cnt] = 0.0; }
#ifdef CHEMPS2_MPI_COMPILATION
if ( MPIchemps2::owner_1cd2d3eh() == MPIRANK )
#endif
{
addDiagram1C(ikappa, memS,memHeff,denS,Prob->gMxElement(indexS,indexS,indexS,indexS));
addDiagram1D(ikappa, memS,memHeff,denS,Prob->gMxElement(indexS+1,indexS+1,indexS+1,indexS+1));
addDiagram2dall(ikappa, memS, memHeff, denS);
addDiagram3Eand3H(ikappa, memS, memHeff, denS);
}
addDiagramExcitations(ikappa, memS, memHeff, denS, nLower, VeffTilde); //The MPI check occurs in this function
if (!atLeft){
/*********************
* Diagrams group 1 *
*********************/
#ifdef CHEMPS2_MPI_COMPILATION
if ( MPIchemps2::owner_x() == MPIRANK )
#endif
{ addDiagram1A(ikappa, memS, memHeff, denS, Xtensors[indexS-1]); }
/*********************
* Diagrams group 2 *
*********************/
#ifdef CHEMPS2_MPI_COMPILATION
if ( MPIchemps2::owner_absigma( indexS, indexS ) == MPIRANK )
#endif
{ addDiagram2b1and2b2(ikappa, memS, memHeff, denS, Atensors[indexS-1][0][0]); }
#ifdef CHEMPS2_MPI_COMPILATION
if ( MPIchemps2::owner_absigma( indexS+1, indexS+1 ) == MPIRANK )
#endif
{ addDiagram2c1and2c2(ikappa, memS, memHeff, denS, Atensors[indexS-1][0][1]); }
#ifdef CHEMPS2_MPI_COMPILATION
if ( MPIchemps2::owner_cdf( Prob->gL(), indexS, indexS ) == MPIRANK )
#endif
{ addDiagram2b3spin0(ikappa, memS, memHeff, denS, Ctensors[indexS-1][0][0]);
addDiagram2b3spin1(ikappa, memS, memHeff, denS, Dtensors[indexS-1][0][0]); }
#ifdef CHEMPS2_MPI_COMPILATION
if ( MPIchemps2::owner_cdf( Prob->gL(), indexS+1, indexS+1 ) == MPIRANK )
#endif
{ addDiagram2c3spin0(ikappa, memS, memHeff, denS, Ctensors[indexS-1][0][1]);
addDiagram2c3spin1(ikappa, memS, memHeff, denS, Dtensors[indexS-1][0][1]); }
/*********************
* Diagrams group 3 *
*********************/
#ifdef CHEMPS2_MPI_COMPILATION
if ( MPIchemps2::owner_q( Prob->gL(), indexS ) == MPIRANK )
#endif
{ addDiagram3Aand3D(ikappa, memS, memHeff, denS, Qtensors[indexS-1][0], Ltensors[indexS-1], temp); }
#ifdef CHEMPS2_MPI_COMPILATION
if ( MPIchemps2::owner_q( Prob->gL(), indexS+1 ) == MPIRANK )
#endif
{ addDiagram3Band3I(ikappa, memS, memHeff, denS, Qtensors[indexS-1][1], Ltensors[indexS-1], temp); }
/*********************
* Diagrams group 4 *
*********************/
#ifdef CHEMPS2_MPI_COMPILATION
if ( MPIchemps2::owner_absigma( indexS, indexS+1 ) == MPIRANK )
#endif
{ addDiagram4A1and4A2spin0(ikappa, memS, memHeff, denS, Atensors[indexS-1][1][0]);
addDiagram4A1and4A2spin1(ikappa, memS, memHeff, denS, Btensors[indexS-1][1][0]); }
#ifdef CHEMPS2_MPI_COMPILATION
if ( MPIchemps2::owner_cdf( Prob->gL(), indexS, indexS+1 ) == MPIRANK )
#endif
{ addDiagram4A3and4A4spin0(ikappa, memS, memHeff, denS, Ctensors[indexS-1][1][0]);
addDiagram4A3and4A4spin1(ikappa, memS, memHeff, denS, Dtensors[indexS-1][1][0]); }
addDiagram4D(ikappa, memS, memHeff, denS, Ltensors[indexS-1], temp); //The MPI check occurs in this function
addDiagram4I(ikappa, memS, memHeff, denS, Ltensors[indexS-1], temp); //The MPI check occurs in this function
}
if (!atRight){
/*********************
