1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
/*
CheMPS2: a spin-adapted implementation of DMRG for ab initio quantum chemistry
Copyright (C) 2013-2018 Sebastian Wouters
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <stdlib.h>
#include <math.h>
#include "TensorS1.h"
#include "Lapack.h"
#include "Wigner.h"
CheMPS2::TensorS1::TensorS1(const int boundary_index, const int Idiff, const bool moving_right, const SyBookkeeper * denBK) :
TensorOperator(boundary_index,
2, // two_j
2, // n_elec
Idiff,
moving_right,
true, // prime_last
false, // jw_phase (two 2nd quantized operators)
denBK,
denBK){ }
CheMPS2::TensorS1::~TensorS1(){ }
void CheMPS2::TensorS1::makenew(TensorL * denL, TensorT * denT, double * workmem){
if (moving_right){ makenewRight(denL, denT, workmem); }
else{ makenewLeft( denL, denT, workmem); }
}
void CheMPS2::TensorS1::makenewRight(TensorL * denL, TensorT * denT, double * workmem){
clear();
for (int ikappa=0; ikappa<nKappa; ikappa++){
const int IDR = Irreps::directProd(n_irrep,sector_irrep_up[ikappa]);
int dimUR = bk_up->gCurrentDim(index, sector_nelec_up[ikappa], sector_spin_up[ikappa], sector_irrep_up[ikappa]);
int dimDR = bk_up->gCurrentDim(index, sector_nelec_up[ikappa]+2, sector_spin_down[ikappa], IDR );
for (int geval=0; geval<4; geval++){
int NLU,TwoSLU,ILU,TwoSLD,ILD; //NLD = NLU+1
switch(geval){
case 0:
NLU = sector_nelec_up[ikappa];
TwoSLU = sector_spin_up[ikappa];
ILU = sector_irrep_up[ikappa];
TwoSLD = sector_spin_down[ikappa]-1;
ILD = Irreps::directProd( ILU, denL->get_irrep() );
break;
case 1:
NLU = sector_nelec_up[ikappa];
TwoSLU = sector_spin_up[ikappa];
ILU = sector_irrep_up[ikappa];
TwoSLD = sector_spin_down[ikappa]+1;
ILD = Irreps::directProd( ILU, denL->get_irrep() );
break;
case 2:
NLU = sector_nelec_up[ikappa]-1;
TwoSLU = sector_spin_up[ikappa]-1;
ILU = Irreps::directProd( sector_irrep_up[ikappa] , bk_up->gIrrep(index-1) );
TwoSLD = sector_spin_down[ikappa];
ILD = IDR;
break;
case 3:
NLU = sector_nelec_up[ikappa]-1;
TwoSLU = sector_spin_up[ikappa]+1;
ILU = Irreps::directProd( sector_irrep_up[ikappa] , bk_up->gIrrep(index-1) );
TwoSLD = sector_spin_down[ikappa];
ILD = IDR;
break;
}
int dimLU = bk_up->gCurrentDim(index-1, NLU, TwoSLU, ILU);
int dimLD = bk_up->gCurrentDim(index-1, NLU+1, TwoSLD, ILD);
if ((dimLU>0) && (dimLD>0) && (abs(TwoSLU-TwoSLD)<2)){
double * BlockTup = denT->gStorage(NLU, TwoSLU, ILU, sector_nelec_up[ikappa], sector_spin_up[ikappa], sector_irrep_up[ikappa]);
double * BlockTdown = denT->gStorage(NLU+1, TwoSLD, ILD, sector_nelec_up[ikappa]+2, sector_spin_down[ikappa], IDR );
double * BlockL = denL->gStorage(NLU, TwoSLU, ILU, NLU+1, TwoSLD, ILD );
//factor * Tup^T * L -> mem
char trans = 'T';
char notrans = 'N';
double alpha = 1.0;
if (geval<=1){
int fase = ((((sector_spin_up[ikappa] + sector_spin_down[ikappa] + 2)/2)%2)!=0)?-1:1;
alpha = fase * sqrt(3.0*(TwoSLD+1)) * Wigner::wigner6j(1,1,2,sector_spin_up[ikappa],sector_spin_down[ikappa],TwoSLD);
} else {
int fase = ((((TwoSLU + sector_spin_down[ikappa] + 1)/2)%2)!=0)?-1:1;
alpha = fase * sqrt(3.0*(sector_spin_up[ikappa]+1)) * Wigner::wigner6j(1,1,2,sector_spin_up[ikappa],sector_spin_down[ikappa],TwoSLU);
