1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
|
/*
CheMPS2: a spin-adapted implementation of DMRG for ab initio quantum chemistry
Copyright (C) 2013-2018 Sebastian Wouters
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <iostream>
#include <fstream>
#include <algorithm>
#include <math.h>
#include <string.h>
#include <getopt.h>
#include <sys/stat.h>
#include <assert.h>
#include <sstream>
#include "Initialize.h"
#include "CASSCF.h"
#include "Molden.h"
#include "MPIchemps2.h"
#include "EdmistonRuedenberg.h"
using namespace std;
void fetch_ints( const string rawdata, int * result, const int num ){
int pos = 0;
int pos2 = 0;
for ( int no = 0; no < num; no++ ){
pos2 = rawdata.find( ",", pos );
if ( pos2 == string::npos ){ pos2 = rawdata.length(); }
result[ no ] = atoi( rawdata.substr( pos, pos2-pos ).c_str() );
pos = pos2 + 1;
}
}
void fetch_doubles( const string rawdata, double * result, const int num ){
int pos = 0;
int pos2 = 0;
for ( int no = 0; no < num; no++ ){
pos2 = rawdata.find( ",", pos );
if ( pos2 == string::npos ){ pos2 = rawdata.length(); }
result[ no ] = atof( rawdata.substr( pos, pos2-pos ).c_str() );
pos = pos2 + 1;
}
}
bool file_exists( const string filename, const string tag ){
#ifdef CHEMPS2_MPI_COMPILATION
const bool am_i_master = ( CheMPS2::MPIchemps2::mpi_rank() == MPI_CHEMPS2_MASTER );
#else
const bool am_i_master = true;
#endif
struct stat file_info;
const bool on_disk = (( filename.length() > 0 ) && ( stat( filename.c_str(), &file_info ) == 0 ));
if (( on_disk == false ) && ( am_i_master )){
cerr << "Unable to retrieve file " << filename << "!" << endl;
cerr << "Invalid option for " << tag << "!" << endl;
}
return on_disk;
}
bool find_integer( int * result, const string line, const string tag, const bool lower_bound, const int val_lower, const bool upper_bound, const int val_upper ){
#ifdef CHEMPS2_MPI_COMPILATION
const bool am_i_master = ( CheMPS2::MPIchemps2::mpi_rank() == MPI_CHEMPS2_MASTER );
#else
const bool am_i_master = true;
#endif
if ( line.find( tag ) != string::npos ){
const int pos = line.find( "=" ) + 1;
result[ 0 ] = atoi( line.substr( pos, line.length() - pos ).c_str() );
const bool lower_ok = (( lower_bound == false ) || ( result[ 0 ] >= val_lower ));
const bool upper_ok = (( upper_bound == false ) || ( result[ 0 ] <= val_upper ));
if (( lower_ok == false ) || ( upper_ok == false )){
if ( am_i_master ){
cerr << line << endl;
cerr << "Invalid option for " << tag << "!" << endl;
}
return false;
}
}
return true;
}
bool find_double( double * result, const string line, const string tag, const bool lower_bound, const double val_lower ){
#ifdef CHEMPS2_MPI_COMPILATION
const bool am_i_master = ( CheMPS2::MPIchemps2::mpi_rank() == MPI_CHEMPS2_MASTER );
#else
const bool am_i_master = true;
#endif
if ( line.find( tag ) != string::npos ){
const int pos = line.find( "=" ) + 1;
result[ 0 ] = atof( line.substr( pos, line.length() - pos ).c_str() );
const bool lower_ok = (( lower_bound == false ) || ( result[ 0 ] >= val_lower ));
if ( lower_ok == false ){
if ( am_i_master ){
cerr << line << endl;
cerr << "Invalid option for " << tag << "!" << endl;
}
return false;
}
}
return true;
}
bool find_character( char * result, const string line, const string tag, char * options, const int num_options ){
#ifdef CHEMPS2_MPI_COMPILATION
const bool am_i_master = ( CheMPS2::MPIchemps2::mpi_rank() == MPI_CHEMPS2_MASTER );
#else
const bool am_i_master = true;
#endif
if ( line.find( tag ) != string::npos ){
const int pos = line.find( "=" ) + 1;
string temp = line.substr( pos, line.length() - pos );
temp.erase( std::remove( temp.begin(), temp.end(), ' ' ), temp.end() );
result[ 0 ] = temp.c_str()[ 0 ];
bool encountered = false;
for ( int cnt = 0; cnt < num_options; cnt++ ){
if ( options[ cnt ] == result[ 0 ] ){ encountered = true; }
}
if ( encountered == false ){
if ( am_i_master ){
cerr << line << endl;
cerr << "Invalid option for " << tag << "!" << endl;
}
return false;
}
}
return true;
}
bool find_boolean( bool * result, const string line, const string tag ){
#ifdef CHEMPS2_MPI_COMPILATION
const bool am_i_master = ( CheMPS2::MPIchemps2::mpi_rank() == MPI_CHEMPS2_MASTER );
#else
const bool am_i_master = true;
#endif
if ( line.find( tag ) != string::npos ){
const int pos = line.find( "=" ) + 1;
const int pos_true = line.substr( pos, line.length() - pos ).find( "TRUE" );
const int pos_false = line.substr( pos, line.length() - pos ).find( "FALSE" );
result[ 0 ] = ( pos_true != string::npos );
if (( pos_true == string::npos ) && ( pos_false == string::npos )){
if ( am_i_master ){
cerr << line << endl;
cerr << "Invalid option for " << tag << "!" << endl;
}
return false;
}
}
return true;