* Diagrams group 1 *
*********************/
#ifdef CHEMPS2_MPI_COMPILATION
if ( MPIchemps2::owner_x() == MPIRANK )
#endif
{ addDiagram1B(ikappa, memS, memHeff, denS, Xtensors[indexS+1]); }
/*********************
* Diagrams group 2 *
*********************/
#ifdef CHEMPS2_MPI_COMPILATION
if ( MPIchemps2::owner_absigma( indexS, indexS ) == MPIRANK )
#endif
{ addDiagram2e1and2e2(ikappa, memS, memHeff, denS, Atensors[indexS+1][0][1]); }
#ifdef CHEMPS2_MPI_COMPILATION
if ( MPIchemps2::owner_absigma( indexS+1, indexS+1 ) == MPIRANK )
#endif
{ addDiagram2f1and2f2(ikappa, memS, memHeff, denS, Atensors[indexS+1][0][0]); }
#ifdef CHEMPS2_MPI_COMPILATION
if ( MPIchemps2::owner_cdf( Prob->gL(), indexS, indexS ) == MPIRANK )
#endif
{ addDiagram2e3spin0(ikappa, memS, memHeff, denS, Ctensors[indexS+1][0][1]);
addDiagram2e3spin1(ikappa, memS, memHeff, denS, Dtensors[indexS+1][0][1]); }
#ifdef CHEMPS2_MPI_COMPILATION
if ( MPIchemps2::owner_cdf( Prob->gL(), indexS+1, indexS+1 ) == MPIRANK )
#endif
{ addDiagram2f3spin0(ikappa, memS, memHeff, denS, Ctensors[indexS+1][0][0]);
addDiagram2f3spin1(ikappa, memS, memHeff, denS, Dtensors[indexS+1][0][0]); }
/*********************
* Diagrams group 3 *
*********************/
#ifdef CHEMPS2_MPI_COMPILATION
if ( MPIchemps2::owner_q( Prob->gL(), indexS ) == MPIRANK )
#endif
{ addDiagram3Kand3F(ikappa, memS, memHeff, denS, Qtensors[indexS+1][1], Ltensors[indexS+1], temp); }
#ifdef CHEMPS2_MPI_COMPILATION
if ( MPIchemps2::owner_q( Prob->gL(), indexS+1 ) == MPIRANK )
#endif
{ addDiagram3Land3G(ikappa, memS, memHeff, denS, Qtensors[indexS+1][0], Ltensors[indexS+1], temp); }
/*********************
* Diagrams group 4 *
*********************/
#ifdef CHEMPS2_MPI_COMPILATION
if ( MPIchemps2::owner_absigma( indexS, indexS+1 ) == MPIRANK )
#endif
{ addDiagram4J1and4J2spin0(ikappa, memS, memHeff, denS, Atensors[indexS+1][1][0]);
addDiagram4J1and4J2spin1(ikappa, memS, memHeff, denS, Btensors[indexS+1][1][0]); }
#ifdef CHEMPS2_MPI_COMPILATION
if ( MPIchemps2::owner_cdf( Prob->gL(), indexS, indexS+1 ) == MPIRANK )
#endif
{ addDiagram4J3and4J4spin0(ikappa, memS, memHeff, denS, Ctensors[indexS+1][1][0]);
addDiagram4J3and4J4spin1(ikappa, memS, memHeff, denS, Dtensors[indexS+1][1][0]); }
addDiagram4F(ikappa, memS, memHeff, denS, Ltensors[indexS+1], temp); //The MPI check occurs in this function
addDiagram4G(ikappa, memS, memHeff, denS, Ltensors[indexS+1], temp); //The MPI check occurs in this function
}
if ((!atLeft) && (!atRight)){
addDiagram2a1spin0(ikappa, memS, memHeff, denS, Atensors, S0tensors, temp); //The MPI check occurs in this function
addDiagram2a2spin0(ikappa, memS, memHeff, denS, Atensors, S0tensors, temp); //The MPI check occurs in this function
addDiagram2a1spin1(ikappa, memS, memHeff, denS, Btensors, S1tensors, temp); //The MPI check occurs in this function
addDiagram2a2spin1(ikappa, memS, memHeff, denS, Btensors, S1tensors, temp); //The MPI check occurs in this function
addDiagram2a3spin0(ikappa, memS, memHeff, denS, Ctensors, F0tensors, temp); //The MPI check occurs in this function
