1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
|
/*
CheMPS2: a spin-adapted implementation of DMRG for ab initio quantum chemistry
Copyright (C) 2013-2018 Sebastian Wouters
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <stdlib.h>
#include <math.h>
#include <assert.h>
#include "TensorOperator.h"
#include "Lapack.h"
#include "Special.h"
#include "Wigner.h"
CheMPS2::TensorOperator::TensorOperator( const int boundary_index, const int two_j, const int n_elec, const int n_irrep, const bool moving_right, const bool prime_last, const bool jw_phase, const SyBookkeeper * bk_up, const SyBookkeeper * bk_down ) : Tensor(){
// Copy the variables
this->index = boundary_index;
this->two_j = two_j;
this->n_elec = n_elec;
this->n_irrep = n_irrep;
this->moving_right = moving_right;
this->prime_last = prime_last;
this->jw_phase = jw_phase;
this->bk_up = bk_up;
this->bk_down = bk_down;
assert( two_j >= 0 );
assert( n_irrep >= 0 );
assert( n_irrep < bk_up->getNumberOfIrreps() );
nKappa = 0;
for ( int n_up = bk_up->gNmin( index ); n_up <= bk_up->gNmax( index ); n_up++ ){
for ( int two_s_up = bk_up->gTwoSmin( index, n_up ); two_s_up <= bk_up->gTwoSmax( index, n_up ); two_s_up += 2 ){
for ( int irrep_up = 0; irrep_up < bk_up->getNumberOfIrreps(); irrep_up++ ){
const int dim_up = bk_up->gCurrentDim( index, n_up, two_s_up, irrep_up );
if ( dim_up > 0 ){
const int irrep_down = Irreps::directProd( n_irrep, irrep_up );
const int n_down = n_up + n_elec;
for ( int two_s_down = two_s_up - two_j; two_s_down <= two_s_up + two_j; two_s_down += 2 ){
if ( two_s_down >= 0 ){
const int dim_down = bk_down->gCurrentDim( index, n_down, two_s_down, irrep_down );
if ( dim_down > 0 ){
nKappa++;
}
}
}
}
}
}
}
sector_nelec_up = new int[ nKappa ];
sector_irrep_up = new int[ nKappa ];
sector_spin_up = new int[ nKappa ];
sector_spin_down = (( two_j == 0 ) ? sector_spin_up : new int[ nKappa ] );
kappa2index = new int[ nKappa + 1 ];
kappa2index[ 0 ] = 0;
nKappa = 0;
for ( int n_up = bk_up->gNmin( index ); n_up <= bk_up->gNmax( index ); n_up++ ){
for ( int two_s_up = bk_up->gTwoSmin( index, n_up ); two_s_up <= bk_up->gTwoSmax( index, n_up ); two_s_up += 2 ){
for ( int irrep_up = 0; irrep_up < bk_up->getNumberOfIrreps(); irrep_up++ ){
const int dim_up = bk_up->gCurrentDim( index, n_up, two_s_up, irrep_up );
if ( dim_up > 0 ){
const int irrep_down = Irreps::directProd( n_irrep, irrep_up );
const int n_down = n_up + n_elec;
for ( int two_s_down = two_s_up - two_j; two_s_down <= two_s_up + two_j; two_s_down += 2 ){
if ( two_s_down >= 0 ){
const int dim_down = bk_down->gCurrentDim( index, n_down, two_s_down, irrep_down );
if ( dim_down > 0 ){
sector_nelec_up [ nKappa ] = n_up;
sector_irrep_up [ nKappa ] = irrep_up;
sector_spin_up [ nKappa ] = two_s_up;
sector_spin_down[ nKappa ] = two_s_down;
kappa2index[ nKappa + 1 ] = kappa2index[ nKappa ] + dim_up * dim_down;
nKappa++;
}
}
}
}
}
}
}
storage = new double[ kappa2index[ nKappa ] ];
}
CheMPS2::TensorOperator::~TensorOperator(){
delete [] sector_nelec_up;
delete [] sector_irrep_up;
delete [] sector_spin_up;
delete [] kappa2index;