}
double beta = 0.0; //set
dgemm_(&trans,¬rans,&dimUR,&dimLD,&dimLU,&alpha,BlockTup,&dimLU,BlockL,&dimLU,&beta,workmem,&dimUR);
//mem * Tdown -> storage
alpha = 1.0;
beta = 1.0; // add
dgemm_(¬rans,¬rans,&dimUR,&dimDR,&dimLD,&alpha,workmem,&dimUR,BlockTdown,&dimLD,&beta,storage+kappa2index[ikappa],&dimUR);
}
}
}
}
void CheMPS2::TensorS1::makenewLeft(TensorL * denL, TensorT * denT, double * workmem){
clear();
for (int ikappa=0; ikappa<nKappa; ikappa++){
const int IDL = Irreps::directProd(n_irrep,sector_irrep_up[ikappa]);
int dimUL = bk_up->gCurrentDim(index, sector_nelec_up[ikappa], sector_spin_up[ikappa], sector_irrep_up[ikappa]);
int dimDL = bk_up->gCurrentDim(index, sector_nelec_up[ikappa]+2, sector_spin_down[ikappa], IDL );
for (int geval=0; geval<4; geval++){
int NRU,TwoSRU,IRU,TwoSRD,IRD; //NRD = NRU+1
switch(geval){
case 0:
NRU = sector_nelec_up[ikappa]+1;
TwoSRU = sector_spin_up[ikappa]-1;
IRU = Irreps::directProd( sector_irrep_up[ikappa] , bk_up->gIrrep(index) );
TwoSRD = sector_spin_down[ikappa];
IRD = IDL;
break;
case 1:
NRU = sector_nelec_up[ikappa]+1;
TwoSRU = sector_spin_up[ikappa]+1;
IRU = Irreps::directProd( sector_irrep_up[ikappa] , bk_up->gIrrep(index) );
TwoSRD = sector_spin_down[ikappa];
IRD = IDL;
break;
case 2:
NRU = sector_nelec_up[ikappa]+2;
TwoSRU = sector_spin_up[ikappa];
IRU = sector_irrep_up[ikappa];
TwoSRD = sector_spin_down[ikappa]-1;
IRD = Irreps::directProd( sector_irrep_up[ikappa] , denL->get_irrep() );
break;
case 3:
NRU = sector_nelec_up[ikappa]+2;
TwoSRU = sector_spin_up[ikappa];
IRU = sector_irrep_up[ikappa];
TwoSRD = sector_spin_down[ikappa]+1;
IRD = Irreps::directProd( sector_irrep_up[ikappa] , denL->get_irrep() );
break;
}
int dimRU = bk_up->gCurrentDim(index+1, NRU, TwoSRU, IRU);
int dimRD = bk_up->gCurrentDim(index+1, NRU+1, TwoSRD, IRD);
if ((dimRU>0) && (dimRD>0) && (abs(TwoSRD-TwoSRU)<2)){
double * BlockTup = denT->gStorage(sector_nelec_up[ikappa], sector_spin_up[ikappa], sector_irrep_up[ikappa], NRU, TwoSRU, IRU);
double * BlockTdown = denT->gStorage(sector_nelec_up[ikappa]+2, sector_spin_down[ikappa], IDL, NRU+1, TwoSRD, IRD);
double * BlockL = denL->gStorage(NRU, TwoSRU, IRU, NRU+1, TwoSRD, IRD);
//factor * Tup * L -> mem
char notrans = 'N';
double alpha = 1.0;
if (geval<=1){
int fase = ((((sector_spin_up[ikappa] + sector_spin_down[ikappa] + 2)/2)%2)!=0)?-1:1;
alpha = fase * sqrt(3.0 * (TwoSRU+1)) * Wigner::wigner6j( 1, 1, 2, sector_spin_up[ikappa], sector_spin_down[ikappa], TwoSRU );
} else {
int fase = ((((sector_spin_up[ikappa] + TwoSRD + 1)/2)%2)!=0)?-1:1;
alpha = fase * sqrt(3.0 / (sector_spin_down[ikappa] + 1.0)) * (TwoSRD + 1)
* Wigner::wigner6j( 1, 1, 2, sector_spin_up[ikappa], sector_spin_down[ikappa], TwoSRD );
}
double beta = 0.0; //set
dgemm_(¬rans,¬rans,&dimUL,&dimRD,&dimRU,&alpha,BlockTup,&dimUL,BlockL,&dimRU,&beta,workmem,&dimUL);
//mem * Tdown -> storage
char trans = 'T';
alpha = 1.0;
beta = 1.0; // add
dgemm_(¬rans,&trans,&dimUL,&dimDL,&dimRD,&alpha,workmem,&dimUL,BlockTdown,&dimDL,&beta,storage+kappa2index[ikappa],&dimUL);
}
}
}
}
|