addDiagram2a3spin1(ikappa, memS, memHeff, denS, Dtensors, F1tensors, temp); //The MPI check occurs in this function
addDiagram3C(ikappa, memS, memHeff, denS, Qtensors[indexS-1], Ltensors[indexS+1], temp); //The MPI check occurs in this function
addDiagram3J(ikappa, memS, memHeff, denS, Qtensors[indexS+1], Ltensors[indexS-1], temp); //The MPI check occurs in this function
addDiagram4B1and4B2spin0(ikappa, memS, memHeff, denS, Atensors[indexS-1], Ltensors[indexS+1], temp); //The MPI check occurs in this function
addDiagram4B1and4B2spin1(ikappa, memS, memHeff, denS, Btensors[indexS-1], Ltensors[indexS+1], temp); //The MPI check occurs in this function
addDiagram4B3and4B4spin0(ikappa, memS, memHeff, denS, Ctensors[indexS-1], Ltensors[indexS+1], temp); //The MPI check occurs in this function
addDiagram4B3and4B4spin1(ikappa, memS, memHeff, denS, Dtensors[indexS-1], Ltensors[indexS+1], temp); //The MPI check occurs in this function
addDiagram4C1and4C2spin0(ikappa, memS, memHeff, denS, Atensors[indexS-1], Ltensors[indexS+1], temp); //The MPI check occurs in this function
addDiagram4C1and4C2spin1(ikappa, memS, memHeff, denS, Btensors[indexS-1], Ltensors[indexS+1], temp); //The MPI check occurs in this function
addDiagram4C3and4C4spin0(ikappa, memS, memHeff, denS, Ctensors[indexS-1], Ltensors[indexS+1], temp); //The MPI check occurs in this function
addDiagram4C3and4C4spin1(ikappa, memS, memHeff, denS, Dtensors[indexS-1], Ltensors[indexS+1], temp); //The MPI check occurs in this function
addDiagram4E(ikappa, memS, memHeff, denS, Ltensors[indexS-1], Ltensors[indexS+1], temp, temp2); //The MPI check occurs in this function
addDiagram4H(ikappa, memS, memHeff, denS, Ltensors[indexS-1], Ltensors[indexS+1], temp, temp2); //The MPI check occurs in this function
addDiagram4K1and4K2spin0(ikappa, memS, memHeff, denS, Ltensors[indexS-1], Atensors[indexS+1], temp); //The MPI check occurs in this function
addDiagram4L1and4L2spin0(ikappa, memS, memHeff, denS, Ltensors[indexS-1], Atensors[indexS+1], temp); //The MPI check occurs in this function
addDiagram4K1and4K2spin1(ikappa, memS, memHeff, denS, Ltensors[indexS-1], Btensors[indexS+1], temp); //The MPI check occurs in this function
addDiagram4L1and4L2spin1(ikappa, memS, memHeff, denS, Ltensors[indexS-1], Btensors[indexS+1], temp); //The MPI check occurs in this function
addDiagram4K3and4K4spin0(ikappa, memS, memHeff, denS, Ltensors[indexS-1], Ctensors[indexS+1], temp); //The MPI check occurs in this function
addDiagram4L3and4L4spin0(ikappa, memS, memHeff, denS, Ltensors[indexS-1], Ctensors[indexS+1], temp); //The MPI check occurs in this function
addDiagram4K3and4K4spin1(ikappa, memS, memHeff, denS, Ltensors[indexS-1], Dtensors[indexS+1], temp); //The MPI check occurs in this function
addDiagram4L3and4L4spin1(ikappa, memS, memHeff, denS, Ltensors[indexS-1], Dtensors[indexS+1], temp); //The MPI check occurs in this function
addDiagram5A(ikappa, memS, memHeff, denS, Ltensors[indexS-1], Ltensors[indexS+1], temp, temp2); //The MPI check occurs in this function
