File: Sobject.cpp

package info (click to toggle)
chemps2 1.8.12-5
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 5,432 kB
  • sloc: cpp: 38,521; python: 1,116; f90: 215; makefile: 45; sh: 23
file content (661 lines) | stat: -rw-r--r-- 28,638 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
/*
   CheMPS2: a spin-adapted implementation of DMRG for ab initio quantum chemistry
   Copyright (C) 2013-2018 Sebastian Wouters

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License along
   with this program; if not, write to the Free Software Foundation, Inc.,
   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/

#include <math.h>
#include <stdlib.h>
#include <algorithm>
#include <assert.h>

#include "Sobject.h"
#include "TensorT.h"
#include "SyBookkeeper.h"
#include "Lapack.h"
#include "MPIchemps2.h"
#include "Wigner.h"
#include "Special.h"

using std::min;
using std::max;

CheMPS2::Sobject::Sobject( const int index, SyBookkeeper * denBK ){

   this->index = index;
   this->denBK = denBK;
   Ilocal1 = denBK->gIrrep( index     );
   Ilocal2 = denBK->gIrrep( index + 1 );

   nKappa = 0;

   for ( int NL = denBK->gNmin( index ); NL <= denBK->gNmax( index ); NL++ ){
      for ( int TwoSL = denBK->gTwoSmin( index, NL ); TwoSL <= denBK->gTwoSmax( index, NL ); TwoSL += 2 ){
         for ( int IL = 0; IL < denBK->getNumberOfIrreps(); IL++ ){
            const int dimL = denBK->gCurrentDim( index, NL, TwoSL, IL );
            if ( dimL > 0 ){
               for ( int N1 = 0; N1 <= 2; N1++ ){
                  for ( int N2 = 0; N2 <= 2; N2++ ){
                     const int NR = NL + N1 + N2;
                     const int IM = (( N1 == 1 ) ? Irreps::directProd( IL, Ilocal1 ) : IL );
                     const int IR = (( N2 == 1 ) ? Irreps::directProd( IM, Ilocal2 ) : IM );
                     const int TwoJmin = ( N1 + N2 ) % 2;
                     const int TwoJmax = ((( N1 == 1 ) && ( N2 == 1 )) ? 2 : TwoJmin );
                     for ( int TwoJ = TwoJmin; TwoJ <= TwoJmax; TwoJ += 2 ){
                        for ( int TwoSR = TwoSL - TwoJ; TwoSR <= TwoSL + TwoJ; TwoSR += 2 ){
                           if ( TwoSR >= 0 ){
                              const int dimR = denBK->gCurrentDim( index + 2, NR, TwoSR, IR );
                              if ( dimR > 0 ){
                                 nKappa++;
                              }
                           }
                        }
                     }
                  }
               }
            }
         }
      }
   }

   sectorNL    = new int[ nKappa ];
   sectorTwoSL = new int[ nKappa ];
   sectorIL    = new int[ nKappa ];
   sectorN1    = new int[ nKappa ];
   sectorN2    = new int[ nKappa ];
   sectorTwoJ  = new int[ nKappa ];
   sectorNR    = new int[ nKappa ];
   sectorTwoSR = new int[ nKappa ];
   sectorIR    = new int[ nKappa ];
   kappa2index = new int[ nKappa + 1 ];
   kappa2index[ 0 ] = 0;

   nKappa = 0;