}
int clean_exit( const int return_code ){
#ifdef CHEMPS2_MPI_COMPILATION
CheMPS2::MPIchemps2::mpi_finalize();
#endif
return return_code;
}
bool print_molcas_reorder( int * dmrg2ham, const int L, const string filename, const bool read ){
bool on_disk = false;
if ( read ){
struct stat file_info;
on_disk = (( filename.length() > 0 ) && ( stat( filename.c_str(), &file_info ) == 0 ));
if ( on_disk ){
ifstream input( filename.c_str() );
string line;
getline( input, line );
const int num = count( line.begin(), line.end(), ',' ) + 1;
assert( num == L );
fetch_ints( line, dmrg2ham, L );
input.close();
cout << "Read orbital reordering = [ ";
for ( int orb = 0; orb < L - 1; orb++ ){ cout << dmrg2ham[ orb ] << ", "; }
cout << dmrg2ham[ L - 1 ] << " ]." << endl;
}
} else { // write
FILE * capturing;
capturing = fopen( filename.c_str(), "w" ); // "w" with fopen means truncate file
for ( int orb = 0; orb < L - 1; orb++ ){
fprintf( capturing, "%d, ", dmrg2ham[ orb ] );
}
fprintf( capturing, "%d \n", dmrg2ham[ L - 1 ] );
fclose( capturing );
cout << "Orbital reordering written to " << filename << "." << endl;
on_disk = true;
}
return on_disk;
}
void print_help(){
cout << "\n"
"CheMPS2: a spin-adapted implementation of DMRG for ab initio quantum chemistry\n"
"Copyright (C) 2013-2018 Sebastian Wouters\n"
"\n"
"Usage: chemps2 [OPTIONS]\n"
"\n"
/**************************************************
* The following is copied directly from chemps2.1 *
**************************************************/
" SYMMETRY\n"
" Conventions for the symmetry group and irrep numbers (same as psi4):\n"
"\n"
" | 0 1 2 3 4 5 6 7\n"
" ---------|-----------------------------------------\n"
" 0 : c1 | A\n"
" 1 : ci | Ag Au\n"
" 2 : c2 | A B\n"
" 3 : cs | Ap App\n"
" 4 : d2 | A B1 B2 B3\n"
" 5 : c2v | A1 A2 B1 B2\n"
" 6 : c2h | Ag Bg Au Bu\n"
" 7 : d2h | Ag B1g B2g B3g Au B1u B2u B3u\n"
"\n"
" ARGUMENTS\n"
" -f, --file=inputfile\n"
" Specify the input file.\n"
"\n"
" -v, --version\n"
" Print the version of chemps2.\n"
"\n"
" -h, --help\n"
" Display this help.\n"
"\n"
" INPUT FILE\n"
" FCIDUMP = /path/to/fcidump\n"
" Note that orbital irreps in the FCIDUMP file follow molpro convention!\n"
"\n"
" GROUP = int\n"
" Set the psi4 symmetry group number [0-7] which corresponds to the FCIDUMP file.\n"
"\n"
" MULTIPLICITY = int\n"
" Overwrite the spin multiplicity [2S+1] of the FCIDUMP file.\n"
"\n"
" NELECTRONS = int\n"
" Overwrite the number of electrons of the FCIDUMP file.\n"
"\n"
" IRREP = int\n"
" Overwrite the target wavefunction irrep [0-7] of the FCIDUMP file (psi4 convention).\n"
"\n"
" EXCITATION = int\n"
" Set which excitation should be calculated. If zero, the ground state is calculated (default 0).\n"
"\n"
" SWEEP_STATES = int, int, int\n"
" Set the number of reduced renormalized basis states for the successive sweep instructions (positive integers).\n"
"\n"
" SWEEP_ENERGY_CONV = flt, flt, flt\n"
" Set the energy convergence to stop the successive sweep instructions (positive floats).\n"
"\n"
" SWEEP_MAX_SWEEPS = int, int, int\n"
" Set the maximum number of sweeps for the successive sweep instructions (positive integers).\n"
"\n"
" SWEEP_NOISE_PREFAC = flt, flt, flt\n"
" Set the noise prefactors for the successive sweep instructions (floats).\n"
"\n"
" SWEEP_DVDSON_RTOL = flt, flt, flt\n"
" Set the residual norm tolerance for the Davidson algorithm for the successive sweep instructions (positive floats).\n"
"\n"
" NOCC = int, int, int, int\n"
" Set the number of occupied (external core) orbitals per irrep (psi4 irrep ordering).\n"
"\n"
" NACT = int, int, int, int\n"
" Set the number of active orbitals per irrep (psi4 irrep ordering).\n"
"\n"
" NVIR = int, int, int, int\n"
" Set the number of virtual (secondary) orbitals per irrep (psi4 irrep ordering).\n"
"\n"
" MOLCAS_2RDM = /path/to/2rdm/output\n"
" When all orbitals are active orbitals, write out the 2-RDM in HDF5 format when specified (default unspecified).\n"
"\n"
" MOLCAS_3RDM = /path/to/3rdm/output\n"
" When all orbitals are active orbitals, write out the 3-RDM in HDF5 format when specified (default unspecified).\n"
"\n"
" MOLCAS_F4RDM = /path/to/f4rdm/output\n"
" When all orbitals are active orbitals, write out the 4-RDM contracted with the Fock operator in HDF5 format when specified (default unspecified).\n"
"\n"
" MOLCAS_FOCK = /path/to/fock/input\n"
" When all orbitals are active orbitals, read in this file containing the Fock operator (default unspecified).\n"
"\n"
" MOLCAS_FIEDLER = bool\n"
" When all orbitals are active orbitals, switch on orbital reordering based on the Fiedler vector of the exchange matrix (TRUE or FALSE; default FALSE).\n"
"\n"
" MOLCAS_ORDER = int, int, int, int\n"
