1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
|
/*
CheMPS2: a spin-adapted implementation of DMRG for ab initio quantum chemistry
Copyright (C) 2013-2018 Sebastian Wouters
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <stdlib.h>
#include <assert.h>
#include <iostream>
#include <math.h> // fabs
#include "Problem.h"
#include "Irreps.h"
#include "MPIchemps2.h"
using std::cout;
using std::endl;
CheMPS2::Problem::Problem(const Hamiltonian * Hamin, const int TwoSin, const int Nin, const int Irrepin){
Ham = Hamin;
L = Ham->getL();
TwoS = TwoSin;
N = Nin;
Irrep = Irrepin;
bReorder = false;
checkConsistency();
mx_elem = NULL;
}
CheMPS2::Problem::~Problem(){
if (bReorder){
delete [] f1;
delete [] f2;
}
if ( mx_elem != NULL ){ delete [] mx_elem; }
}
void CheMPS2::Problem::SetupReorderD2h(){
if (bReorder){
delete [] f1;
delete [] f2;
bReorder = false;
}
if (gSy()==7){ //Only if D2h of course
bReorder = true;
f1 = new int[Ham->getL()];
f2 = new int[Ham->getL()];
int DMRGirrepOrder[8];
DMRGirrepOrder[0] = 0; //Ag sigma
DMRGirrepOrder[1] = 5; //B1u sigma^*
DMRGirrepOrder[2] = 7; //B3u pi_x
DMRGirrepOrder[3] = 2; //B2g pi_x^*
DMRGirrepOrder[4] = 6; //B2u pi_y
DMRGirrepOrder[5] = 3; //B3g pi_y^*
DMRGirrepOrder[6] = 1; //B1g
DMRGirrepOrder[7] = 4; //Au
int DMRGOrb = 0;
for (int irrep=0; irrep<8; irrep++){
for (int HamOrb=0; HamOrb<Ham->getL(); HamOrb++){
if (Ham->getOrbitalIrrep(HamOrb)==DMRGirrepOrder[irrep]){
f1[HamOrb] = DMRGOrb;
f2[DMRGOrb] = HamOrb;
DMRGOrb++;
}
}
}
assert( DMRGOrb==Ham->getL() );
}
}
void CheMPS2::Problem::SetupReorderC2v(){
if (bReorder){
delete [] f1;
delete [] f2;
bReorder = false;
}
if (gSy()==5){ //Only if C2v of course
bReorder = true;
f1 = new int[Ham->getL()];
f2 = new int[Ham->getL()];
int DMRGirrepOrder[4];
DMRGirrepOrder[0] = 0; //A1
DMRGirrepOrder[1] = 2; //B1
DMRGirrepOrder[2] = 3; //B2
DMRGirrepOrder[3] = 1; //A2
int DMRGOrb = 0;
{
const int irrep = 0; // Irrep = 0 = A1 : reverse the order of the orbitals
for (int HamOrb=Ham->getL()-1; HamOrb>=0; HamOrb--){
if (Ham->getOrbitalIrrep(HamOrb)==DMRGirrepOrder[irrep]){
f1[HamOrb] = DMRGOrb;
f2[DMRGOrb] = HamOrb;
DMRGOrb++;
}
}
}
for (int irrep=1; irrep<4; irrep++){
for (int HamOrb=0; HamOrb<Ham->getL(); HamOrb++){
if (Ham->getOrbitalIrrep(HamOrb)==DMRGirrepOrder[irrep]){
f1[HamOrb] = DMRGOrb;
f2[DMRGOrb] = HamOrb;
DMRGOrb++;
}
}
}
assert( DMRGOrb==Ham->getL() );
/*
cout << "The new orbital order in c2v:" << endl;
for ( int DMRGOrb=0; DMRGOrb<Ham->getL()-1; DMRGOrb++ ){
cout << f2[DMRGOrb] << ", ";
}
cout << f2[Ham->getL()-1] << endl;
*/
}
}
void CheMPS2::Problem::setup_reorder_custom(int * dmrg2ham){
if (bReorder){
delete [] f1;
delete [] f2;
bReorder = false;
}
bReorder = true;
f1 = new int[Ham->getL()]; // Is going to be the inverse of dmrg2ham
f2 = new int[Ham->getL()]; // Is going to be dmrg2ham copied