   for ( int NL = denBK->gNmin( index ); NL <= denBK->gNmax( index ); NL++ ){
      for ( int TwoSL = denBK->gTwoSmin( index, NL ); TwoSL <= denBK->gTwoSmax( index, NL ); TwoSL += 2 ){
         for ( int IL = 0; IL < denBK->getNumberOfIrreps(); IL++ ){
            const int dimL = denBK->gCurrentDim( index, NL, TwoSL, IL );
            if ( dimL > 0 ){
               for ( int N1 = 0; N1 <= 2; N1++ ){
                  for ( int N2 = 0; N2 <= 2; N2++ ){
                     const int NR = NL + N1 + N2;
                     const int IM = (( N1 == 1 ) ? Irreps::directProd( IL, Ilocal1 ) : IL );
                     const int IR = (( N2 == 1 ) ? Irreps::directProd( IM, Ilocal2 ) : IM );
                     const int TwoJmin = ( N1 + N2 ) % 2;
                     const int TwoJmax = ((( N1 == 1 ) && ( N2 == 1 )) ? 2 : TwoJmin );
                     for ( int TwoJ = TwoJmin; TwoJ <= TwoJmax; TwoJ += 2 ){
                        for ( int TwoSR = TwoSL - TwoJ; TwoSR <= TwoSL + TwoJ; TwoSR += 2 ){
                           if ( TwoSR >= 0 ){
                              const int dimR = denBK->gCurrentDim( index + 2, NR, TwoSR, IR );
                              if ( dimR > 0 ){
                                 sectorNL   [ nKappa ] = NL;
                                 sectorTwoSL[ nKappa ] = TwoSL;
                                 sectorIL   [ nKappa ] = IL;
                                 sectorN1   [ nKappa ] = N1;
                                 sectorN2   [ nKappa ] = N2;
                                 sectorTwoJ [ nKappa ] = TwoJ;
                                 sectorNR   [ nKappa ] = NR;
                                 sectorTwoSR[ nKappa ] = TwoSR;
                                 sectorIR   [ nKappa ] = IR;
                                 nKappa++;
                                 kappa2index[ nKappa ] = kappa2index[ nKappa - 1 ] + dimL * dimR;
                              }
                           }
                        }
                     }
                  }
               }
            }
         }
      }
   }

   storage = new double[ kappa2index[ nKappa ] ];

   reorder = new int[ nKappa ];
   for ( int cnt = 0; cnt < nKappa; cnt++ ){ reorder[ cnt ] = cnt; }
   bool sorted = false;
   while ( sorted == false ){ //Bubble sort so that blocksize(reorder[i]) >= blocksize(reorder[i+1]), with blocksize(k) = kappa2index[k+1]-kappa2index[k]
      sorted = true;
      for ( int cnt = 0; cnt < nKappa - 1; cnt++ ){
         const int index1 = reorder[ cnt ];
         const int index2 = reorder[ cnt + 1 ];
         const int size1  = kappa2index[ index1 + 1 ] - kappa2index[ index1 ];
         const int size2  = kappa2index[ index2 + 1 ] - kappa2index[ index2 ];
         if ( size1 < size2 ){
            sorted = false;
            reorder[ cnt ]     = index2;
            reorder[ cnt + 1 ] = index1;
         }
      }
   }

}

CheMPS2::Sobject::~Sobject(){

   delete [] sectorNL;
   delete [] sectorTwoSL;
   delete [] sectorIL;
   delete [] sectorN1;
   delete [] sectorN2;
   delete [] sectorTwoJ;
   delete [] sectorNR;
   delete [] sectorTwoSR;
   delete [] sectorIR;
   delete [] kappa2index;
   delete [] storage;
   delete [] reorder;

}

int CheMPS2::Sobject::gNKappa() const { return nKappa; }

double * CheMPS2::Sobject::gStorage() { return storage; }

int CheMPS2::Sobject::gReorder( const int ikappa ) const{ return reorder[ ikappa ]; }

int CheMPS2::Sobject::gKappa( const int NL, const int TwoSL, const int IL, const int N1, const int N2, const int TwoJ, const int NR, const int TwoSR, const int IR ) const{

   for ( int ikappa = 0; ikappa < nKappa; ikappa++ ){
      if (( sectorNL   [ ikappa ] == NL    ) &&
          ( sectorTwoSL[ ikappa ] == TwoSL ) &&
          ( sectorIL   [ ikappa ] == IL    ) &&
          ( sectorN1   [ ikappa ] == N1    ) &&
          ( sectorN2   [ ikappa ] == N2    ) &&
          ( sectorTwoJ [ ikappa ] == TwoJ  ) &&
          ( sectorNR   [ ikappa ] == NR    ) &&
          ( sectorTwoSR[ ikappa ] == TwoSR ) &&
          ( sectorIR   [ ikappa ] == IR    )){ return ikappa; }
   }

   return -1;

}

int CheMPS2::Sobject::gKappa2index( const int kappa ) const{ return kappa2index[ kappa ]; }

double * CheMPS2::Sobject::gStorage( const int NL, const int TwoSL, const int IL, const int N1, const int N2, const int TwoJ, const int NR, const int TwoSR, const int IR ){

   const int kappa = gKappa( NL, TwoSL, IL, N1, N2, TwoJ, NR, TwoSR, IR );
   if ( kappa == -1 ){ return NULL; }
   return storage + kappa2index[ kappa ];