" When all orbitals are active orbitals, provide a custom orbital reordering (default unspecified). When specified, this option takes precedence over MOLCAS_FIEDLER.\n"
"\n"
" MOLCAS_OCC = int, int, int, int\n"
" When all orbitals are active orbitals, set initial guess to an ROHF determinant (default unspecified). The occupancy integers should be 0, 1 or 2 and the orbital ordering convention is FCIDUMP.\n"
"\n"
" MOLCAS_MPS = bool\n"
" When all orbitals are active orbitals, switch on the creation of MPS checkpoints (TRUE or FALSE; default FALSE).\n"
"\n"
" MOLCAS_STATE_AVG = bool\n"
" Switch on writing to disk of N-RDMs of intermediate roots (TRUE or FALSE; default FALSE).\n"
"\n"
" SCF_STATE_AVG = bool\n"
" Switch on state-averaging (TRUE or FALSE; default FALSE).\n"
"\n"
" SCF_DIIS_THR = flt\n"
" Switch on DIIS when the update norm is smaller than the given threshold (default 0.0).\n"
"\n"
" SCF_GRAD_THR = flt\n"
" Gradient norm threshold for convergence of the DMRG-SCF orbital rotations (default 1e-6).\n"
"\n"
" SCF_MAX_ITER = int\n"
" Specify the maximum number of DMRG-SCF iterations (default 100).\n"
"\n"
" SCF_ACTIVE_SPACE = char\n"
" Rotate the active space orbitals: no additional rotations (I), natural orbitals (N), localized and ordered orbitals (L), or ordered orbitals only (F) (default I).\n"
"\n"
" SCF_MOLDEN = /path/to/molden\n"
" Rotate the FCIDUMP orbitals to the DMRG-SCF occupied (external core), active, and virtual (secondary) orbitals.\n"
"\n"
" CASPT2_CALC = bool\n"
" Switch on the CASPT2 calculation (TRUE or FALSE; default FALSE).\n"
"\n"
" CASPT2_ORBS = char\n"
" Perform the DMRG calculation for the 4-RDM in the SCF_ACTIVE_SPACE orbitals (A) or in the pseudocanonical orbitals (P) (default A).\n"
"\n"
" CASPT2_IPEA = flt\n"
" Ionization potential - electron affinity shift (default 0.0).\n"
"\n"
" CASPT2_IMAG = flt\n"
" Imaginary level shift (default 0.0).\n"
"\n"
" CASPT2_CHECKPT = bool\n"
" Create checkpoints to continue the CASPT2 4-RDM calculation over multiple runs (TRUE or FALSE; default FALSE).\n"
"\n"
" CASPT2_CUMUL = bool\n"
" Use a cumulant approximation for the CASPT2 4-RDM and overwrite CASPT2_CHECKPT to FALSE (TRUE or FALSE; default FALSE).\n"
"\n"
" PRINT_CORR = bool\n"
" Print correlation functions (TRUE or FALSE; default FALSE).\n"
"\n"
" TMP_FOLDER = /path/to/tmp/folder\n"
" Overwrite the tmp folder for the renormalized operators. With MPI, separate folders per process can (but do not have to) be used (default /tmp).\n"
"\n"
" EXAMPLE\n"
" $ cd /tmp\n"
" $ wget \'https://github.com/SebWouters/CheMPS2/raw/master/tests/matrixelements/N2.CCPVDZ.FCIDUMP\'\n"
" $ ls -al N2.CCPVDZ.FCIDUMP\n"
" $ wget \'https://github.com/SebWouters/CheMPS2/raw/master/tests/test14.input\'\n"
" $ sed -i \"s/path\\/to/tmp/\" test14.input\n"
" $ cat test14.input\n"
" $ chemps2 --file=test14.input\n"
" " << endl;
}
int main( int argc, char ** argv ){
#ifdef CHEMPS2_MPI_COMPILATION
CheMPS2::MPIchemps2::mpi_init();
const bool am_i_master = ( CheMPS2::MPIchemps2::mpi_rank() == MPI_CHEMPS2_MASTER );
#else
const bool am_i_master = true;
#endif
/************************
* Read in the options *
*************************/
string inputfile = "";
string fcidump = "";
int group = -1;
int multiplicity = -1;
int nelectrons = -1;
int irrep = -1;
int excitation = 0;
string sweep_states = "";
string sweep_econv = "";
string sweep_maxit = "";
string sweep_noise = "";
string sweep_rtol = "";
string nocc = "";
string nact = "";
string nvir = "";
string molcas_2rdm = "";
string molcas_3rdm = "";
string molcas_f4rdm = "";
string molcas_fock = "";
bool molcas_fiedler = false;
bool molcas_mps = false;
bool molcas_state_avg = false;
string molcas_order = "";
string molcas_occ = "";
bool scf_state_avg = false;
double scf_diis_thr = 0.0;
double scf_grad_thr = 1e-6;
int scf_max_iter = 100;
char scf_active_space = 'I';
string scf_molden = "";
bool caspt2_calc = false;
char caspt2_orbs = 'A';
double caspt2_ipea = 0.0;
double caspt2_imag = 0.0;
bool caspt2_checkpt = false;
bool caspt2_cumul = false;
bool print_corr = false;
string tmp_folder = "/tmp";
struct option long_options[] =
{
{"file", required_argument, 0, 'f'},
{"version", no_argument, 0, 'v'},
{"help", no_argument, 0, 'h'},
{0, 0, 0, 0}
};
int option_index = 0;
int c;
while (( c = getopt_long( argc, argv, "hvf:", long_options, &option_index )) != -1 ){
switch( c ){
case 'h':
case '?':
if ( am_i_master ){ print_help(); }
return clean_exit( 0 );
break;
case 'v':
if ( am_i_master ){ cout << "chemps2 version " << CHEMPS2_VERSION << endl; }
return clean_exit( 0 );
break;
case 'f':
inputfile = optarg;
if ( file_exists( inputfile, "--file" ) == false ){ return clean_exit( -1 ); }