delete [] storage;
if ( two_j != 0 ){ delete [] sector_spin_down; }
}
int CheMPS2::TensorOperator::gNKappa() const { return nKappa; }
double * CheMPS2::TensorOperator::gStorage() { return storage; }
int CheMPS2::TensorOperator::gKappa( const int N1, const int TwoS1, const int I1, const int N2, const int TwoS2, const int I2 ) const{
if ( Irreps::directProd( I1, n_irrep ) != I2 ){ return -1; }
if ( N2 != N1 + n_elec ){ return -1; }
if ( abs( TwoS1 - TwoS2 ) > two_j ){ return -1; }
if ( two_j == 0 ){
for ( int cnt = 0; cnt < nKappa; cnt++ ){
if (( sector_nelec_up[ cnt ] == N1 ) && ( sector_spin_up[ cnt ] == TwoS1 ) && ( sector_irrep_up[ cnt ] == I1 )){ return cnt; }
}
} else {
for ( int cnt = 0; cnt < nKappa; cnt++ ){
if (( sector_nelec_up[ cnt ] == N1 ) && ( sector_spin_up[ cnt ] == TwoS1 ) && ( sector_irrep_up[ cnt ] == I1 ) && ( sector_spin_down[ cnt ] == TwoS2 )){ return cnt; }
}
}
return -1;
}
int CheMPS2::TensorOperator::gKappa2index( const int kappa ) const{ return kappa2index[ kappa ]; }
double * CheMPS2::TensorOperator::gStorage( const int N1, const int TwoS1, const int I1, const int N2, const int TwoS2, const int I2 ){
int kappa = gKappa( N1, TwoS1, I1, N2, TwoS2, I2 );
if ( kappa == -1 ){ return NULL; }
return storage + kappa2index[ kappa ];
}
int CheMPS2::TensorOperator::gIndex() const { return index; }
int CheMPS2::TensorOperator::get_2j() const{ return two_j; }
int CheMPS2::TensorOperator::get_nelec() const{ return n_elec; }
int CheMPS2::TensorOperator::get_irrep() const { return n_irrep; }
void CheMPS2::TensorOperator::clear(){
for ( int cnt = 0; cnt < kappa2index[ nKappa ]; cnt++ ){ storage[ cnt ] = 0.0; }
}
void CheMPS2::TensorOperator::update( TensorOperator * previous, TensorT * mps_tensor_up, TensorT * mps_tensor_down, double * workmem ){
clear();
if ( moving_right ){
for ( int ikappa = 0; ikappa < nKappa; ikappa++ ){
update_moving_right( ikappa, previous, mps_tensor_up, mps_tensor_down, workmem );
}
} else {
for ( int ikappa = 0; ikappa < nKappa; ikappa++ ){
update_moving_left( ikappa, previous, mps_tensor_up, mps_tensor_down, workmem );
}
}
}
void CheMPS2::TensorOperator::update_moving_right( const int ikappa, TensorOperator * previous, TensorT * mps_tensor_up, TensorT * mps_tensor_down, double * workmem ){
const int n_right_up = sector_nelec_up[ ikappa ];
const int n_right_down = n_right_up + n_elec;
const int two_s_right_up = sector_spin_up[ ikappa ];
const int two_s_right_down = sector_spin_down[ ikappa ];
const int irrep_right_up = sector_irrep_up[ ikappa ];
const int irrep_right_down = Irreps::directProd( irrep_right_up, n_irrep );
int dim_right_up = bk_up->gCurrentDim( index, n_right_up, two_s_right_up, irrep_right_up );
int dim_right_down = bk_down->gCurrentDim( index, n_right_down, two_s_right_down, irrep_right_down );
for ( int geval = 0; geval < 6; geval++ ){
int n_left_up, n_left_down, two_s_left_up, two_s_left_down, irrep_left_up, irrep_left_down;
switch ( geval ){
case 0: // MPS tensor sector (I,J,N) = (0,0,0)
two_s_left_up = two_s_right_up;
two_s_left_down = two_s_right_down;
n_left_up = n_right_up;