}

int CheMPS2::Sobject::gIndex() const { return index; }

int CheMPS2::Sobject::gNL   ( const int ikappa ) const{ return sectorNL   [ ikappa ]; }
int CheMPS2::Sobject::gTwoSL( const int ikappa ) const{ return sectorTwoSL[ ikappa ]; }
int CheMPS2::Sobject::gIL   ( const int ikappa ) const{ return sectorIL   [ ikappa ]; }
int CheMPS2::Sobject::gN1   ( const int ikappa ) const{ return sectorN1   [ ikappa ]; }
int CheMPS2::Sobject::gN2   ( const int ikappa ) const{ return sectorN2   [ ikappa ]; }
int CheMPS2::Sobject::gTwoJ ( const int ikappa ) const{ return sectorTwoJ [ ikappa ]; }
int CheMPS2::Sobject::gNR   ( const int ikappa ) const{ return sectorNR   [ ikappa ]; }
int CheMPS2::Sobject::gTwoSR( const int ikappa ) const{ return sectorTwoSR[ ikappa ]; }
int CheMPS2::Sobject::gIR   ( const int ikappa ) const{ return sectorIR   [ ikappa ]; }

void CheMPS2::Sobject::Join( TensorT * Tleft, TensorT * Tright ){

   #pragma omp parallel for schedule(dynamic)
   for ( int ikappa = 0; ikappa < nKappa; ikappa++ ){

      const int NL    = sectorNL   [ ikappa ];
      const int TwoSL = sectorTwoSL[ ikappa ];
      const int IL    = sectorIL   [ ikappa ];

      const int NR    = sectorNR   [ ikappa ];
      const int TwoSR = sectorTwoSR[ ikappa ];
      const int IR    = sectorIR   [ ikappa ];

      const int TwoJ  = sectorTwoJ [ ikappa ];
      const int N1    = sectorN1   [ ikappa ];
      const int N2    = sectorN2   [ ikappa ];
      const int TwoS1 = (( N1 == 1 ) ? 1 : 0 );
      const int TwoS2 = (( N2 == 1 ) ? 1 : 0 );
      const int fase  = Special::phase( TwoSL + TwoSR + TwoS1 + TwoS2 );

      // Clear block
      int dimL = denBK->gCurrentDim( index,     NL, TwoSL, IL ); // dimL > 0, checked at creation
      int dimR = denBK->gCurrentDim( index + 2, NR, TwoSR, IR ); // dimR > 0, checked at creation
      double * block_s = storage + kappa2index[ ikappa ];
      for ( int cnt = 0; cnt < dimL * dimR; cnt++ ){ block_s[ cnt ] = 0.0; }

      // Central symmetry sectors
      const int NM = NL + N1;
      const int IM = (( TwoS1 == 1 ) ? Irreps::directProd( IL, Ilocal1 ) : IL );
      const int TwoJMlower = max( abs( TwoSL - TwoS1 ), abs( TwoSR - TwoS2 ) );
      const int TwoJMupper = min(    ( TwoSL + TwoS1 ),    ( TwoSR + TwoS2 ) );
      for ( int TwoJM = TwoJMlower; TwoJM <= TwoJMupper; TwoJM += 2 ){
         int dimM = denBK->gCurrentDim( index + 1, NM, TwoJM, IM );
         if ( dimM > 0 ){
            double * block_left  = Tleft ->gStorage( NL, TwoSL, IL, NM, TwoJM, IM );
            double * block_right = Tright->gStorage( NM, TwoJM, IM, NR, TwoSR, IR );
            double prefactor = fase
                             * sqrt( 1.0 * ( TwoJ + 1 ) * ( TwoJM + 1 ) )
                             * Wigner::wigner6j( TwoSL, TwoSR, TwoJ, TwoS2, TwoS1, TwoJM );
            char notrans = 'N';
            double add = 1.0;
            dgemm_( &notrans, &notrans, &dimL, &dimR, &dimM, &prefactor, block_left, &dimL, block_right, &dimM, &add, block_s, &dimL );
         }
      }
   }

}

double CheMPS2::Sobject::Split( TensorT * Tleft, TensorT * Tright, const int virtualdimensionD, const bool movingright, const bool change ){