break;
}
}
if ( inputfile.length() == 0 ){
if ( am_i_master ){ cerr << "The input file should be specified!" << endl; }
return clean_exit( -1 );
}
ifstream input( inputfile.c_str() );
string line;
while ( input.eof() == false ){
getline( input, line );
if ( line.find( "FCIDUMP" ) != string::npos ){
const int pos = line.find( "=" ) + 1;
fcidump = line.substr( pos, line.length() - pos );
fcidump.erase( remove( fcidump.begin(), fcidump.end(), ' ' ), fcidump.end() );
if ( file_exists( fcidump, "FCIDUMP" ) == false ){ return clean_exit( -1 ); }
}
if ( line.find( "MOLCAS_2RDM" ) != string::npos ){
const int pos = line.find( "=" ) + 1;
molcas_2rdm = line.substr( pos, line.length() - pos );
molcas_2rdm.erase( remove( molcas_2rdm.begin(), molcas_2rdm.end(), ' ' ), molcas_2rdm.end() );
}
if ( line.find( "MOLCAS_3RDM" ) != string::npos ){
const int pos = line.find( "=" ) + 1;
molcas_3rdm = line.substr( pos, line.length() - pos );
molcas_3rdm.erase( remove( molcas_3rdm.begin(), molcas_3rdm.end(), ' ' ), molcas_3rdm.end() );
}
if ( line.find( "MOLCAS_F4RDM" ) != string::npos ){
const int pos = line.find( "=" ) + 1;
molcas_f4rdm = line.substr( pos, line.length() - pos );
molcas_f4rdm.erase( remove( molcas_f4rdm.begin(), molcas_f4rdm.end(), ' ' ), molcas_f4rdm.end() );
}
if ( line.find( "MOLCAS_FOCK" ) != string::npos ){
const int pos = line.find( "=" ) + 1;
molcas_fock = line.substr( pos, line.length() - pos );
molcas_fock.erase( remove( molcas_fock.begin(), molcas_fock.end(), ' ' ), molcas_fock.end() );
if ( file_exists( molcas_fock, "MOLCAS_FOCK" ) == false ){ return clean_exit( -1 ); }
}
if ( line.find( "SCF_MOLDEN" ) != string::npos ){
const int pos = line.find( "=" ) + 1;
scf_molden = line.substr( pos, line.length() - pos );
scf_molden.erase( remove( scf_molden.begin(), scf_molden.end(), ' ' ), scf_molden.end() );
if ( file_exists( scf_molden, "SCF_MOLDEN" ) == false ){ return clean_exit( -1 ); }
}
if ( line.find( "TMP_FOLDER" ) != string::npos ){
const int pos = line.find( "=" ) + 1;
tmp_folder = line.substr( pos, line.length() - pos );
tmp_folder.erase( remove( tmp_folder.begin(), tmp_folder.end(), ' ' ), tmp_folder.end() );
if ( file_exists( tmp_folder, "TMP_FOLDER" ) == false ){ return clean_exit( -1 ); }
}
if ( find_integer( &group, line, "GROUP", true, 0, true, 7 ) == false ){ return clean_exit( -1 ); }
if ( find_integer( &multiplicity, line, "MULTIPLICITY", true, 1, false, -1 ) == false ){ return clean_exit( -1 ); }
if ( find_integer( &nelectrons, line, "NELECTRONS", true, 2, false, -1 ) == false ){ return clean_exit( -1 ); }
if ( find_integer( &irrep, line, "IRREP", true, 0, true, 7 ) == false ){ return clean_exit( -1 ); }
if ( find_integer( &excitation, line, "EXCITATION", true, 0, false, -1 ) == false ){ return clean_exit( -1 ); }
if ( find_integer( &scf_max_iter, line, "SCF_MAX_ITER", true, 1, false, -1 ) == false ){ return clean_exit( -1 ); }
if ( find_double( &scf_diis_thr, line, "SCF_DIIS_THR", true, 0.0 ) == false ){ return clean_exit( -1 ); }
if ( find_double( &scf_grad_thr, line, "SCF_GRAD_THR", true, 0.0 ) == false ){ return clean_exit( -1 ); }
if ( find_double( &caspt2_ipea, line, "CASPT2_IPEA", true, 0.0 ) == false ){ return clean_exit( -1 ); }
if ( find_double( &caspt2_imag, line, "CASPT2_IMAG", true, 0.0 ) == false ){ return clean_exit( -1 ); }
char options1[] = { 'I', 'N', 'L', 'F' };
char options2[] = { 'A', 'P' };
if ( find_character( &scf_active_space, line, "SCF_ACTIVE_SPACE", options1, 4 ) == false ){ return clean_exit( -1 ); }
if ( find_character( &caspt2_orbs, line, "CASPT2_ORBS", options2, 2 ) == false ){ return clean_exit( -1 ); }
if ( find_boolean( &molcas_fiedler, line, "MOLCAS_FIEDLER" ) == false ){ return clean_exit( -1 ); }
if ( find_boolean( &molcas_mps, line, "MOLCAS_MPS" ) == false ){ return clean_exit( -1 ); }
if ( find_boolean( &molcas_state_avg, line, "MOLCAS_STATE_AVG" ) == false ){ return clean_exit( -1 ); }
if ( find_boolean( &scf_state_avg, line, "SCF_STATE_AVG" ) == false ){ return clean_exit( -1 ); }
if ( find_boolean( &caspt2_calc, line, "CASPT2_CALC" ) == false ){ return clean_exit( -1 ); }
if ( find_boolean( &caspt2_checkpt, line, "CASPT2_CHECKPT" ) == false ){ return clean_exit( -1 ); }
if ( find_boolean( &caspt2_cumul, line, "CASPT2_CUMUL" ) == false ){ return clean_exit( -1 ); }
if ( find_boolean( &print_corr, line, "PRINT_CORR" ) == false ){ return clean_exit( -1 ); }
if ( line.find( "SWEEP_STATES" ) != string::npos ){
const int pos = line.find( "=" ) + 1;
sweep_states = line.substr( pos, line.length() - pos );
}
if ( line.find( "SWEEP_ENERGY_CONV" ) != string::npos ){
const int pos = line.find( "=" ) + 1;
