1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
|
/*
CheMPS2: a spin-adapted implementation of DMRG for ab initio quantum chemistry
Copyright (C) 2013-2018 Sebastian Wouters
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <math.h>
#include "TensorKM.h"
#include "Lapack.h"
CheMPS2::TensorKM::TensorKM( const int boundary_index, const char identity, const int Idiff, const SyBookkeeper * denBK ) :
TensorOperator( boundary_index,
1, // two_j
1, // n_elec
Idiff,
true, // TensorKM only exists moving left to right
true, // prime_last
false, // No jw_phase when updating (two-orbital mutual information!)
denBK,
denBK ){
this->identity = identity;
}
CheMPS2::TensorKM::~TensorKM(){ }
void CheMPS2::TensorKM::construct(TensorT * denT){
clear();
if ( identity == 'K' ){
for (int ikappa=0; ikappa<nKappa; ikappa++){
const int IDR = Irreps::directProd( n_irrep, sector_irrep_up[ikappa] );
int dimUR = bk_up->gCurrentDim(index, sector_nelec_up[ikappa], sector_spin_up[ikappa], sector_irrep_up[ikappa]);
int dimDR = bk_up->gCurrentDim(index, sector_nelec_up[ikappa]+1, sector_spin_down[ikappa], IDR );
int dimL = bk_up->gCurrentDim(index-1, sector_nelec_up[ikappa], sector_spin_up[ikappa], sector_irrep_up[ikappa]);
if (dimL>0){
double * BlockTup = denT->gStorage(sector_nelec_up[ikappa], sector_spin_up[ikappa], sector_irrep_up[ikappa], sector_nelec_up[ikappa], sector_spin_up[ikappa], sector_irrep_up[ikappa]);
double * BlockTdown = denT->gStorage(sector_nelec_up[ikappa], sector_spin_up[ikappa], sector_irrep_up[ikappa], sector_nelec_up[ikappa]+1, sector_spin_down[ikappa], IDR);
char trans = 'T';
char notrans = 'N';
double alpha = 1.0;
double beta = 1.0; //add
dgemm_(&trans,¬rans,&dimUR,&dimDR,&dimL,&alpha,BlockTup,&dimL,BlockTdown,&dimL,&beta,storage+kappa2index[ikappa],&dimUR);
}
}
}
if ( identity == 'M' ){
for (int ikappa=0; ikappa<nKappa; ikappa++){
const int IDR = Irreps::directProd( n_irrep, sector_irrep_up[ikappa] );
int dimUR = bk_up->gCurrentDim(index, sector_nelec_up[ikappa], sector_spin_up[ikappa], sector_irrep_up[ikappa]);
int dimDR = bk_up->gCurrentDim(index, sector_nelec_up[ikappa]+1, sector_spin_down[ikappa], IDR );
int dimL = bk_up->gCurrentDim(index-1, sector_nelec_up[ikappa]-1, sector_spin_down[ikappa], IDR);
if (dimL>0){
double * BlockTup = denT->gStorage(sector_nelec_up[ikappa]-1, sector_spin_down[ikappa], IDR, sector_nelec_up[ikappa], sector_spin_up[ikappa], sector_irrep_up[ikappa]);
double * BlockTdown = denT->gStorage(sector_nelec_up[ikappa]-1, sector_spin_down[ikappa], IDR, sector_nelec_up[ikappa]+1, sector_spin_down[ikappa], IDR);
char trans = 'T';
char notrans = 'N';
int fase = ((((sector_spin_down[ikappa] - sector_spin_up[ikappa] + 1)/2)%2)!=0)?-1:1;
double alpha = fase * sqrt((sector_spin_up[ikappa]+1.0)/(sector_spin_down[ikappa]+1));
double beta = 1.0; //add
dgemm_(&trans,¬rans,&dimUR,&dimDR,&dimL,&alpha,BlockTup,&dimL,BlockTdown,&dimL,&beta,storage+kappa2index[ikappa],&dimUR);
}
}
}
}
|