1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
|
/*
CheMPS2: a spin-adapted implementation of DMRG for ab initio quantum chemistry
Copyright (C) 2013-2018 Sebastian Wouters
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <algorithm>
#include <stdlib.h>
#include <assert.h>
#include <math.h>
#include "SyBookkeeper.h"
#include "Irreps.h"
#include "Options.h"
CheMPS2::SyBookkeeper::SyBookkeeper( const Problem * Prob, const int D ){
this->Prob = Prob;
Irreps temp( Prob->gSy() );
this->num_irreps = temp.getNumberOfIrreps();
// Allocate the arrays
allocate_arrays();
// Fill FCIdim
fillFCIdim();
// Copy FCIdim to CURdim
CopyDim( FCIdim, CURdim );
// Scale the CURdim
ScaleCURdim( D, 1, gL() - 1 );
assert( IsPossible() );
}
CheMPS2::SyBookkeeper::SyBookkeeper( const SyBookkeeper & tocopy ){
this->Prob = tocopy.gProb();
Irreps temp( Prob->gSy() );
this->num_irreps = temp.getNumberOfIrreps();
// Allocate the arrays
allocate_arrays();
// Fill FCIdim
fillFCIdim();
// Copy the CURdim
for ( int boundary = 0; boundary <= gL(); boundary++ ){
for ( int N = gNmin( boundary ); N <= gNmax( boundary ); N++ ){
for ( int TwoS = gTwoSmin( boundary, N ); TwoS <= gTwoSmax( boundary, N ); TwoS += 2 ){
for ( int irrep = 0; irrep < num_irreps; irrep++ ){
CURdim[ boundary ][ N - gNmin( boundary ) ][ ( TwoS - gTwoSmin( boundary, N ) ) / 2 ][ irrep ] = tocopy.gCurrentDim( boundary, N, TwoS, irrep );
}
}
}
}
}
void CheMPS2::SyBookkeeper::allocate_arrays(){
// Set the min and max particle number and spin
Nmin = new int[ gL() + 1 ];
Nmax = new int[ gL() + 1 ];
TwoSmin = new int*[ gL() + 1 ];
TwoSmax = new int*[ gL() + 1 ];
for ( int boundary = 0; boundary <= gL(); boundary++ ){
Nmin[ boundary ] = std::max( std::max( 0, gN() + 2 * ( boundary - gL() ) ), boundary - gL() + ( gN() + gTwoS() ) / 2 );
Nmax[ boundary ] = std::min( std::min( 2 * boundary, gN() ), boundary + ( gN() - gTwoS() ) / 2 );
TwoSmin[ boundary ] = new int[ Nmax[ boundary ] - Nmin[ boundary ] + 1 ];
TwoSmax[ boundary ] = new int[ Nmax[ boundary ] - Nmin[ boundary ] + 1 ];
for ( int N = Nmin[ boundary ]; N <= Nmax[ boundary ]; N++ ){
const int temporary = gL() - boundary - abs( gN() - N - gL() + boundary );
TwoSmin[ boundary ][ N - Nmin[ boundary ] ] = std::max( N % 2, gTwoS() - temporary );
TwoSmax[ boundary ][ N - Nmin[ boundary ] ] = std::min( boundary - abs( boundary - N ), gTwoS() + temporary );
}
}
// FCIdim & CURdim memory allocation
FCIdim = new int***[ gL() + 1 ];
CURdim = new int***[ gL() + 1 ];
for ( int boundary = 0; boundary <= gL(); boundary++ ){
FCIdim[ boundary ] = new int**[ gNmax( boundary ) - gNmin( boundary ) + 1 ];
CURdim[ boundary ] = new int**[ gNmax( boundary ) - gNmin( boundary ) + 1 ];
for ( int N = gNmin( boundary ); N <= gNmax( boundary ); N++ ){