sweep_econv = line.substr( pos, line.length() - pos );
}
if ( line.find( "SWEEP_MAX_SWEEPS" ) != string::npos ){
const int pos = line.find( "=" ) + 1;
sweep_maxit = line.substr( pos, line.length() - pos );
}
if ( line.find( "SWEEP_NOISE_PREFAC" ) != string::npos ){
const int pos = line.find( "=" ) + 1;
sweep_noise = line.substr( pos, line.length() - pos );
}
if ( line.find( "SWEEP_DVDSON_RTOL" ) != string::npos ){
const int pos = line.find( "=" ) + 1;
sweep_rtol = line.substr( pos, line.length() - pos );
}
if ( line.find( "NOCC" ) != string::npos ){
const int pos = line.find( "=" ) + 1;
nocc = line.substr( pos, line.length() - pos );
}
if ( line.find( "NACT" ) != string::npos ){
const int pos = line.find( "=" ) + 1;
nact = line.substr( pos, line.length() - pos );
}
if ( line.find( "NVIR" ) != string::npos ){
const int pos = line.find( "=" ) + 1;
nvir = line.substr( pos, line.length() - pos );
}
if ( line.find( "MOLCAS_ORDER" ) != string::npos ){
const int pos = line.find( "=" ) + 1;
molcas_order = line.substr( pos, line.length() - pos );
}
if ( line.find( "MOLCAS_OCC" ) != string::npos ){
const int pos = line.find( "=" ) + 1;
molcas_occ = line.substr( pos, line.length() - pos );
}
if ( line.find( "MOLCAS_REORDER" ) != string::npos ){
if ( am_i_master ){ cerr << "MOLCAS_REORDER is deprecated. Please use MOLCAS_ORDER and/or MOLCAS_FIEDLER." << endl; }
return clean_exit( -1 );
}
}
input.close();
/*******************************
* Check the target symmetry *
*******************************/
if ( group == -1 ){
if ( am_i_master ){ cerr << "GROUP is a mandatory option!" << endl; }
return clean_exit( -1 );
}
CheMPS2::Irreps Symmhelper( group );
const int num_irreps = Symmhelper.getNumberOfIrreps();
int fcidump_norb = -1;
int fcidump_nelec = -1;
int fcidump_two_s = -1;
int fcidump_irrep = -1;
{
ifstream thefcidump( fcidump.c_str() );
string line;
int pos, pos2;
getline( thefcidump, line ); // &FCI NORB= X,NELEC= Y,MS2= Z,
pos = line.find( "FCI" );
if ( pos == string::npos ){
if ( am_i_master ){ cerr << "The file " << fcidump << " is not a fcidump file!" << endl; }
return clean_exit( -1 );
}
pos = line.find( "NORB" ); pos = line.find( "=", pos ); pos2 = line.find( ",", pos );
fcidump_norb = atoi( line.substr( pos+1, pos2-pos-1 ).c_str() );
pos = line.find( "NELEC" ); pos = line.find( "=", pos ); pos2 = line.find( ",", pos );
fcidump_nelec = atoi( line.substr( pos+1, pos2-pos-1 ).c_str() );
pos = line.find( "MS2" ); pos = line.find( "=", pos ); pos2 = line.find( ",", pos );
fcidump_two_s = atoi( line.substr( pos+1, pos2-pos-1 ).c_str() );
do { getline( thefcidump, line ); } while ( line.find( "ISYM" ) == string::npos );
pos = line.find( "ISYM" ); pos = line.find( "=", pos ); pos2 = line.find( ",", pos );
const int molpro_wfn_irrep = atoi( line.substr( pos+1, pos2-pos-1 ).c_str() );
thefcidump.close();
int * psi2molpro = new int[ num_irreps ];
Symmhelper.symm_psi2molpro( psi2molpro );
for ( int cnt = 0; cnt < num_irreps; cnt++ ){
if ( molpro_wfn_irrep == psi2molpro[ cnt ] ){ fcidump_irrep = cnt; }
}
if ( fcidump_irrep == -1 ){
if ( am_i_master ){ cerr << "Could not find the molpro wavefunction symmetry (ISYM) in the fcidump file!" << endl; }
return clean_exit( -1 );
}
delete [] psi2molpro;
}
if ( multiplicity == -1 ){ multiplicity = fcidump_two_s + 1; }
if ( nelectrons == -1 ){ nelectrons = fcidump_nelec; }
if ( irrep == -1 ){ irrep = fcidump_irrep; }
/*********************************
* Check the sweep instructions *
**********************************/
if (( sweep_states.length() == 0 ) || ( sweep_econv.length() == 0 ) || ( sweep_maxit.length() == 0 ) || ( sweep_noise.length() == 0 ) || ( sweep_rtol.length() == 0 )){
if ( am_i_master ){ cerr << "SWEEP_* are mandatory options!" << endl; }
return clean_exit( -1 );
}
const int ni_d = count( sweep_states.begin(), sweep_states.end(), ',' ) + 1;
const int ni_econv = count( sweep_econv.begin(), sweep_econv.end(), ',' ) + 1;
const int ni_maxit = count( sweep_maxit.begin(), sweep_maxit.end(), ',' ) + 1;
const int ni_noise = count( sweep_noise.begin(), sweep_noise.end(), ',' ) + 1;
const int ni_rtol = count( sweep_rtol.begin(), sweep_rtol.end(), ',' ) + 1;
const bool num_eq = (( ni_d == ni_econv ) && ( ni_d == ni_maxit ) && ( ni_d == ni_noise ) && ( ni_d == ni_rtol ));
if ( num_eq == false ){
if ( am_i_master ){ cerr << "The number of instructions in SWEEP_* should be equal!" << endl; }
return clean_exit( -1 );
}
int * value_states = new int [ ni_d ]; fetch_ints( sweep_states, value_states, ni_d );
double * value_econv = new double[ ni_d ]; fetch_doubles( sweep_econv, value_econv, ni_d );
int * value_maxit = new int [ ni_d ]; fetch_ints( sweep_maxit, value_maxit, ni_d );