// Set f1 entries negative to check all elements set
for ( int ham_orb = 0; ham_orb < Ham->getL(); ham_orb++ ){ f1[ ham_orb ] = -2; }
for ( int dmrg_orb = 0; dmrg_orb < Ham->getL(); dmrg_orb++ ){
assert( dmrg2ham[ dmrg_orb ] >= 0 );
assert( dmrg2ham[ dmrg_orb ] < Ham->getL() );
f2[ dmrg_orb ] = dmrg2ham[ dmrg_orb ];
f1[ dmrg2ham[ dmrg_orb ] ] = dmrg_orb;
}
// Check all elements f1 set
for ( int ham_orb = 0; ham_orb < Ham->getL(); ham_orb++ ){ assert( f1[ ham_orb ] >= 0 ); }
}
void CheMPS2::Problem::setup_reorder_dinfh(int * docc, const double sp_threshold){
assert( gSy() == 7 ); // Only for d2h of course
const int num_irreps = 8;
const int irrep_ag = 0;
const int irrep_b1g = 1;
const int irrep_b2g = 2;
const int irrep_b3g = 3;
const int irrep_au = 4;
const int irrep_b1u = 5;
const int irrep_b2u = 6;
const int irrep_b3u = 7;
double * sp_energies = new double[ Ham->getL() ];
int * dmrg2ham = new int[ Ham->getL() ];
int * partners = new int[ Ham->getL() ];
// Get the single particle energies
for ( int ham_orb = 0; ham_orb < Ham->getL(); ham_orb++ ){
double value = Ham->getTmat( ham_orb, ham_orb );
for ( int irrep = 0; irrep < num_irreps; irrep++ ){
int counter = 0;
for ( int frozen_orb = 0; frozen_orb < Ham->getL(); frozen_orb++ ){
if ( Ham->getOrbitalIrrep( frozen_orb ) == irrep ){
if ( counter < docc[ irrep ] ){
value += 2 * Ham->getVmat( ham_orb, frozen_orb, ham_orb, frozen_orb )
- Ham->getVmat( ham_orb, ham_orb, frozen_orb, frozen_orb );
}
counter += 1;
}
}
}
sp_energies[ ham_orb ] = value;
}
// To check that they have been set, put the partners to a negative value.
for ( int cnt = 0; cnt < Ham->getL(); cnt++ ){ partners[ cnt ] = -2; }
int dmrg_orb = 0;
// Copy the b1g ( Delta_g ) orbitals
for ( int ham_orb = Ham->getL() - 1; ham_orb >= 0; ham_orb-- ){
if ( Ham->getOrbitalIrrep( ham_orb ) == irrep_b1g ){
dmrg2ham[ dmrg_orb ] = ham_orb;
for ( int partner_orb = 0; partner_orb < Ham->getL(); partner_orb++ ){
if ( Ham->getOrbitalIrrep( partner_orb ) == irrep_ag ){
if ( fabs( sp_energies[ ham_orb ] - sp_energies[ partner_orb ] ) < sp_threshold ){
partners[ dmrg_orb ] = partner_orb;
}
}
}
dmrg_orb++;
}
}
// Copy the au ( Delta_u ) orbitals
for ( int ham_orb = 0; ham_orb < Ham->getL(); ham_orb++ ){
if ( Ham->getOrbitalIrrep( ham_orb ) == irrep_au ){
dmrg2ham[ dmrg_orb ] = ham_orb;
for ( int partner_orb = 0; partner_orb < Ham->getL(); partner_orb++ ){
if ( Ham->getOrbitalIrrep( partner_orb ) == irrep_b1u ){
if ( fabs( sp_energies[ ham_orb ] - sp_energies[ partner_orb ] ) < sp_threshold ){
partners[ dmrg_orb ] = partner_orb;
}
}
}
dmrg_orb++;
}
}
const int num_delta_ug = dmrg_orb;
assert( (num_delta_ug % 2) == 0 );
// Copy the partner orbitals
for ( int cnt = 0; cnt < num_delta_ug; cnt++ ){
assert( partners[ cnt ] >= 0 ); // Check that each one found a partner
dmrg2ham[ dmrg_orb ] = partners[ cnt ];
dmrg_orb++;
}
// Copy the remaining ag orbitals