addDiagram5B(ikappa, memS, memHeff, denS, Ltensors[indexS-1], Ltensors[indexS+1], temp, temp2); //The MPI check occurs in this function
addDiagram5C(ikappa, memS, memHeff, denS, Ltensors[indexS-1], Ltensors[indexS+1], temp, temp2); //The MPI check occurs in this function
addDiagram5D(ikappa, memS, memHeff, denS, Ltensors[indexS-1], Ltensors[indexS+1], temp, temp2); //The MPI check occurs in this function
addDiagram5E(ikappa, memS, memHeff, denS, Ltensors[indexS-1], Ltensors[indexS+1], temp, temp2); //The MPI check occurs in this function
addDiagram5F(ikappa, memS, memHeff, denS, Ltensors[indexS-1], Ltensors[indexS+1], temp, temp2); //The MPI check occurs in this function
}
}
delete [] temp;
delete [] temp2;
}
}
void CheMPS2::Heff::fillHeffDiag(double * memHeffDiag, const Sobject * denS, TensorOperator **** Ctensors, TensorOperator **** Dtensors, TensorF0 **** F0tensors, TensorF1 **** F1tensors, TensorX ** Xtensors, int nLower, double ** VeffTilde) const{
const int indexS = denS->gIndex();
const bool atLeft = (indexS==0)?true:false;
const bool atRight = (indexS==Prob->gL()-2)?true:false;
#ifdef CHEMPS2_MPI_COMPILATION
const int MPIRANK = MPIchemps2::mpi_rank();
#endif
//PARALLEL
#pragma omp parallel for schedule(dynamic)
for (int ikappaBIS=0; ikappaBIS<denS->gNKappa(); ikappaBIS++){
const int ikappa = denS->gReorder(ikappaBIS);
for (int cnt=denS->gKappa2index(ikappa); cnt<denS->gKappa2index(ikappa+1); cnt++){ memHeffDiag[cnt] = 0.0; }
#ifdef CHEMPS2_MPI_COMPILATION
if ( MPIchemps2::owner_1cd2d3eh() == MPIRANK )
#endif
{ addDiagonal1C(ikappa, memHeffDiag,denS,Prob->gMxElement(indexS,indexS,indexS,indexS));
addDiagonal1D(ikappa, memHeffDiag,denS,Prob->gMxElement(indexS+1,indexS+1,indexS+1,indexS+1));
addDiagonal2d3all(ikappa, memHeffDiag, denS); }
if (nLower>0){ addDiagonalExcitations(ikappa, memHeffDiag, denS, nLower, VeffTilde); } //The MPI check occurs in this function
if (!atLeft){
#ifdef CHEMPS2_MPI_COMPILATION
if ( MPIchemps2::owner_x() == MPIRANK )
#endif
{ addDiagonal1A(ikappa, memHeffDiag, denS, Xtensors[indexS-1]); }
#ifdef CHEMPS2_MPI_COMPILATION
if ( MPIchemps2::owner_cdf( Prob->gL(), indexS, indexS ) == MPIRANK )
#endif
{ addDiagonal2b3spin0(ikappa, memHeffDiag, denS, Ctensors[indexS-1][0][0]);
addDiagonal2b3spin1(ikappa, memHeffDiag, denS, Dtensors[indexS-1][0][0]); }
#ifdef CHEMPS2_MPI_COMPILATION
if ( MPIchemps2::owner_cdf( Prob->gL(), indexS+1, indexS+1 ) == MPIRANK )
#endif
{ addDiagonal2c3spin0(ikappa, memHeffDiag, denS, Ctensors[indexS-1][0][1]);
addDiagonal2c3spin1(ikappa, memHeffDiag, denS, Dtensors[indexS-1][0][1]); }
}
if (!atRight){
#ifdef CHEMPS2_MPI_COMPILATION
if ( MPIchemps2::owner_x() == MPIRANK )
#endif
{ addDiagonal1B(ikappa, memHeffDiag, denS, Xtensors[indexS+1]); }
#ifdef CHEMPS2_MPI_COMPILATION
if ( MPIchemps2::owner_cdf( Prob->gL(), indexS, indexS ) == MPIRANK )
#endif
{ addDiagonal2e3spin0(ikappa, memHeffDiag, denS, Ctensors[indexS+1][0][1]);