double * value_noise = new double[ ni_d ]; fetch_doubles( sweep_noise, value_noise, ni_d );
double * value_rtol = new double[ ni_d ]; fetch_doubles( sweep_rtol, value_rtol, ni_d );
/*****************************************
* Check the active space specification *
******************************************/
if (( nocc.length() == 0 ) || ( nact.length() == 0 ) || ( nvir.length() == 0 )){
if ( am_i_master ){ cerr << "NOCC, NACT, and NVIR are mandatory options!" << endl; }
return clean_exit( -1 );
}
const int ni_occ = count( nocc.begin(), nocc.end(), ',' ) + 1;
const int ni_act = count( nact.begin(), nact.end(), ',' ) + 1;
const int ni_vir = count( nvir.begin(), nvir.end(), ',' ) + 1;
const bool cas_ok = (( ni_occ == ni_act ) && ( ni_occ == ni_vir ) && ( ni_occ == num_irreps ));
if ( cas_ok == false ){
if ( am_i_master ){ cerr << "There should be " << num_irreps << " numbers in NOCC, NACT, and NVIR!" << endl; }
return clean_exit( -1 );
}
int * nocc_parsed = new int[ ni_occ ]; fetch_ints( nocc, nocc_parsed, ni_occ );
int * nact_parsed = new int[ ni_act ]; fetch_ints( nact, nact_parsed, ni_act );
int * nvir_parsed = new int[ ni_vir ]; fetch_ints( nvir, nvir_parsed, ni_vir );
/**************************************
* Check consistency MOLCAS_ options *
***************************************/
bool full_active_space_calculation = true;
for ( int cnt = 0; cnt < num_irreps; cnt++ ){
if ( nocc_parsed[ cnt ] != 0 ){ full_active_space_calculation = false; }
if ( nvir_parsed[ cnt ] != 0 ){ full_active_space_calculation = false; }
}
if ( ( molcas_2rdm.length() != 0 ) || ( molcas_3rdm.length() != 0 ) || ( molcas_f4rdm.length() != 0 ) || ( molcas_fock.length() != 0 ) || ( molcas_order.length() != 0 ) ){
if ( full_active_space_calculation == false ){
if ( am_i_master ){ cerr << "The options MOLCAS_* can only be specified for full active space calculations (when NOCC = NVIR = 0)!" << endl; }
return clean_exit( -1 );
}
}
if ( ( molcas_f4rdm.length() != 0 ) && ( molcas_fock.length() == 0 ) ){
if ( am_i_master ){ cerr << "When MOLCAS_F4RDM should be written, MOLCAS_FOCK should be specified as well!" << endl; }
return clean_exit( -1 );
}
/*********************************
* Parse reordering if required *
*********************************/
int * dmrg2ham = NULL;
if (( full_active_space_calculation == true ) && ( molcas_order.length() > 0 )){
const int list_length = count( molcas_order.begin(), molcas_order.end(), ',' ) + 1;
if ( list_length != fcidump_norb ){
if ( am_i_master ){ cerr << "The number of integers specified in MOLCAS_ORDER should be equal to the number of orbitals in the FCIDUMP file!" << endl; }
return clean_exit( -1 );
}
dmrg2ham = new int[ fcidump_norb ];
fetch_ints( molcas_order, dmrg2ham, fcidump_norb );
}
/**********************************
* Parse occupancies if required *
**********************************/
int * occupancies = NULL;
if (( full_active_space_calculation == true ) && ( molcas_occ.length() > 0 )){
const int list_length = count( molcas_occ.begin(), molcas_occ.end(), ',' ) + 1;
if ( list_length != fcidump_norb ){
if ( am_i_master ){ cerr << "The number of integers specified in MOLCAS_OCC should be equal to the number of orbitals in the FCIDUMP file!" << endl; }
return clean_exit( -1 );
}
occupancies = new int[ fcidump_norb ];
fetch_ints( molcas_occ, occupancies, fcidump_norb );
int occ_n_tot = 0;
int occ_2s_tot = 0;
for ( int cnt = 0; cnt < fcidump_norb; cnt++ ){
if (( occupancies[ cnt ] < 0 ) || ( occupancies[ cnt ] > 2 )){
if ( am_i_master ){ cerr << "The integers specified in MOLCAS_OCC should be 0, 1 or 2!" << endl; }
return clean_exit( -1 );
}
occ_n_tot += occupancies[ cnt ];
if ( occupancies[ cnt ] == 1 ){ occ_2s_tot += 1; }
}
if ( occ_n_tot != nelectrons ){
if ( am_i_master ){ cerr << "The sum of the integers specified in MOLCAS_OCC should be equal to the number of electrons specified in the FCIDUMP file!" << endl; }
return clean_exit( -1 );
}
if ( ( occ_2s_tot + 1 ) != multiplicity ){
if ( am_i_master ){ cerr << "The number of singly occupied orbitals in MOLCAS_OCC should be equal to the value 2S specified in the FCIDUMP file!" << endl; }
return clean_exit( -1 );
}
}
/**********************
* Print the options *
***********************/
if ( am_i_master ){
cout << "\nRunning chemps2 version " << CHEMPS2_VERSION << " with the following options:\n" << endl;
cout << " FCIDUMP = " << fcidump << endl;
cout << " GROUP = " << Symmhelper.getGroupName() << endl;
cout << " MULTIPLICITY = " << multiplicity << endl;
cout << " NELECTRONS = " << nelectrons << endl;
cout << " IRREP = " << Symmhelper.getIrrepName( irrep ) << endl;
cout << " EXCITATION = " << excitation << endl;