n_left_down = n_right_down;
irrep_left_up = irrep_right_up;
irrep_left_down = irrep_right_down;
break;
case 1: // MPS tensor sector (I,J,N) = (0,0,2)
two_s_left_up = two_s_right_up;
two_s_left_down = two_s_right_down;
n_left_up = n_right_up - 2;
n_left_down = n_right_down - 2;
irrep_left_up = irrep_right_up;
irrep_left_down = irrep_right_down;
break;
case 2: // MPS tensor sector (I,J,N) = (Ilocal,1/2,1)
two_s_left_up = two_s_right_up - 1;
two_s_left_down = two_s_right_down - 1;
n_left_up = n_right_up - 1;
n_left_down = n_right_down - 1;
irrep_left_up = Irreps::directProd( irrep_right_up, bk_up->gIrrep( index - 1 ) );
irrep_left_down = Irreps::directProd( irrep_right_down, bk_up->gIrrep( index - 1 ) ); // bk_up and bk_down treat the same orbitals and ordering
break;
case 3: // MPS tensor sector (I,J,N) = (Ilocal,1/2,1)
two_s_left_up = two_s_right_up - 1;
two_s_left_down = two_s_right_down + 1;
n_left_up = n_right_up - 1;
n_left_down = n_right_down - 1;
irrep_left_up = Irreps::directProd( irrep_right_up, bk_up->gIrrep( index - 1 ) );
irrep_left_down = Irreps::directProd( irrep_right_down, bk_up->gIrrep( index - 1 ) ); // bk_up and bk_down treat the same orbitals and ordering
break;
case 4: // MPS tensor sector (I,J,N) = (Ilocal,1/2,1)
two_s_left_up = two_s_right_up + 1;
two_s_left_down = two_s_right_down - 1;
n_left_up = n_right_up - 1;
n_left_down = n_right_down - 1;
irrep_left_up = Irreps::directProd( irrep_right_up, bk_up->gIrrep( index - 1 ) );
irrep_left_down = Irreps::directProd( irrep_right_down, bk_up->gIrrep( index - 1 ) ); // bk_up and bk_down treat the same orbitals and ordering
break;
case 5: // MPS tensor sector (I,J,N) = (Ilocal,1/2,1)
two_s_left_up = two_s_right_up + 1;
two_s_left_down = two_s_right_down + 1;
n_left_up = n_right_up - 1;
n_left_down = n_right_down - 1;
irrep_left_up = Irreps::directProd( irrep_right_up, bk_up->gIrrep( index - 1 ) );
irrep_left_down = Irreps::directProd( irrep_right_down, bk_up->gIrrep( index - 1 ) ); // bk_up and bk_down treat the same orbitals and ordering
break;
}
if ( abs( two_s_left_up - two_s_left_down ) <= two_j ){
int dim_left_up = bk_up->gCurrentDim( index - 1, n_left_up, two_s_left_up, irrep_left_up );
int dim_left_down = bk_down->gCurrentDim( index - 1, n_left_down, two_s_left_down, irrep_left_down );
if (( dim_left_up > 0 ) && ( dim_left_down > 0 )){
double * mps_block_up = mps_tensor_up->gStorage( n_left_up, two_s_left_up, irrep_left_up, n_right_up, two_s_right_up, irrep_right_up );
double * mps_block_down = mps_tensor_down->gStorage( n_left_down, two_s_left_down, irrep_left_down, n_right_down, two_s_right_down, irrep_right_down );
double * left_block = previous->gStorage( n_left_up, two_s_left_up, irrep_left_up, n_left_down, two_s_left_down, irrep_left_down );
// Prefactor
double alpha = 1.0;
if ( geval >= 2 ){
if ( two_j == 0 ){
alpha = ( ( jw_phase ) ? -1.0 : 1.0 );
} else {
if ( prime_last ){
alpha = Special::phase( two_s_right_up + two_s_left_down + two_j + ( ( jw_phase ) ? 3 : 1 ) )
* sqrt( ( two_s_left_down + 1.0 ) * ( two_s_right_up + 1.0 ) )