FCIdim[ boundary ][ N - gNmin( boundary ) ] = new int*[ ( gTwoSmax( boundary, N ) - gTwoSmin( boundary, N ) ) / 2 + 1 ];
CURdim[ boundary ][ N - gNmin( boundary ) ] = new int*[ ( gTwoSmax( boundary, N ) - gTwoSmin( boundary, N ) ) / 2 + 1 ];
for ( int TwoS = gTwoSmin( boundary, N ); TwoS <= gTwoSmax( boundary, N ); TwoS += 2 ){
FCIdim[ boundary ][ N - gNmin( boundary ) ][ ( TwoS - gTwoSmin( boundary, N ) ) / 2 ] = new int[ num_irreps ];
CURdim[ boundary ][ N - gNmin( boundary ) ][ ( TwoS - gTwoSmin( boundary, N ) ) / 2 ] = new int[ num_irreps ];
}
}
}
}
CheMPS2::SyBookkeeper::~SyBookkeeper(){
for ( int boundary = 0; boundary <= gL(); boundary++ ){
for ( int N = gNmin( boundary ); N <= gNmax( boundary ); N++ ){
for ( int TwoS = gTwoSmin( boundary, N ); TwoS <= gTwoSmax( boundary, N ); TwoS += 2 ){
delete [] FCIdim[ boundary ][ N - gNmin( boundary ) ][ ( TwoS - gTwoSmin( boundary, N ) ) / 2 ];
delete [] CURdim[ boundary ][ N - gNmin( boundary ) ][ ( TwoS - gTwoSmin( boundary, N ) ) / 2 ];
}
delete [] FCIdim[ boundary ][ N - gNmin( boundary ) ];
delete [] CURdim[ boundary ][ N - gNmin( boundary ) ];
}
delete [] FCIdim[ boundary ];
delete [] CURdim[ boundary ];
}
delete [] FCIdim;
delete [] CURdim;
for ( int boundary = 0; boundary <= gL(); boundary++ ){
delete [] TwoSmin[ boundary ];
delete [] TwoSmax[ boundary ];
}
delete [] TwoSmin;
delete [] TwoSmax;
delete [] Nmin;
delete [] Nmax;
}
const CheMPS2::Problem * CheMPS2::SyBookkeeper::gProb() const{ return Prob; }
int CheMPS2::SyBookkeeper::gL() const{ return Prob->gL(); }
int CheMPS2::SyBookkeeper::gIrrep( const int orbital ) const{ return Prob->gIrrep( orbital ); }
int CheMPS2::SyBookkeeper::gTwoS() const{ return Prob->gTwoS(); }
int CheMPS2::SyBookkeeper::gN() const{ return Prob->gN(); }
int CheMPS2::SyBookkeeper::gIrrep() const{ return Prob->gIrrep(); }
int CheMPS2::SyBookkeeper::getNumberOfIrreps() const{ return num_irreps; }
int CheMPS2::SyBookkeeper::gNmin( const int boundary ) const{ return Nmin[ boundary ]; }
int CheMPS2::SyBookkeeper::gNmax( const int boundary ) const{ return Nmax[ boundary ]; }
int CheMPS2::SyBookkeeper::gTwoSmin( const int boundary, const int N) const{ return TwoSmin[ boundary ][ N - Nmin[ boundary ] ]; }
int CheMPS2::SyBookkeeper::gTwoSmax( const int boundary, const int N) const{ return TwoSmax[ boundary ][ N - Nmin[ boundary ] ]; }
int CheMPS2::SyBookkeeper::gFCIdim( const int boundary, const int N, const int TwoS, const int irrep ) const{ return gDimPrivate( FCIdim, boundary, N, TwoS, irrep ); }
int CheMPS2::SyBookkeeper::gCurrentDim( const int boundary, const int N, const int TwoS, const int irrep ) const{ return gDimPrivate( CURdim, boundary, N, TwoS, irrep ); }
void CheMPS2::SyBookkeeper::SetDim( const int boundary, const int N, const int TwoS, const int irrep, const int value ){