cout << " SWEEP_STATES = [ " << value_states[ 0 ]; for ( int cnt = 1; cnt < ni_d; cnt++ ){ cout << " ; " << value_states[ cnt ]; } cout << " ]" << endl;
cout << " SWEEP_ENERGY_CONV = [ " << value_econv [ 0 ]; for ( int cnt = 1; cnt < ni_d; cnt++ ){ cout << " ; " << value_econv [ cnt ]; } cout << " ]" << endl;
cout << " SWEEP_MAX_SWEEPS = [ " << value_maxit [ 0 ]; for ( int cnt = 1; cnt < ni_d; cnt++ ){ cout << " ; " << value_maxit [ cnt ]; } cout << " ]" << endl;
cout << " SWEEP_NOISE_PREFAC = [ " << value_noise [ 0 ]; for ( int cnt = 1; cnt < ni_d; cnt++ ){ cout << " ; " << value_noise [ cnt ]; } cout << " ]" << endl;
cout << " SWEEP_DVDSON_RTOL = [ " << value_rtol [ 0 ]; for ( int cnt = 1; cnt < ni_d; cnt++ ){ cout << " ; " << value_rtol [ cnt ]; } cout << " ]" << endl;
cout << " NOCC = [ " << nocc_parsed[ 0 ]; for ( int cnt = 1; cnt < num_irreps; cnt++ ){ cout << " ; " << nocc_parsed[ cnt ]; } cout << " ]" << endl;
cout << " NACT = [ " << nact_parsed[ 0 ]; for ( int cnt = 1; cnt < num_irreps; cnt++ ){ cout << " ; " << nact_parsed[ cnt ]; } cout << " ]" << endl;
cout << " NVIR = [ " << nvir_parsed[ 0 ]; for ( int cnt = 1; cnt < num_irreps; cnt++ ){ cout << " ; " << nvir_parsed[ cnt ]; } cout << " ]" << endl;
if ( full_active_space_calculation ){
cout << " MOLCAS_2RDM = " << molcas_2rdm << endl;
cout << " MOLCAS_3RDM = " << molcas_3rdm << endl;
cout << " MOLCAS_F4RDM = " << molcas_f4rdm << endl;
cout << " MOLCAS_FOCK = " << molcas_fock << endl;
if ( molcas_order.length() > 0 ){
cout << " MOLCAS_ORDER = [ " << dmrg2ham[ 0 ]; for ( int cnt = 1; cnt < fcidump_norb; cnt++ ){ cout << " ; " << dmrg2ham[ cnt ]; } cout << " ]" << endl;
} else {
cout << " MOLCAS_FIEDLER = " << (( molcas_fiedler ) ? "TRUE" : "FALSE" ) << endl;
}
if ( molcas_occ.length() > 0 ){
cout << " MOLCAS_OCC (HAM) = [ " << occupancies[ 0 ]; for ( int cnt = 1; cnt < fcidump_norb; cnt++ ){ cout << " ; " << occupancies[ cnt ]; } cout << " ]" << endl;
}
cout << " MOLCAS_MPS = " << (( molcas_mps ) ? "TRUE" : "FALSE" ) << endl;
cout << " MOLCAS_STATE_AVG = " << (( molcas_state_avg ) ? "TRUE" : "FALSE" ) << endl;
} else {
cout << " SCF_STATE_AVG = " << (( scf_state_avg ) ? "TRUE" : "FALSE" ) << endl;
cout << " SCF_DIIS_THR = " << scf_diis_thr << endl;
cout << " SCF_GRAD_THR = " << scf_grad_thr << endl;
cout << " SCF_MAX_ITER = " << scf_max_iter << endl;
cout << " SCF_ACTIVE_SPACE = " << (( scf_active_space == 'I' ) ? "I : no additional rotations" :
(( scf_active_space == 'N' ) ? "N : natural orbitals" :
(( scf_active_space == 'L' ) ? "L : localized and ordered orbitals" : "F : ordered orbitals only" ))) << endl;
cout << " SCF_MOLDEN = " << scf_molden << endl;
cout << " CASPT2_CALC = " << (( caspt2_calc ) ? "TRUE" : "FALSE" ) << endl;
cout << " CASPT2_ORBS = " << (( caspt2_orbs == 'A' ) ? "A : as specified in SCF_ACTIVE_SPACE" : "P : pseudocanonical orbitals" ) << endl;
cout << " CASPT2_IPEA = " << caspt2_ipea << endl;
cout << " CASPT2_IMAG = " << caspt2_imag << endl;
cout << " CASPT2_CHECKPT = " << (( caspt2_checkpt ) ? "TRUE" : "FALSE" ) << endl;
cout << " CASPT2_CUMUL = " << (( caspt2_cumul ) ? "TRUE" : "FALSE" ) << endl;
}
cout << " PRINT_CORR = " << (( print_corr ) ? "TRUE" : "FALSE" ) << endl;
cout << " TMP_FOLDER = " << tmp_folder << endl;
cout << " " << endl;
}
/********************************
* Running the DMRG calculation *
********************************/
CheMPS2::Initialize::Init();
CheMPS2::Hamiltonian * ham = new CheMPS2::Hamiltonian( fcidump, group );
CheMPS2::ConvergenceScheme * opt_scheme = new CheMPS2::ConvergenceScheme( ni_d );
for ( int count = 0; count < ni_d; count++ ){
opt_scheme->set_instruction( count, value_states[ count ],
value_econv [ count ],
value_maxit [ count ],
value_noise [ count ],
value_rtol [ count ] );
}
delete [] value_states;
delete [] value_econv;
delete [] value_maxit;
delete [] value_noise;
delete [] value_rtol;
if ( full_active_space_calculation ){
CheMPS2::Problem * prob = new CheMPS2::Problem( ham, multiplicity - 1, nelectrons, irrep );
// Reorder the orbitals if desired
if (( group == 7 ) && ( molcas_fiedler == false ) && ( molcas_order.length() == 0 )){ prob->SetupReorderD2h(); }
if (( molcas_fiedler ) && ( molcas_order.length() == 0 )){
dmrg2ham = new int[ ham->getL() ];
if ( am_i_master ){
const bool read_success = (( molcas_mps ) ? print_molcas_reorder( dmrg2ham, ham->getL(), "molcas_fiedler.txt", true ) : false );
if ( read_success == false ){
CheMPS2::EdmistonRuedenberg * fiedler = new CheMPS2::EdmistonRuedenberg( ham->getVmat(), group );
fiedler->FiedlerGlobal( dmrg2ham );
delete fiedler;
if ( molcas_mps ){ print_molcas_reorder( dmrg2ham, ham->getL(), "molcas_fiedler.txt", false ); }
}
}
#ifdef CHEMPS2_MPI_COMPILATION
