File: PyCheMPS2.pyx

package info (click to toggle)
chemps2 1.8.12-5
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 5,432 kB
  • sloc: cpp: 38,521; python: 1,116; f90: 215; makefile: 45; sh: 23
file content (386 lines) | stat: -rw-r--r-- 21,953 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
#
#   CheMPS2: a spin-adapted implementation of DMRG for ab initio quantum chemistry
#   Copyright (C) 2013-2018 Sebastian Wouters
#
#   This program is free software; you can redistribute it and/or modify
#   it under the terms of the GNU General Public License as published by
#   the Free Software Foundation; either version 2 of the License, or
#   (at your option) any later version.
#
#   This program is distributed in the hope that it will be useful,
#   but WITHOUT ANY WARRANTY; without even the implied warranty of
#   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#   GNU General Public License for more details.
#
#   You should have received a copy of the GNU General Public License along
#   with this program; if not, write to the Free Software Foundation, Inc.,
#   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#

import numpy as np
cimport numpy as np
from libcpp.string cimport string
from libcpp cimport bool
np.import_array()

cimport Init
cimport ConvScheme
cimport Ham
cimport Prob
cimport Corr
cimport TwoRDM
cimport ThreeRDM
cimport DMRGsolver
cimport DMRGSCFopt
cimport DMRGSCF
cimport FullCI

cdef class PyInitialize:
    cdef Init.Initialize * thisptr
    def __cinit__(self):
        self.thisptr = new Init.Initialize()
    def __dealloc__(self):
        del self.thisptr
    def Init(self):
        self.thisptr.Init()

cdef class PyConvergenceScheme:
    cdef ConvScheme.ConvergenceScheme * thisptr
    def __cinit__(self, int nInstructions):
        self.thisptr = new ConvScheme.ConvergenceScheme(nInstructions)
    def __dealloc__(self):
        del self.thisptr
    def setInstruction(self, int instruction, int D, double Econv, int nMax, double noisePrefactor):
        self.thisptr.setInstruction(instruction, D, Econv, nMax, noisePrefactor)
    def set_instruction(self, int instruction, int D, double Econv, int nMax, double noisePrefactor, double dvdson_rtol):
        self.thisptr.set_instruction(instruction, D, Econv, nMax, noisePrefactor, dvdson_rtol)
    def getD(self, int instruction):
        return self.thisptr.get_D(instruction)
    def getEconv(self, int instruction):
        return self.thisptr.get_energy_conv(instruction)
    def getMaxSweeps(self, int instruction):
        return self.thisptr.get_max_sweeps(instruction)
    def getNoisePrefactor(self, int instruction):
        return self.thisptr.get_noise_prefactor(instruction)
    def getDavidsonRTOL(self, int instruction):
        return self.thisptr.get_dvdson_rtol(instruction)

cdef class PyHamiltonian:
    cdef Ham.Hamiltonian * thisptr
    def __cinit__(self, int Norbitals, int nGroup, np.ndarray[int, ndim=1, mode="c"] OrbIrreps not None, string filename='none'):
        if ( filename.compare('none')==0 ):
            assert OrbIrreps.flags['C_CONTIGUOUS']
            assert OrbIrreps.shape[0] == Norbitals
            self.thisptr = new Ham.Hamiltonian(Norbitals, nGroup, &OrbIrreps[0])
        else:
            self.thisptr = new Ham.Hamiltonian(filename, nGroup)
    def __dealloc__(self):
        del self.thisptr
    def getL(self):
        return self.thisptr.getL()
    def getNGroup(self):
        return self.thisptr.getNGroup()
    def getOrbitalIrrep(self, int orb):
        return self.thisptr.getOrbitalIrrep(orb)
    def setEconst(self, double value):
        self.thisptr.setEconst(value)
    def setTmat(self, int index1, int index2, double value):
        self.thisptr.setTmat(index1, index2, value)
    def setVmat(self, int index1, int index2, int index3, int index4, double value):
        self.thisptr.setVmat(index1, index2, index3, index4, value)
    def getEconst(self):
        return self.thisptr.getEconst()
    def getTmat(self, int index1, int index2):
        return self.thisptr.getTmat(index1, index2)
    def getVmat(self, int index1, int index2, int index3, int index4):
        return self.thisptr.getVmat(index1, index2, index3, index4)
    def save(self):
        self.thisptr.save()
    def read(self):
        self.thisptr.read()
    def writeFCIDUMP(self, string filename, int Nelec, int TwoS, int TargetIrrep):
        self.thisptr.writeFCIDUMP( filename, Nelec, TwoS, TargetIrrep )
        