   #ifdef CHEMPS2_MPI_COMPILATION
   const bool am_i_master = ( MPIchemps2::mpi_rank() == MPI_CHEMPS2_MASTER );
   #endif

   // Get the number of central sectors
   int nCenterSectors = 0;
   for ( int NM = denBK->gNmin( index + 1 ); NM <= denBK->gNmax( index + 1 ); NM++ ){
      for ( int TwoSM = denBK->gTwoSmin( index + 1, NM ); TwoSM <= denBK->gTwoSmax( index + 1, NM ); TwoSM += 2 ){
         for ( int IM = 0; IM < denBK->getNumberOfIrreps(); IM++ ){
            const int dimM = denBK->gFCIdim( index + 1, NM, TwoSM, IM ); //FCIdim !! Whether possible hence.
            if ( dimM > 0 ){
               nCenterSectors++;
            }
         }
      }
   }

   // Get the labels of the central sectors
   int * SplitSectNM    = new int[ nCenterSectors ];
   int * SplitSectTwoJM = new int[ nCenterSectors ];
   int * SplitSectIM    = new int[ nCenterSectors ];
   nCenterSectors = 0;
   for ( int NM = denBK->gNmin( index + 1 ); NM <= denBK->gNmax( index + 1 ); NM++ ){
      for ( int TwoSM = denBK->gTwoSmin( index + 1, NM ); TwoSM <= denBK->gTwoSmax( index + 1, NM ); TwoSM += 2 ){
         for ( int IM = 0; IM < denBK->getNumberOfIrreps(); IM++ ){
            const int dimM = denBK->gFCIdim( index + 1, NM, TwoSM, IM ); //FCIdim !! Whether possible hence.
            if ( dimM > 0 ){
               SplitSectNM   [ nCenterSectors ] = NM;
               SplitSectTwoJM[ nCenterSectors ] = TwoSM;
               SplitSectIM   [ nCenterSectors ] = IM;
               nCenterSectors++;
            }
         }
      }
   }

   // Only MPI_CHEMPS2_MASTER performs SVD --> Allocate memory
   double ** Lambdas = NULL;
   double ** Us      = NULL;
   double ** VTs     = NULL;
   int * CenterDims  = NULL;
   int * DimLtotal   = NULL;
   int * DimRtotal   = NULL;

   #ifdef CHEMPS2_MPI_COMPILATION
   if ( am_i_master ){
   #endif

   Lambdas = new double*[ nCenterSectors ];
   Us      = new double*[ nCenterSectors ];
   VTs     = new double*[ nCenterSectors ];
   CenterDims  = new int[ nCenterSectors ];
   DimLtotal   = new int[ nCenterSectors ];
   DimRtotal   = new int[ nCenterSectors ];

   //PARALLEL
   #pragma omp parallel for schedule(dynamic)
   for ( int iCenter = 0; iCenter < nCenterSectors; iCenter++ ){

      //Determine left and right dimensions contributing to the center block iCenter
      DimLtotal[ iCenter ] = 0;
      for ( int NL = SplitSectNM[ iCenter ] - 2; NL <= SplitSectNM[ iCenter ]; NL++ ){
         const int TwoS1 = (( NL + 1 == SplitSectNM[ iCenter ] ) ? 1 : 0 );
         for ( int TwoSL = SplitSectTwoJM[ iCenter ] - TwoS1; TwoSL <= SplitSectTwoJM[ iCenter ] + TwoS1; TwoSL += 2 ){
            if ( TwoSL >= 0 ){
               const int IL = (( TwoS1 == 1 ) ? Irreps::directProd( Ilocal1, SplitSectIM[ iCenter ] ) : SplitSectIM[ iCenter ] );
               const int dimL = denBK->gCurrentDim( index, NL, TwoSL, IL );
               if ( dimL > 0 ){
                  DimLtotal[ iCenter ] += dimL;
               }
            }
         }
      }
      DimRtotal[ iCenter ] = 0;
      for ( int NR = SplitSectNM[ iCenter ]; NR <= SplitSectNM[ iCenter ] + 2; NR++ ){
         const int TwoS2 = (( NR == SplitSectNM[ iCenter ] + 1 ) ? 1 : 0 );
         for ( int TwoSR = SplitSectTwoJM[ iCenter ] - TwoS2; TwoSR <= SplitSectTwoJM[ iCenter ] + TwoS2; TwoSR += 2 ){
            if ( TwoSR >= 0 ){
               const int IR = (( TwoS2 == 1 ) ? Irreps::directProd( Ilocal2, SplitSectIM[ iCenter ] ) : SplitSectIM[ iCenter ] );
               const int dimR = denBK->gCurrentDim( index + 2, NR, TwoSR, IR );
               if ( dimR > 0 ){
                  DimRtotal[ iCenter ] += dimR;
               }
            }
         }
      }
      CenterDims[ iCenter ] = min( DimLtotal[ iCenter ], DimRtotal[ iCenter ] ); // CenterDims contains the min. amount