if ( gFCIdim( boundary, N, TwoS, irrep ) != 0 ){
CURdim[ boundary ][ N - gNmin( boundary ) ][ ( TwoS - gTwoSmin( boundary, N ) ) / 2 ][ irrep ] = value;
}
}
void CheMPS2::SyBookkeeper::fillFCIdim(){
// On the left-hand side only the trivial symmetry sector is allowed
for ( int irrep = 0; irrep < num_irreps; irrep++ ){ FCIdim[ 0 ][ 0 ][ 0 ][ irrep ] = 0; }
FCIdim[ 0 ][ 0 ][ 0 ][ 0 ] = 1;
// Fill boundaries 1 to L from left to right
fill_fci_dim_right( FCIdim, 1, gL() );
// Remember the FCI virtual dimension at the RHS
const int rhs = FCIdim[ gL() ][ 0 ][ 0 ][ gIrrep() ];
// On the right-hand side only the targeted symmetry sector is allowed
for ( int irrep = 0; irrep < num_irreps; irrep++ ){ FCIdim[ gL() ][ 0 ][ 0 ][ irrep ] = 0; }
FCIdim[ gL() ][ 0 ][ 0 ][ gIrrep() ] = std::min( 1, rhs );
// Fill boundarties 0 to L - 1 from right to left
fill_fci_dim_left( FCIdim, 0, gL() - 1 );
}
void CheMPS2::SyBookkeeper::fill_fci_dim_right( int **** storage, const int start, const int stop ){
for ( int boundary = start; boundary <= stop; boundary++ ){
for ( int N = gNmin( boundary ); N <= gNmax( boundary ); N++ ){
for ( int TwoS = gTwoSmin( boundary, N ); TwoS <= gTwoSmax( boundary, N ); TwoS += 2 ){
for ( int irrep = 0; irrep < num_irreps; irrep++ ){
const int value = std::min( CheMPS2::SYBK_dimensionCutoff,
gDimPrivate( storage, boundary - 1, N, TwoS , irrep )
+ gDimPrivate( storage, boundary - 1, N - 2, TwoS , irrep )
+ gDimPrivate( storage, boundary - 1, N - 1, TwoS + 1, Irreps::directProd( irrep, gIrrep( boundary - 1 ) ) )
+ gDimPrivate( storage, boundary - 1, N - 1, TwoS - 1, Irreps::directProd( irrep, gIrrep( boundary - 1 ) ) ) );
storage[ boundary ][ N - gNmin( boundary ) ][ ( TwoS - gTwoSmin( boundary, N ) ) / 2 ][ irrep ] = value;
}
}
}
}
}
void CheMPS2::SyBookkeeper::fill_fci_dim_left( int **** storage, const int start, const int stop ){
for ( int boundary = stop; boundary >= start; boundary-- ){
for ( int N = gNmin( boundary ); N <= gNmax( boundary ); N++ ){
for ( int TwoS = gTwoSmin( boundary, N ); TwoS <= gTwoSmax( boundary, N ); TwoS += 2 ){
for ( int irrep = 0; irrep < num_irreps; irrep++ ){
const int value = std::min( gDimPrivate( storage, boundary, N, TwoS, irrep ),
std::min( CheMPS2::SYBK_dimensionCutoff,
gDimPrivate( storage, boundary + 1, N, TwoS , irrep )
+ gDimPrivate( storage, boundary + 1, N + 2, TwoS , irrep )
+ gDimPrivate( storage, boundary + 1, N + 1, TwoS + 1, Irreps::directProd( irrep, gIrrep( boundary ) ) )
+ gDimPrivate( storage, boundary + 1, N + 1, TwoS - 1, Irreps::directProd( irrep, gIrrep( boundary ) ) ) ) );
storage[ boundary ][ N - gNmin( boundary ) ][ ( TwoS - gTwoSmin( boundary, N ) ) / 2 ][ irrep ] = value;
}
}
}
}
}
void CheMPS2::SyBookkeeper::CopyDim( int **** origin, int **** target ){