for ( int ham_orb = Ham->getL() - 1; ham_orb >= 0; ham_orb-- ){
if ( Ham->getOrbitalIrrep( ham_orb ) == irrep_ag ){
bool is_a_partner = false;
for ( int cnt = 0; cnt < num_delta_ug; cnt++ ){
if ( ham_orb == partners[ cnt ] ){ is_a_partner = true; }
}
if ( is_a_partner == false ){
dmrg2ham[ dmrg_orb ] = ham_orb;
dmrg_orb++;
}
}
}
// Copy the remaining b1u orbitals
for ( int ham_orb = 0; ham_orb < Ham->getL(); ham_orb++ ){
if ( Ham->getOrbitalIrrep( ham_orb ) == irrep_b1u ){
bool is_a_partner = false;
for ( int cnt = 0; cnt < num_delta_ug; cnt++ ){
if ( ham_orb == partners[ cnt ] ){ is_a_partner = true; }
}
if ( is_a_partner == false ){
dmrg2ham[ dmrg_orb ] = ham_orb;
dmrg_orb++;
}
}
}
// Copy the b3u ( Pi_u, pi_x ) orbitals
for ( int ham_orb = Ham->getL() - 1; ham_orb >= 0; ham_orb-- ){
if ( Ham->getOrbitalIrrep( ham_orb ) == irrep_b3u ){
dmrg2ham[ dmrg_orb ] = ham_orb;
dmrg_orb++;
}
}
// Copy the b2g ( Pi_g, pi_x^* ) orbitals
for ( int ham_orb = 0; ham_orb < Ham->getL(); ham_orb++ ){
if ( Ham->getOrbitalIrrep( ham_orb ) == irrep_b2g ){
dmrg2ham[ dmrg_orb ] = ham_orb;
dmrg_orb++;
}
}
// Copy the b2u ( Pi_u, pi_y ) orbitals
for ( int ham_orb = Ham->getL() - 1; ham_orb >= 0; ham_orb-- ){
if ( Ham->getOrbitalIrrep( ham_orb ) == irrep_b2u ){
dmrg2ham[ dmrg_orb ] = ham_orb;
dmrg_orb++;
}
}
// Copy the b3g ( Pi_g, pi_y^* ) orbitals
for ( int ham_orb = 0; ham_orb < Ham->getL(); ham_orb++ ){
if ( Ham->getOrbitalIrrep( ham_orb ) == irrep_b3g ){
dmrg2ham[ dmrg_orb ] = ham_orb;
dmrg_orb++;
}
}
assert( dmrg_orb == Ham->getL() );
setup_reorder_custom( dmrg2ham );
#ifdef CHEMPS2_MPI_COMPILATION
if ( MPIchemps2::mpi_rank() == MPI_CHEMPS2_MASTER )
#endif
{
cout << "Reordered the orbitals according to d(infinity)h:" << endl;
Irreps myIrreps( gSy() );
for ( dmrg_orb = 0; dmrg_orb < Ham->getL(); dmrg_orb++ ){
const int ham_orb = dmrg2ham[ dmrg_orb ];
cout << " DMRG orb " << dmrg_orb << " [" << myIrreps.getIrrepName(Ham->getOrbitalIrrep( ham_orb )) << "] has SP energy = " << sp_energies[ ham_orb ] << endl;
}
}
delete [] dmrg2ham;
delete [] partners;
delete [] sp_energies;
}
int CheMPS2::Problem::gIrrep(const int nOrb) const{
if (!bReorder){
return Ham->getOrbitalIrrep(nOrb);
}
return Ham->getOrbitalIrrep(f2[nOrb]);
}
bool CheMPS2::Problem::gReorder() const{ return bReorder; }
int CheMPS2::Problem::gf1(const int HamOrb) const{ return (bReorder)?f1[HamOrb]:-1; }
int CheMPS2::Problem::gf2(const int DMRGOrb) const{ return (bReorder)?f2[DMRGOrb]:-1; }
double CheMPS2::Problem::gMxElement(const int alpha, const int beta, const int gamma, const int delta) const{
return mx_elem[ alpha + L * ( beta + L * ( gamma + L * delta ) ) ];
}
void CheMPS2::Problem::setMxElement(const int alpha, const int beta, const int gamma, const int delta, const double value){
mx_elem[ alpha + L * ( beta + L * ( gamma + L * delta ) ) ] = value;