      //Allocate memory to copy the different parts of the S-object. Use prefactor sqrt((2jR+1)/(2jM+1) * (2jM+1) * (2j+1)) W6J (-1)^(jL+jR+s1+s2) and sum over j.
      if ( CenterDims[ iCenter ] > 0 ){

         // Only if CenterDims[ iCenter ] exists should you allocate the following three arrays
         Lambdas[ iCenter ] = new double[ CenterDims[ iCenter ] ];
              Us[ iCenter ] = new double[ CenterDims[ iCenter ] * DimLtotal[ iCenter ] ];
             VTs[ iCenter ] = new double[ CenterDims[ iCenter ] * DimRtotal[ iCenter ] ];

         const int memsize = DimLtotal[ iCenter ] * DimRtotal[ iCenter ];
         double * mem = new double[ memsize ];
         for ( int cnt = 0; cnt < memsize; cnt++ ){ mem[ cnt ] = 0.0; }

         int dimLtotal2 = 0;
         for ( int NL = SplitSectNM[ iCenter ] - 2; NL <= SplitSectNM[ iCenter ]; NL++ ){
            const int TwoS1 = (( NL + 1 == SplitSectNM[ iCenter ] ) ? 1 : 0 );
            for ( int TwoSL = SplitSectTwoJM[ iCenter ] - TwoS1; TwoSL <= SplitSectTwoJM[ iCenter ] + TwoS1; TwoSL += 2 ){
               if ( TwoSL >= 0 ){
                  const int IL = (( TwoS1 == 1 ) ? Irreps::directProd( Ilocal1, SplitSectIM[ iCenter ] ) : SplitSectIM[ iCenter ] );
                  const int dimL = denBK->gCurrentDim( index, NL, TwoSL, IL );
                  if ( dimL > 0 ){
                     int dimRtotal2 = 0;
                     for ( int NR = SplitSectNM[ iCenter ]; NR <= SplitSectNM[ iCenter ] + 2; NR++ ){
                        const int TwoS2 = (( NR == SplitSectNM[ iCenter ] + 1 ) ? 1 : 0 );
                        for ( int TwoSR = SplitSectTwoJM[ iCenter ] - TwoS2; TwoSR <= SplitSectTwoJM[ iCenter ] + TwoS2; TwoSR += 2 ){
                           if ( TwoSR >= 0 ){
                              const int IR = (( TwoS2 == 1 ) ? Irreps::directProd( Ilocal2, SplitSectIM[ iCenter ] ) : SplitSectIM[ iCenter ] );
                              const int dimR = denBK->gCurrentDim( index + 2, NR, TwoSR, IR );
                              if ( dimR > 0 ){
                                 // Loop over contributing TwoJ's
                                 const int fase = Special::phase( TwoSL + TwoSR + TwoS1 + TwoS2 );
                                 const int TwoJmin = max( abs( TwoSR - TwoSL ), abs( TwoS2 - TwoS1 ) );
                                 const int TwoJmax = min( TwoS1 + TwoS2, TwoSL + TwoSR );
                                 for ( int TwoJ = TwoJmin; TwoJ <= TwoJmax; TwoJ += 2 ){
                                    // Calc prefactor
                                    const double prefactor = fase
                                                           * sqrt( 1.0 * ( TwoJ + 1 ) * ( TwoSR + 1 ) )
                                                           * Wigner::wigner6j( TwoSL, TwoSR, TwoJ, TwoS2, TwoS1, SplitSectTwoJM[ iCenter ] );