addDiagonal2e3spin1(ikappa, memHeffDiag, denS, Dtensors[indexS+1][0][1]); }
#ifdef CHEMPS2_MPI_COMPILATION
if ( MPIchemps2::owner_cdf( Prob->gL(), indexS+1, indexS+1 ) == MPIRANK )
#endif
{ addDiagonal2f3spin0(ikappa, memHeffDiag, denS, Ctensors[indexS+1][0][0]);
addDiagonal2f3spin1(ikappa, memHeffDiag, denS, Dtensors[indexS+1][0][0]); }
}
if ((!atLeft) && (!atRight)){
addDiagonal2a3spin0(ikappa, memHeffDiag, denS, Ctensors, F0tensors); //The MPI check occurs in this function
addDiagonal2a3spin1(ikappa, memHeffDiag, denS, Dtensors, F1tensors); //The MPI check occurs in this function
}
}
}
double CheMPS2::Heff::SolveDAVIDSON(Sobject * denS, TensorL *** Ltensors, TensorOperator **** Atensors, TensorOperator **** Btensors, TensorOperator **** Ctensors, TensorOperator **** Dtensors, TensorS0 **** S0tensors, TensorS1 **** S1tensors, TensorF0 **** F0tensors, TensorF1 **** F1tensors, TensorQ *** Qtensors, TensorX ** Xtensors, int nLower, double ** VeffTilde) const{
#ifdef CHEMPS2_MPI_COMPILATION
if ( MPIchemps2::mpi_rank() == MPI_CHEMPS2_MASTER ){
return SolveDAVIDSON_main(denS, Ltensors, Atensors, Btensors, Ctensors, Dtensors, S0tensors, S1tensors, F0tensors, F1tensors, Qtensors, Xtensors, nLower, VeffTilde);
} else {
return SolveDAVIDSON_help(denS, Ltensors, Atensors, Btensors, Ctensors, Dtensors, S0tensors, S1tensors, F0tensors, F1tensors, Qtensors, Xtensors, nLower, VeffTilde);
}
#else
return SolveDAVIDSON_main(denS, Ltensors, Atensors, Btensors, Ctensors, Dtensors, S0tensors, S1tensors, F0tensors, F1tensors, Qtensors, Xtensors, nLower, VeffTilde);
#endif
}
double CheMPS2::Heff::SolveDAVIDSON_main(Sobject * denS, TensorL *** Ltensors, TensorOperator **** Atensors, TensorOperator **** Btensors, TensorOperator **** Ctensors, TensorOperator **** Dtensors, TensorS0 **** S0tensors, TensorS1 **** S1tensors, TensorF0 **** F0tensors, TensorF1 **** F1tensors, TensorQ *** Qtensors, TensorX ** Xtensors, int nLower, double ** VeffTilde) const{
int inc1 = 1;
int veclength = denS->gKappa2index( denS->gNKappa() );
Davidson deBoskabouter( veclength, CheMPS2::DAVIDSON_NUM_VEC,
CheMPS2::DAVIDSON_NUM_VEC_KEEP,
// CheMPS2::DAVIDSON_DMRG_RTOL,
dvdson_rtol,
CheMPS2::DAVIDSON_PRECOND_CUTOFF, CheMPS2::HEFF_debugPrint );
double ** whichpointers = new double*[2];
char instruction = deBoskabouter.FetchInstruction( whichpointers );
assert( instruction == 'A' );
denS->prog2symm(); // Convert mem of Sobject to symmetric conventions
dcopy_(&veclength, denS->gStorage(), &inc1, whichpointers[0], &inc1); // Starting vector for Davidson is the current state of the Sobject in symmetric conventions
#ifdef CHEMPS2_MPI_COMPILATION
double * workspace = new double[ veclength ];
fillHeffDiag(workspace, denS, Ctensors, Dtensors, F0tensors, F1tensors, Xtensors, nLower, VeffTilde);
MPIchemps2::reduce_array_double( workspace, whichpointers[1], veclength, MPI_CHEMPS2_MASTER );
#else
fillHeffDiag(whichpointers[1], denS, Ctensors, Dtensors, F0tensors, F1tensors, Xtensors, nLower, VeffTilde);
#endif
instruction = deBoskabouter.FetchInstruction( whichpointers );