}
void CheMPS2::Problem::construct_mxelem(){
if ( mx_elem == NULL ){ mx_elem = new double[ L*L*L*L ]; }
const double prefact = 1.0/(N-1);
for (int orb1 = 0; orb1 < L; orb1++){
const int map1 = (( !bReorder ) ? orb1 : f2[ orb1 ]);
for (int orb2 = 0; orb2 < L; orb2++){
const int map2 = (( !bReorder ) ? orb2 : f2[ orb2 ]);
for (int orb3 = 0; orb3 < L; orb3++){
const int map3 = (( !bReorder ) ? orb3 : f2[ orb3 ]);
for (int orb4 = 0; orb4 < L; orb4++){
const int map4 = (( !bReorder ) ? orb4 : f2[ orb4 ]);
setMxElement( orb1, orb2, orb3, orb4, Ham->getVmat(map1,map2,map3,map4)
+ prefact*((orb1==orb3)?Ham->getTmat(map2,map4):0)
+ prefact*((orb2==orb4)?Ham->getTmat(map1,map3):0) );
}
}
}
}
}
bool CheMPS2::Problem::checkConsistency() const{
Irreps SymmInfo(gSy());
if ((gIrrep()<0) || (gIrrep()>=SymmInfo.getNumberOfIrreps())){
cout << "Problem::Problem() : Irrep out of bound : Irrep = " << gIrrep() << endl;
return false;
}
if (gTwoS()<0){
cout << "Problem::checkConsistency() : TwoS = " << gTwoS() << endl;
return false;
}
if (gN()<0){
cout << "Problem::checkConsistency() : N = " << gN() << endl;
return false;
}
if (gL()<0){
cout << "Problem::checkConsistency() : L = " << gL() << endl;
return false;
}
if (gN()>2*gL()){
cout << "Problem::checkConsistency() : N > 2*L ; N = " << gN() << " and L = " << gL() << endl;
return false;
}
if ( (gN()%2) != (gTwoS()%2) ){
cout << "Problem::checkConsistency() : N%2 != TwoS%2 ; N = " << gN() << " and TwoS = " << gTwoS() << endl;
return false;
}
if ( gTwoS() > gL() - abs(gN() - gL()) ){
cout << "Problem::checkConsistency() : TwoS > L - |N-L| ; N = " << gN() << " and TwoS = " << gTwoS() << " and L = " << gL() << endl;
return false;
}
return true;
}
bool CheMPS2::Problem::check_rohf_occ( int * occupancies ){
int sum_n__tot = 0;
int sum_2s_tot = 0;
int sum_i__tot = 0;
//Irreps SymmInfo(gSy());
for ( int site = 0; site < gL(); site++ ){
//cout << "Site " << site << " has irrep psi4 = " << gIrrep( site ) << " = " << SymmInfo.getIrrepName( gIrrep( site ) ) << endl;
//cout << "Site " << site << " has occupancy = " << occupancies[ site ] << endl;
if (( occupancies[ site ] < 0 ) || ( occupancies[ site ] > 2 )){
cout << "Problem::check_rohf_occ() : occupancies[ " << site << " ] = " << occupancies[ site ] << " and should be 0, 1 or 2." << endl;
return false;
}
sum_n__tot += occupancies[ site ];
if ( occupancies[ site ] == 1 ){
sum_2s_tot += 1;
sum_i__tot = Irreps::directProd( sum_i__tot, gIrrep( site ) );
}
}
if (( sum_n__tot != gN() ) || ( sum_2s_tot != gTwoS() ) || ( sum_i__tot != gIrrep() )){
cout << "Problem::check_rohf_occ() : occupancies corresponds to ( N, 2S, I ) = ( " << sum_n__tot << ", " << sum_2s_tot << ", " << sum_i__tot << " ), while the DMRG targeted sector is ( N, 2S, I ) = ( " << gN() << ", " << gTwoS() << ", " << gIrrep() << " )." << endl;
return false;
}
return true;
}
|