                                    // Add them to mem --> += because several TwoJ
                                    double * Block = gStorage( NL, TwoSL, IL, SplitSectNM[ iCenter ] - NL, NR - SplitSectNM[ iCenter ], TwoJ, NR, TwoSR, IR );
                                    for ( int l = 0; l < dimL; l++ ){
                                       for ( int r = 0; r < dimR; r++ ){
                                          mem[ dimLtotal2 + l + DimLtotal[ iCenter ] * ( dimRtotal2 + r ) ] += prefactor * Block[ l + dimL * r ];
                                       }
                                    }
                                 }
                                 dimRtotal2 += dimR;
                              }
                           }
                        }
                     }
                     dimLtotal2 += dimL;
                  }
               }
            }
         }

         // Now mem contains sqrt((2jR+1)/(2jM+1)) * (TT)^{jM nM IM) --> SVD per central symmetry
         char jobz = 'S'; // M x min(M,N) in U and min(M,N) x N in VT
         int lwork = 3 * CenterDims[ iCenter ] + max( max( DimLtotal[ iCenter ], DimRtotal[ iCenter ] ), 4 * CenterDims[ iCenter ] * ( CenterDims[ iCenter ] + 1 ) );
         double * work = new double[ lwork ];
         int * iwork = new int[ 8 * CenterDims[ iCenter ] ];
         int info;

         // dgesdd is not thread-safe in every implementation ( intel MKL is safe, Atlas is not safe )
         #ifndef CHEMPS2_MKL
         #pragma omp critical
         #endif
         dgesdd_( &jobz, DimLtotal + iCenter, DimRtotal + iCenter, mem, DimLtotal + iCenter,
                  Lambdas[ iCenter ], Us[ iCenter ], DimLtotal + iCenter, VTs[ iCenter ], CenterDims + iCenter, work, &lwork, iwork, &info );

         delete [] work;
         delete [] iwork;
         delete [] mem;
      }
   }

   #ifdef CHEMPS2_MPI_COMPILATION
   }
   #endif

   double discardedWeight = 0.0; // Only if change==true; will the discardedWeight be meaningful and different from zero.
   int updateSectors = 0;
   int * NewDims = NULL;

   // If change: determine new virtual dimensions.
   #ifdef CHEMPS2_MPI_COMPILATION
   if (( change ) && ( am_i_master )){
   #else
   if ( change ){
   #endif

      NewDims = new int[ nCenterSectors ];
      // First determine the total number of singular values
      int totalDimSVD = 0;
      for ( int iCenter = 0; iCenter < nCenterSectors; iCenter++ ){
         NewDims[ iCenter ] = CenterDims[ iCenter ];
         totalDimSVD += NewDims[ iCenter ];
      }

      // If larger then the required virtualdimensionD, new virtual dimensions will be set in NewDims.
      if ( totalDimSVD > virtualdimensionD ){
         // Copy them all in 1 array
         double * values = new double[ totalDimSVD ];
         totalDimSVD = 0;
         int inc = 1;
         for ( int iCenter = 0; iCenter < nCenterSectors; iCenter++ ){
            if ( NewDims[ iCenter ] > 0 ){
               dcopy_( NewDims + iCenter, Lambdas[ iCenter ], &inc, values + totalDimSVD, &inc );
               totalDimSVD += NewDims[ iCenter ];
            }
         }

         // Sort them in decreasing order
         char ID = 'D';
         int info;
         dlasrt_( &ID, &totalDimSVD, values, &info ); // Quicksort

         // The D+1'th value becomes the lower bound Schmidt value. Every value smaller than or equal to the D+1'th value is thrown out (hence Dactual <= Ddesired).
         const double lowerBound = values[ virtualdimensionD ];
         for ( int iCenter = 0; iCenter < nCenterSectors; iCenter++ ){
            for ( int cnt = 0; cnt < NewDims[ iCenter ]; cnt++ ){
               if ( Lambdas[ iCenter ][ cnt ] <= lowerBound ){ NewDims[ iCenter ] = cnt; }
            }
         }

         // Discarded weight
         double totalSum = 0.0;
         double discardedSum = 0.0;
         for ( int iCenter = 0; iCenter < nCenterSectors; iCenter++ ){
            for ( int iLocal = 0; iLocal < CenterDims[ iCenter ]; iLocal++ ){
               double temp = ( SplitSectTwoJM[ iCenter ] + 1 ) * Lambdas[ iCenter ][ iLocal ] * Lambdas[ iCenter ][ iLocal ];
               totalSum += temp;
               if ( Lambdas[ iCenter ][ iLocal ] <= lowerBound ){ discardedSum += temp; }
            }
         }
         discardedWeight = discardedSum / totalSum;