* Wigner::wigner6j( two_s_left_up, two_s_left_down, two_j, two_s_right_down, two_s_right_up, 1 );
} else {
alpha = Special::phase( two_s_right_down + two_s_left_up + two_j + ( ( jw_phase ) ? 3 : 1 ) )
* sqrt( ( two_s_left_up + 1.0 ) * ( two_s_right_down + 1.0 ) )
* Wigner::wigner6j( two_s_left_down, two_s_left_up, two_j, two_s_right_up, two_s_right_down, 1 );
}
}
}
// prefactor * mps_block_up^T * left_block --> mem
char trans = 'T';
char notr = 'N';
double beta = 0.0; //set
dgemm_(&trans, ¬r, &dim_right_up, &dim_left_down, &dim_left_up,
&alpha, mps_block_up, &dim_left_up, left_block, &dim_left_up,
&beta, workmem, &dim_right_up);
// mem * mps_block_down --> storage
alpha = 1.0;
beta = 1.0; //add
dgemm_(¬r, ¬r, &dim_right_up, &dim_right_down, &dim_left_down,
&alpha, workmem, &dim_right_up, mps_block_down, &dim_left_down,
&beta, storage + kappa2index[ikappa], &dim_right_up);
}
}
}
}
void CheMPS2::TensorOperator::update_moving_left( const int ikappa, TensorOperator * previous, TensorT * mps_tensor_up, TensorT * mps_tensor_down, double * workmem ){
const int n_left_up = sector_nelec_up[ ikappa ];
const int n_left_down = n_left_up + n_elec;
const int two_s_left_up = sector_spin_up[ ikappa ];
const int two_s_left_down = sector_spin_down[ ikappa ];
const int irrep_left_up = sector_irrep_up[ ikappa ];
const int irrep_left_down = Irreps::directProd( irrep_left_up, n_irrep );
int dim_left_up = bk_up->gCurrentDim( index, n_left_up, two_s_left_up, irrep_left_up );
int dim_left_down = bk_down->gCurrentDim( index, n_left_down, two_s_left_down, irrep_left_down );
for ( int geval = 0; geval < 6; geval++ ){
int n_right_up, n_right_down, two_s_right_up, two_s_right_down, irrep_right_up, irrep_right_down;
switch ( geval ){
case 0: // MPS tensor sector (I,J,N) = (0,0,0)
two_s_right_up = two_s_left_up;
two_s_right_down = two_s_left_down;
n_right_up = n_left_up;
n_right_down = n_left_down;
irrep_right_up = irrep_left_up;
irrep_right_down = irrep_left_down;
break;
case 1: // MPS tensor sector (I,J,N) = (0,0,2)
two_s_right_up = two_s_left_up;
two_s_right_down = two_s_left_down;
n_right_up = n_left_up + 2;
n_right_down = n_left_down + 2;
irrep_right_up = irrep_left_up;
irrep_right_down = irrep_left_down;
break;
case 2: // MPS tensor sector (I,J,N) = (Ilocal,1/2,1)
two_s_right_up = two_s_left_up - 1;
two_s_right_down = two_s_left_down - 1;
n_right_up = n_left_up + 1;
n_right_down = n_left_down + 1;
irrep_right_up = Irreps::directProd( irrep_left_up, bk_up->gIrrep( index ) );
irrep_right_down = Irreps::directProd( irrep_left_down, bk_up->gIrrep( index ) ); // bk_up and bk_down treat the same orbitals and ordering
break;
case 3: // MPS tensor sector (I,J,N) = (Ilocal,1/2,1)
two_s_right_up = two_s_left_up - 1;
two_s_right_down = two_s_left_down + 1;
n_right_up = n_left_up + 1;
n_right_down = n_left_down + 1;
irrep_right_up = Irreps::directProd( irrep_left_up, bk_up->gIrrep( index ) );
irrep_right_down = Irreps::directProd( irrep_left_down, bk_up->gIrrep( index ) ); // bk_up and bk_down treat the same orbitals and ordering
break;
case 4: // MPS tensor sector (I,J,N) = (Ilocal,1/2,1)
