1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
|
/*
CheMPS2: a spin-adapted implementation of DMRG for ab initio quantum chemistry
Copyright (C) 2013-2018 Sebastian Wouters
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <math.h>
#include "TensorGYZ.h"
#include "Lapack.h"
CheMPS2::TensorGYZ::TensorGYZ(const int boundary_index, const char identity, const SyBookkeeper * denBK) :
TensorOperator(boundary_index,
0, // two_j
0, // n_elec = 0
0, // n_irrep = I_trivial = 0
true, // TensorGYZ only exists moving left to right
true, // prime_last (doesn't matter for spin-0 tensors)
false, // No jw_phase when updating (two-orbital mutual information!)
denBK,
denBK){
this->identity = identity;
}
CheMPS2::TensorGYZ::~TensorGYZ(){ }
void CheMPS2::TensorGYZ::construct(TensorT * denT){
for (int ikappa=0; ikappa<nKappa; ikappa++){
int NL = -1;
int IL = -1;
int TwoSL = -1;
double alpha = 1.0;
if (identity=='Y'){
NL = sector_nelec_up[ikappa];
TwoSL = sector_spin_up[ikappa];
IL = sector_irrep_up[ikappa];
}
if (identity=='Z'){
NL = sector_nelec_up[ikappa]-2;
TwoSL = sector_spin_up[ikappa];
IL = sector_irrep_up[ikappa];
}
if (identity=='G'){
NL = sector_nelec_up[ikappa]-1;
TwoSL = sector_spin_up[ikappa]-1;
IL = Irreps::directProd( sector_irrep_up[ikappa] , bk_up->gIrrep(index-1) );
alpha = sqrt(0.5);
}
int dimR = bk_up->gCurrentDim(index, sector_nelec_up[ikappa], sector_spin_up[ikappa], sector_irrep_up[ikappa]);
int dimL = bk_up->gCurrentDim(index-1, NL, TwoSL, IL);
if (dimL>0){
double * BlockT = denT->gStorage(NL, TwoSL, IL, sector_nelec_up[ikappa], sector_spin_up[ikappa], sector_irrep_up[ikappa]);
char trans = 'T';
char notr = 'N';
double beta = 0.0;
dgemm_(&trans,¬r,&dimR,&dimR,&dimL,&alpha,BlockT,&dimL,BlockT,&dimL,&beta,storage+kappa2index[ikappa],&dimR);
} else {
for (int cnt=kappa2index[ikappa]; cnt<kappa2index[ikappa+1]; cnt++){ storage[cnt] = 0.0; }
}
if (identity=='G'){
TwoSL = sector_spin_up[ikappa]+1;
dimL = bk_up->gCurrentDim(index-1, NL, TwoSL, IL);
if (dimL>0){
double * BlockT = denT->gStorage(NL, TwoSL, IL, sector_nelec_up[ikappa], sector_spin_up[ikappa], sector_irrep_up[ikappa]);
char trans = 'T';
char notr = 'N';
double beta = 1.0; //ADD NOW!!!
dgemm_(&trans,¬r,&dimR,&dimR,&dimL,&alpha,BlockT,&dimL,BlockT,&dimL,&beta,storage+kappa2index[ikappa],&dimR);
}
}
}
}
|