         // Clean-up
         delete [] values;
      }

      // Check if there is a sector which differs
      updateSectors = 0;
      for ( int iCenter = 0; iCenter < nCenterSectors; iCenter++ ){
         const int MPSdim = denBK->gCurrentDim( index + 1, SplitSectNM[ iCenter ], SplitSectTwoJM[ iCenter ], SplitSectIM[ iCenter ] );
         if ( NewDims[ iCenter ] != MPSdim ){ updateSectors = 1; }
      }

   }

   #ifdef CHEMPS2_MPI_COMPILATION
   MPIchemps2::broadcast_array_int(    &updateSectors,   1, MPI_CHEMPS2_MASTER );
   MPIchemps2::broadcast_array_double( &discardedWeight, 1, MPI_CHEMPS2_MASTER );
   #endif

   if ( updateSectors == 1 ){

      #ifdef CHEMPS2_MPI_COMPILATION
      if ( NewDims == NULL ){ NewDims = new int[ nCenterSectors ]; }
      MPIchemps2::broadcast_array_int( NewDims, nCenterSectors, MPI_CHEMPS2_MASTER );
      #endif

      for ( int iCenter = 0; iCenter < nCenterSectors; iCenter++ ){
         denBK->SetDim( index + 1, SplitSectNM[ iCenter ], SplitSectTwoJM[ iCenter ], SplitSectIM[ iCenter ], NewDims[ iCenter ] );
      }
      Tleft ->Reset();
      Tright->Reset();

   }

   if ( NewDims != NULL ){ delete [] NewDims; }

   #ifdef CHEMPS2_MPI_COMPILATION
   if ( am_i_master ){
   #endif

   // Copy first dimM per central symmetry sector to the relevant parts
   #pragma omp parallel for schedule(dynamic)
   for ( int iCenter = 0; iCenter < nCenterSectors; iCenter++ ){
      const int dimM = denBK->gCurrentDim( index + 1, SplitSectNM[ iCenter ], SplitSectTwoJM[ iCenter ], SplitSectIM[ iCenter ] );
      if ( dimM > 0 ){
         // U-part: copy
         int dimLtotal2 = 0;
         for ( int NL = SplitSectNM[ iCenter ] - 2; NL <= SplitSectNM[ iCenter ]; NL++ ){
            const int TwoS1 = (( NL + 1 == SplitSectNM[ iCenter ] ) ? 1 : 0 );
            for ( int TwoSL = SplitSectTwoJM[ iCenter ] - TwoS1; TwoSL <= SplitSectTwoJM[ iCenter ] + TwoS1; TwoSL += 2 ){
               if ( TwoSL >= 0 ){
                  const int IL = (( TwoS1 == 1 ) ? Irreps::directProd( Ilocal1, SplitSectIM[ iCenter ] ) : SplitSectIM[ iCenter ] );
                  const int dimL = denBK->gCurrentDim( index, NL, TwoSL, IL );
                  if ( dimL > 0 ){
                     double * TleftBlock = Tleft->gStorage( NL, TwoSL, IL, SplitSectNM[ iCenter ], SplitSectTwoJM[ iCenter ], SplitSectIM[ iCenter ] );
                     const int dimension_limit_right = min( dimM, CenterDims[ iCenter ] );
                     for ( int r = 0; r < dimension_limit_right; r++ ){
                        const double factor = (( movingright ) ? 1.0 : Lambdas[ iCenter ][ r ] );
                        for ( int l = 0; l < dimL; l++ ){
                           TleftBlock[ l + dimL * r ] = factor * Us[ iCenter ][ dimLtotal2 + l + DimLtotal[ iCenter ] * r ];
                        }
                     }
                     for ( int r = dimension_limit_right; r < dimM; r++ ){
                        for ( int l = 0; l < dimL; l++ ){
                           TleftBlock[ l + dimL * r ] = 0.0;
                        }
                     }
                     dimLtotal2 += dimL;
                  }
               }
            }
         }