two_s_right_up = two_s_left_up + 1;
two_s_right_down = two_s_left_down - 1;
n_right_up = n_left_up + 1;
n_right_down = n_left_down + 1;
irrep_right_up = Irreps::directProd( irrep_left_up, bk_up->gIrrep( index ) );
irrep_right_down = Irreps::directProd( irrep_left_down, bk_up->gIrrep( index ) ); // bk_up and bk_down treat the same orbitals and ordering
break;
case 5: // MPS tensor sector (I,J,N) = (Ilocal,1/2,1)
two_s_right_up = two_s_left_up + 1;
two_s_right_down = two_s_left_down + 1;
n_right_up = n_left_up + 1;
n_right_down = n_left_down + 1;
irrep_right_up = Irreps::directProd( irrep_left_up, bk_up->gIrrep( index ) );
irrep_right_down = Irreps::directProd( irrep_left_down, bk_up->gIrrep( index ) ); // bk_up and bk_down treat the same orbitals and ordering
break;
}
if ( abs( two_s_right_up - two_s_right_down ) <= two_j ){
int dim_right_up = bk_up->gCurrentDim( index + 1, n_right_up, two_s_right_up, irrep_right_up );
int dim_right_down = bk_down->gCurrentDim( index + 1, n_right_down, two_s_right_down, irrep_right_down );
if (( dim_right_up > 0 ) && ( dim_right_down > 0 )){
double * mps_block_up = mps_tensor_up->gStorage( n_left_up, two_s_left_up, irrep_left_up, n_right_up, two_s_right_up, irrep_right_up );
double * mps_block_down = mps_tensor_down->gStorage( n_left_down, two_s_left_down, irrep_left_down, n_right_down, two_s_right_down, irrep_right_down );
double * right_block = previous->gStorage( n_right_up, two_s_right_up, irrep_right_up, n_right_down, two_s_right_down, irrep_right_down );
// Prefactor
double alpha = 1.0;
if ( geval >= 2 ){
if ( two_j == 0 ){
alpha = ( ( jw_phase ) ? -1.0 : 1.0 ) * (( two_s_right_up + 1.0 ) / ( two_s_left_up + 1 ));
} else {
if ( prime_last ){
alpha = Special::phase( two_s_right_up + two_s_left_down + two_j + ( ( jw_phase ) ? 3 : 1 ) )
* ( two_s_right_down + 1 ) * sqrt( ( two_s_right_up + 1.0 ) / ( two_s_left_down + 1 ) )
* Wigner::wigner6j( two_s_right_up, two_s_right_down, two_j, two_s_left_down, two_s_left_up, 1 );
} else {
alpha = Special::phase( two_s_right_down + two_s_left_up + two_j + ( ( jw_phase ) ? 3 : 1 ) )
* ( two_s_right_up + 1 ) * sqrt( ( two_s_right_down + 1.0 ) / ( two_s_left_up + 1 ) )
* Wigner::wigner6j( two_s_right_down, two_s_right_up, two_j, two_s_left_up, two_s_left_down, 1 );
}
}
}
// prefactor * mps_block_up * right_block --> mem
char notr = 'N';
double beta = 0.0; //set
dgemm_(¬r, ¬r, &dim_left_up, &dim_right_down, &dim_right_up,
&alpha, mps_block_up, &dim_left_up, right_block, &dim_right_up,
&beta, workmem, &dim_left_up);
// mem * mps_block_down^T --> storage
char trans = 'T';
alpha = 1.0;
beta = 1.0; //add
dgemm_(¬r, &trans, &dim_left_up, &dim_left_down, &dim_right_down,
&alpha, workmem, &dim_left_up, mps_block_down, &dim_left_down,
&beta, storage + kappa2index[ikappa], &dim_left_up);
}
}
}
}
void CheMPS2::TensorOperator::daxpy( double alpha, TensorOperator * to_add ){
assert( nKappa == to_add->gNKappa() );
assert( kappa2index[ nKappa ] == to_add->gKappa2index( to_add->gNKappa() ) );
int inc = 1;
daxpy_( kappa2index + nKappa, &alpha, to_add->gStorage(), &inc, storage, &inc );
}