for ( int boundary = 0; boundary <= gL(); boundary++ ){
for ( int N = gNmin( boundary ); N <= gNmax( boundary ); N++ ){
for ( int TwoS = gTwoSmin( boundary, N ); TwoS <= gTwoSmax( boundary, N ); TwoS += 2 ){
for ( int irrep = 0; irrep < num_irreps; irrep++ ){
target[ boundary ][ N - gNmin( boundary ) ][ ( TwoS - gTwoSmin( boundary, N ) ) / 2 ][ irrep ]
= origin[ boundary ][ N - gNmin( boundary ) ][ ( TwoS - gTwoSmin( boundary, N ) ) / 2 ][ irrep ];
}
}
}
}
}
void CheMPS2::SyBookkeeper::ScaleCURdim( const int virtual_dim, const int start, const int stop ){
for ( int boundary = start; boundary <= stop; boundary++ ){
const int totaldim = gTotDimAtBound( boundary );
if ( totaldim > virtual_dim ){
double factor = ( 1.0 * virtual_dim ) / totaldim;
for ( int N = gNmin( boundary ); N <= gNmax( boundary ); N++ ){
for ( int TwoS = gTwoSmin( boundary, N ); TwoS <= gTwoSmax( boundary, N ); TwoS += 2 ){
for ( int irrep = 0; irrep < num_irreps; irrep++ ){
const int value = ( int )( ceil( factor * gCurrentDim( boundary, N, TwoS, irrep ) ) + 0.1 );
SetDim( boundary, N, TwoS, irrep, value );
}
}
}
}
}
}
int CheMPS2::SyBookkeeper::gDimPrivate( int **** storage, const int boundary, const int N, const int TwoS, const int irrep ) const{
if (( boundary < 0 ) || ( boundary > gL() )){ return 0; }
if (( N > gNmax( boundary ) ) || ( N < gNmin( boundary ) )){ return 0; }
if (( TwoS % 2 ) != ( gTwoSmin( boundary, N ) % 2 )){ return 0; }
if (( TwoS < gTwoSmin( boundary, N ) ) || ( TwoS > gTwoSmax( boundary, N ) )){ return 0; }
if (( irrep < 0 ) || ( irrep >= num_irreps )){ return 0; }
return storage[ boundary ][ N - gNmin( boundary ) ][ ( TwoS - gTwoSmin( boundary, N ) ) / 2 ][ irrep ];
}
int CheMPS2::SyBookkeeper::gMaxDimAtBound( const int boundary ) const{
int max_dim = 0;
for ( int N = gNmin( boundary ); N <= gNmax( boundary ); N++ ){
for ( int TwoS = gTwoSmin( boundary, N ); TwoS <= gTwoSmax( boundary, N ); TwoS += 2 ){
for ( int irrep = 0; irrep < num_irreps; irrep++ ){
const int dim = gCurrentDim( boundary, N, TwoS, irrep );
if ( dim > max_dim ){ max_dim = dim; }
}
}
}
return max_dim;
}
int CheMPS2::SyBookkeeper::gTotDimAtBound( const int boundary ) const{
int tot_dim = 0;
for ( int N = gNmin( boundary ); N <= gNmax( boundary ); N++ ){
for ( int TwoS = gTwoSmin( boundary, N ); TwoS <= gTwoSmax( boundary, N ); TwoS += 2 ){
for ( int irrep = 0; irrep < num_irreps; irrep++ ){
tot_dim += gCurrentDim( boundary, N, TwoS, irrep );
}
}
}
return tot_dim;
}
void CheMPS2::SyBookkeeper::restart( const int start, const int stop, const int virtual_dim ){
fill_fci_dim_right( CURdim, start, stop );
fill_fci_dim_left( CURdim, start, stop );
ScaleCURdim( virtual_dim, start, stop );
}
bool CheMPS2::SyBookkeeper::IsPossible() const{
return ( gCurrentDim( gL(), gN(), gTwoS(), gIrrep() ) == 1 );
}
|