         // VT-part: copy
         int dimRtotal2 = 0;
         for ( int NR = SplitSectNM[ iCenter ]; NR <= SplitSectNM[ iCenter ] + 2; NR++ ){
            const int TwoS2 = (( NR == SplitSectNM[ iCenter ] + 1 ) ? 1 : 0 );
            for ( int TwoSR = SplitSectTwoJM[ iCenter ] - TwoS2; TwoSR <= SplitSectTwoJM[ iCenter ] + TwoS2; TwoSR += 2 ){
               if ( TwoSR >= 0 ){
                  const int IR = (( TwoS2 == 1 ) ? Irreps::directProd( Ilocal2, SplitSectIM[ iCenter ] ) : SplitSectIM[ iCenter ] );
                  const int dimR = denBK->gCurrentDim( index + 2, NR, TwoSR, IR );
                  if ( dimR > 0 ){
                     double * TrightBlock = Tright->gStorage( SplitSectNM[ iCenter ], SplitSectTwoJM[ iCenter ], SplitSectIM[ iCenter ], NR, TwoSR, IR );
                     const int dimension_limit_left = min( dimM, CenterDims[ iCenter ] );
                     const double factor_base = sqrt( ( SplitSectTwoJM[ iCenter ] + 1.0 ) / ( TwoSR + 1 ) );
                     for ( int l = 0; l < dimension_limit_left; l++ ){
                        const double factor = factor_base * (( movingright ) ? Lambdas[ iCenter ][ l ] : 1.0 );
                        for ( int r = 0; r < dimR; r++ ){
                           TrightBlock[ l + dimM * r ] = factor * VTs[ iCenter ][ l + CenterDims[ iCenter ] * ( dimRtotal2 + r ) ];
                        }
                     }
                     for ( int r = 0; r < dimR; r++ ){
                        for ( int l = dimension_limit_left; l < dimM; l++ ){
                           TrightBlock[ l + dimM * r ] = 0.0;
                        }
                     }
                     dimRtotal2 += dimR;
                  }
               }
            }
         }
      }
   }

   #ifdef CHEMPS2_MPI_COMPILATION
   }
   MPIchemps2::broadcast_tensor( Tleft,  MPI_CHEMPS2_MASTER );
   MPIchemps2::broadcast_tensor( Tright, MPI_CHEMPS2_MASTER );
   #endif

   // Clean up
   delete [] SplitSectNM;
   delete [] SplitSectTwoJM;
   delete [] SplitSectIM;
   #ifdef CHEMPS2_MPI_COMPILATION
   if ( am_i_master )
   #endif
   {
      for ( int iCenter = 0; iCenter < nCenterSectors; iCenter++ ){
         if ( CenterDims[ iCenter ] > 0 ){
            delete []      Us[ iCenter ];
            delete [] Lambdas[ iCenter ];
            delete []     VTs[ iCenter ];
         }
      }
      delete [] Us;
      delete [] Lambdas;
      delete [] VTs;
      delete [] CenterDims;
      delete [] DimLtotal;
      delete [] DimRtotal;
   }

   return discardedWeight;

}

void CheMPS2::Sobject::prog2symm(){

   #pragma omp parallel for schedule(dynamic)
   for ( int ikappa = 0; ikappa < nKappa; ikappa++ ){

      int dim = kappa2index[ ikappa + 1 ] - kappa2index[ ikappa ];
      double alpha = sqrt( sectorTwoSR[ ikappa ] + 1.0 );
      int inc = 1;
      dscal_( &dim, &alpha, storage + kappa2index[ ikappa ], &inc );

   }

}

void CheMPS2::Sobject::symm2prog(){

   #pragma omp parallel for schedule(dynamic)
   for ( int ikappa = 0; ikappa < nKappa; ikappa++ ){

      int dim = kappa2index[ ikappa + 1 ] - kappa2index[ ikappa ];
      double alpha = 1.0 / sqrt( sectorTwoSR[ ikappa ] + 1.0 );
      int inc = 1;
      dscal_( &dim, &alpha, storage + kappa2index[ ikappa ], &inc );

   }

}

void CheMPS2::Sobject::addNoise( const double NoiseLevel ){
   
   for ( int cnt = 0; cnt < gKappa2index( gNKappa() ); cnt++ ){
      const double RN = ( ( double ) rand() ) / RAND_MAX - 0.5;
      gStorage()[ cnt ] += RN * NoiseLevel;
   }

}