CheMPS2::MPIchemps2::broadcast_array_int( dmrg2ham, ham->getL(), MPI_CHEMPS2_MASTER );
#endif
prob->setup_reorder_custom( dmrg2ham );
delete [] dmrg2ham;
}
if ( molcas_order.length() > 0 ){
assert( fcidump_norb == ham->getL() );
prob->setup_reorder_custom( dmrg2ham );
delete [] dmrg2ham;
}
CheMPS2::DMRG * dmrgsolver = new CheMPS2::DMRG( prob, opt_scheme, molcas_mps, tmp_folder, occupancies );
if ( molcas_occ.length() > 0 ){ delete [] occupancies; }
// Solve for the correct root
double DMRG_ENERGY;
for ( int state = 0; state < ( excitation + 1 ); state++ ){
if ( state > 0 ){ dmrgsolver->newExcitation( fabs( DMRG_ENERGY ) ); }
DMRG_ENERGY = dmrgsolver->Solve();
if (( state == 0 ) && ( excitation > 0 )){ dmrgsolver->activateExcitations( excitation ); }
// Only if state specific or last state N-RDMs should be calculated
if (( molcas_state_avg == true ) || ( state == excitation )){
const bool calc_3rdm = (( molcas_3rdm.length() != 0 ) || ( molcas_f4rdm.length() != 0 ));
const bool calc_2rdm = (( print_corr == true ) || ( molcas_2rdm.length() != 0 ));
if (( calc_2rdm ) || ( calc_3rdm )){
dmrgsolver->calc_rdms_and_correlations( calc_3rdm, false );
std::stringstream result_filename;
// 2-RDM
if ( molcas_2rdm.length() != 0 ){
result_filename.str("");
result_filename << molcas_2rdm << ".r" << state;
dmrgsolver->get2DM()->save_HAM( result_filename.str() );
}
// 3-RDM
if ( molcas_3rdm.length() != 0 ){
result_filename.str("");
result_filename << molcas_3rdm << ".r" << state;
dmrgsolver->get3DM()->save_HAM( result_filename.str() );
}
// F . 4-RDM
if ( molcas_f4rdm.length() != 0 ){
const int LAS = ham->getL();
const int LAS_pow6 = LAS * LAS * LAS * LAS * LAS * LAS;
double * fockmx = new double[ LAS * LAS ];
double * work = new double[ LAS_pow6 ];
double * result = new double[ LAS_pow6 ];
for ( int cnt = 0; cnt < LAS_pow6; cnt++ ){ result[ cnt ] = 0.0; }
ham->readfock( molcas_fock, fockmx, true );
CheMPS2::CASSCF::fock_dot_4rdm( fockmx, dmrgsolver, ham, 0, 0, work, result, false, false );
result_filename.str("");
result_filename << molcas_f4rdm << ".r" << state;
CheMPS2::ThreeDM::save_HAM_generic( result_filename.str(), LAS, "F.4-RDM", result );
delete [] fockmx;
delete [] work;
delete [] result;
}
if (( print_corr ) && ( state == excitation )){ dmrgsolver->getCorrelations()->Print(); }
}
}
}
// Clean up
if ( CheMPS2::DMRG_storeRenormOptrOnDisk ){ dmrgsolver->deleteStoredOperators(); }
delete dmrgsolver;
delete prob;
} else {
CheMPS2::CASSCF koekoek( ham, NULL, NULL, nocc_parsed, nact_parsed, nvir_parsed, tmp_folder );
const int root_num = excitation + 1;
CheMPS2::DMRGSCFoptions * scf_options = new CheMPS2::DMRGSCFoptions();
scf_options->setDoDIIS( true );
scf_options->setDIISGradientBranch( scf_diis_thr );
scf_options->setStoreDIIS( true );
scf_options->setMaxIterations( scf_max_iter );
scf_options->setGradientThreshold( scf_grad_thr );
scf_options->setStoreUnitary( true );
scf_options->setStateAveraging( scf_state_avg );
if ( scf_active_space == 'I' ){ scf_options->setWhichActiveSpace( 0 ); }
if ( scf_active_space == 'N' ){ scf_options->setWhichActiveSpace( 1 ); }
if ( scf_active_space == 'L' ){ scf_options->setWhichActiveSpace( 2 ); }
if ( scf_active_space == 'F' ){ scf_options->setWhichActiveSpace( 3 ); }
scf_options->setDumpCorrelations( print_corr );
scf_options->setStartLocRandom( true );
const double E_CASSCF = koekoek.solve( nelectrons, multiplicity - 1, irrep, opt_scheme, root_num, scf_options );
double E_CASPT2 = 0.0;
if ( caspt2_calc ){
E_CASPT2 = koekoek.caspt2( nelectrons, multiplicity - 1, irrep, opt_scheme, root_num, scf_options, caspt2_ipea, caspt2_imag, ( caspt2_orbs == 'P' ), caspt2_checkpt, caspt2_cumul );
if ( am_i_master ){
cout << "E_CASSCF + E_CASPT2 = E_0 + E_1 + E_2 = " << E_CASSCF + E_CASPT2 << endl;
}
}
if ( ( am_i_master ) && ( scf_molden.length() > 0 ) ){
int * norb_ham = new int[ Symmhelper.getNumberOfIrreps() ];
for ( int irrep = 0; irrep < Symmhelper.getNumberOfIrreps(); irrep++ ){ norb_ham[ irrep ] = 0; }
for ( int orb = 0; orb < ham->getL(); orb++ ){ norb_ham[ ham->getOrbitalIrrep( orb ) ] += 1; }
CheMPS2::Molden * molden_rotator = new CheMPS2::Molden( ham->getL(), Symmhelper.getGroupNumber(), norb_ham );
molden_rotator->read_molden( scf_molden );
molden_rotator->read_unitary( scf_options->getUnitaryStorageName() );
molden_rotator->print( scf_molden, scf_molden + ".rotated" );
delete [] norb_ham;
delete molden_rotator;
}
// Clean up
if (( scf_options->getStoreDIIS() ) && ( am_i_master )){ koekoek.deleteStoredDIIS( scf_options->getDIISStorageName() ); }
delete scf_options;
}
delete [] nocc_parsed;
delete [] nact_parsed;
delete [] nvir_parsed;
delete opt_scheme;
delete ham;
return clean_exit( 0 );
}
|