while ( instruction == 'B' ){
#ifdef CHEMPS2_MPI_COMPILATION
{
int mpi_instruction = 2;
MPIchemps2::broadcast_array_int( &mpi_instruction, 1, MPI_CHEMPS2_MASTER );
MPIchemps2::broadcast_array_double( whichpointers[0], veclength, MPI_CHEMPS2_MASTER );
makeHeff(whichpointers[0], workspace, denS, Ltensors, Atensors, Btensors, Ctensors, Dtensors, S0tensors, S1tensors, F0tensors, F1tensors, Qtensors, Xtensors, nLower, VeffTilde);
MPIchemps2::reduce_array_double( workspace, whichpointers[1], veclength, MPI_CHEMPS2_MASTER );
}
#else
makeHeff(whichpointers[0], whichpointers[1], denS, Ltensors, Atensors, Btensors, Ctensors, Dtensors, S0tensors, S1tensors, F0tensors, F1tensors, Qtensors, Xtensors, nLower, VeffTilde);
#endif
instruction = deBoskabouter.FetchInstruction( whichpointers );
}
assert( instruction == 'C' );
dcopy_( &veclength, whichpointers[0], &inc1, denS->gStorage(), &inc1 ); // Copy the solution in symmetric conventions back
denS->symm2prog(); // Convert mem of Sobject to program conventions
double eigenvalue = whichpointers[1][0];
if (CheMPS2::HEFF_debugPrint){ std::cout << " Stats: nIt(DAVIDSON) = " << deBoskabouter.GetNumMultiplications() << std::endl; }
delete [] whichpointers;
#ifdef CHEMPS2_MPI_COMPILATION
delete [] workspace;
int mpi_instruction = 3;
MPIchemps2::broadcast_array_int( &mpi_instruction, 1, MPI_CHEMPS2_MASTER );
MPIchemps2::broadcast_array_double( &eigenvalue, 1, MPI_CHEMPS2_MASTER );
#endif
return eigenvalue;
}
#ifdef CHEMPS2_MPI_COMPILATION
double CheMPS2::Heff::SolveDAVIDSON_help(Sobject * denS, TensorL *** Ltensors, TensorOperator **** Atensors, TensorOperator **** Btensors, TensorOperator **** Ctensors, TensorOperator **** Dtensors, TensorS0 **** S0tensors, TensorS1 **** S1tensors, TensorF0 **** F0tensors, TensorF1 **** F1tensors, TensorQ *** Qtensors, TensorX ** Xtensors, int nLower, double ** VeffTilde) const{
int veclength = denS->gKappa2index( denS->gNKappa() );
double * vecin = new double[ veclength ];
double * vecout = new double[ veclength ];
int mpi_instruction = -1;
fillHeffDiag( vecout, denS, Ctensors, Dtensors, F0tensors, F1tensors, Xtensors, nLower, VeffTilde );
MPIchemps2::reduce_array_double( vecout, vecin, veclength, MPI_CHEMPS2_MASTER );
MPIchemps2::broadcast_array_int( &mpi_instruction, 1, MPI_CHEMPS2_MASTER );
while ( mpi_instruction == 2 ){ // Mat Vec
MPIchemps2::broadcast_array_double( vecin, veclength, MPI_CHEMPS2_MASTER );
makeHeff(vecin, vecout, denS, Ltensors, Atensors, Btensors, Ctensors, Dtensors, S0tensors, S1tensors, F0tensors, F1tensors, Qtensors, Xtensors, nLower, VeffTilde);
MPIchemps2::reduce_array_double( vecout, vecin, veclength, MPI_CHEMPS2_MASTER );
MPIchemps2::broadcast_array_int( &mpi_instruction, 1, MPI_CHEMPS2_MASTER );
}
assert( mpi_instruction == 3 ); // Receive energy
double eigenvalue = 0.0;
MPIchemps2::broadcast_array_double( &eigenvalue, 1, MPI_CHEMPS2_MASTER );
delete [] vecin;
delete [] vecout;
return eigenvalue; // The eigenvalue is correct on each process, denS not
}
#endif
|