void CheMPS2::TensorOperator::daxpy_transpose_tensorCD( const double alpha, TensorOperator * to_add ){
assert( nKappa == to_add->gNKappa() );
assert( kappa2index[ nKappa ] == to_add->gKappa2index( to_add->gNKappa() ) );
assert( n_elec == 0 );
assert( ( two_j == 0 ) || ( two_j == 2 ) );
for ( int ikappa = 0; ikappa < nKappa; ikappa++ ){
const int irrep_up = sector_irrep_up[ ikappa ];
const int irrep_down = Irreps::directProd( irrep_up, n_irrep );
const int two_s_up = sector_spin_up[ ikappa ];
const int two_s_down = sector_spin_down[ ikappa ];
const int n_updown = sector_nelec_up[ ikappa ];
const int dim_up = bk_up->gCurrentDim( index, n_updown, two_s_up, irrep_up );
const int dim_down = bk_down->gCurrentDim( index, n_updown, two_s_down, irrep_down );
double prefactor = alpha;
/*
This phase factor comes historically from the TensorD and is not valid in general,
as it is tightly coupled to the specific change from (for moving_right == true ):
< 1/2 m1 1/2 -m2 | 1 (m1-m2) > * (-1)^{1/2-m2} * < j_L' j_L^z' 1 (m1-m2) | j_L j_L^z >
= < 1/2 m2 1/2 -m1 | 1 (m2-m1) > * (-1)^{1/2-m1} * < j_L j_L^z 1 (m1-m2) | j_L' j_L^z' > * prefactor
*/
if ( two_s_up != two_s_down ){
prefactor *= Special::phase( two_s_up - two_s_down )
* sqrt(( moving_right ) ? (( two_s_up + 1.0 ) / ( two_s_down + 1 )) : (( two_s_down + 1.0 ) / ( two_s_up + 1 )));
}
double * block = to_add->gStorage( n_updown, two_s_down, irrep_down, n_updown, two_s_up, irrep_up );
for ( int irow = 0; irow < dim_up; irow++ ){
for ( int icol = 0; icol < dim_down; icol++ ){
storage[ kappa2index[ikappa] + irow + dim_up * icol ] += prefactor * block[ icol + dim_down * irow ];
}
}
}
}
double CheMPS2::TensorOperator::inproduct( TensorOperator * buddy, const char trans ) const{
if ( buddy == NULL ){ return 0.0; }
assert( get_2j() == buddy->get_2j() );
assert( n_elec == buddy->get_nelec() );
assert( n_irrep == buddy->get_irrep() );
double value = 0.0;
if ( trans == 'N' ){
int length = kappa2index[ nKappa ];
int inc = 1;
value = ddot_( &length, storage, &inc, buddy->gStorage(), &inc );
} else {
assert( n_elec == 0 );
for ( int ikappa = 0; ikappa < nKappa; ikappa++ ){
const int n_updown = sector_nelec_up[ ikappa ];
const int two_j_up = sector_spin_up[ ikappa ];
const int two_j_down = sector_spin_down[ ikappa ];
const int irrep_up = sector_irrep_up[ ikappa ];
const int irrep_down = Irreps::directProd( irrep_up, n_irrep );
double * my_block = storage + kappa2index[ ikappa ];
double * buddy_block = buddy->gStorage( n_updown, two_j_down, irrep_down, n_updown, two_j_up, irrep_up );
const int dim_up = bk_up->gCurrentDim( index, n_updown, two_j_up, irrep_up );
const int dim_down = bk_down->gCurrentDim( index, n_updown, two_j_down, irrep_down );
double temp = 0.0;
for ( int row = 0; row < dim_up; row++ ){
for ( int col = 0; col < dim_down; col++ ){
temp += my_block[ row + dim_up * col ] * buddy_block[ col + dim_down * row ];
}
}
const double prefactor = (( get_2j() == 0 ) ? 1.0 : ( sqrt( ( two_j_up + 1.0 ) / ( two_j_down + 1 ) ) * Special::phase( two_j_up - two_j_down ) ));
value += prefactor * temp;
}
}
return value;
}
|