cdef class PyProblem:
    cdef Prob.Problem * thisptr
    def __cinit__(self, PyHamiltonian Hami, int TwoS, int N, int Irrep):
        self.thisptr = new Prob.Problem(Hami.thisptr, TwoS, N, Irrep)
    def __dealloc__(self):
        del self.thisptr
    def gL(self):
        return self.thisptr.gL()
    def gSy(self):
        return self.thisptr.gSy()
    def gIrrep(self, int orb):
        return self.thisptr.gIrrep(orb)
    def gTwoS(self):
        return self.thisptr.gTwoS()
    def gN(self):
        return self.thisptr.gN()
    def gIrrep(self):
        return self.thisptr.gIrrep()
    def gEconst(self):
        return self.thisptr.gEconst()
    def gMxElement(self, int index1, int index2, int index3, int index4):
        return self.thisptr.gMxElement(index1, index2, index3, index4)
    def setMxElement(self, int index1, int index2, int index3, int index4, double value):
        self.thisptr.setMxElement(index1, index2, index3, index4, value)
    def SetupReorderD2h(self):
        self.thisptr.SetupReorderD2h()
        
cdef class PyDMRG:
    cdef DMRGsolver.DMRG * thisptr
    def __cinit__(self, PyProblem Probl, PyConvergenceScheme OptScheme, bool makechkpt=False, string tmpfolder='/tmp'):
        self.thisptr = new DMRGsolver.DMRG(Probl.thisptr, OptScheme.thisptr, makechkpt, tmpfolder)
    def __dealloc__(self):
        del self.thisptr
    def Solve(self):
        return self.thisptr.Solve()
    def PreSolve(self):
        self.thisptr.PreSolve()
    def calc2DMandCorrelations(self):
        self.thisptr.calc2DMandCorrelations()
    def calc_rdms_and_correlations(self, bool do_3rdm):
        self.thisptr.calc_rdms_and_correlations( do_3rdm )
    def deleteStoredMPS(self):
        self.thisptr.deleteStoredMPS()
    def deleteStoredOperators(self):
        self.thisptr.deleteStoredOperators()
    def activateExcitations(self, int nExcitations):
        self.thisptr.activateExcitations(nExcitations)
    def newExcitation(self, const double Eshift):
        self.thisptr.newExcitation(Eshift)
    #Access functions of the Corr.Correlations class
    def getCspin(self, int row, int col):
        return self.thisptr.getCorrelations().getCspin_HAM(row, col)
    def getCdens(self, int row, int col):
        return self.thisptr.getCorrelations().getCdens_HAM(row, col)
    def getCspinflip(self, int row, int col):
        return self.thisptr.getCorrelations().getCspinflip_HAM(row, col)
    def getCdirad(self, int row, int col):
        return self.thisptr.getCorrelations().getCdirad_HAM(row, col)
    def getMutInfo(self, int row, int col):
        return self.thisptr.getCorrelations().getMutualInformation_HAM(row, col)
    def getSingleOrbEntropy(self, int index):
        return self.thisptr.getCorrelations().SingleOrbitalEntropy_HAM(index)
    def getMutInfoDistance(self, int power):
        return self.thisptr.getCorrelations().MutualInformationDistance(power)
    def printCorrelations(self):
        self.thisptr.getCorrelations().Print()
    #Access functions of the TwoDM class
    def get2DMA(self, int i1, int i2, int i3, int i4):
        return self.thisptr.get2DM().getTwoDMA_HAM(i1, i2, i3, i4)
    def get2DMB(self, int i1, int i2, int i3, int i4):
        return self.thisptr.get2DM().getTwoDMB_HAM(i1, i2, i3, i4)
    def get2DMenergy(self):
        return self.thisptr.get2DM().energy()
    def getDoubleTrace2DMA(self):
        return self.thisptr.get2DM().trace()
    #Access functions of the ThreeDM class
    def get3DM(self, int i1, int i2, int i3, int i4, int i5, int i6):
        return self.thisptr.get3DM().get_ham_index(i1, i2, i3, i4, i5, i6)
    def Symm4RDM(self, np.ndarray[double, ndim=1, mode="c"] output not None, int ham_orb1, int ham_orb2, bool last_case):
        assert output.flags['C_CONTIGUOUS']
        self.thisptr.Symm4RDM(&output[0], ham_orb1, ham_orb2, last_case)
    def getFCIcoefficient(self, np.ndarray[int, ndim=1, mode="c"] alpha not None, np.ndarray[int, ndim=1, mode="c"] beta not None):
        assert alpha.flags['C_CONTIGUOUS']
        assert  beta.flags['C_CONTIGUOUS']
        return self.thisptr.getFCIcoefficient(&alpha[0],&beta[0])

cdef class PyDMRGSCFoptions:
    cdef DMRGSCFopt.DMRGSCFoptions * thisptr
    def __cinit__(self):
        self.thisptr = new DMRGSCFopt.DMRGSCFoptions()
    def __dealloc__(self):
        del self.thisptr
    def getDoDIIS(self):
        return self.thisptr.getDoDIIS()
    def getDIISGradientBranch(self):
        return self.thisptr.getDIISGradientBranch()
    def getNumDIISVecs(self):
        return self.thisptr.getNumDIISVecs()
    def getStoreDIIS(self):
        return self.thisptr.getStoreDIIS()
    def getMaxIterations(self):
        return self.thisptr.getMaxIterations()
    def getGradientThreshold(self):
        return self.thisptr.getGradientThreshold()
    def getStoreUnitary(self):
        return self.thisptr.getStoreUnitary()
    def getWhichActiveSpace(self):
        return self.thisptr.getWhichActiveSpace()
    def getDumpCorrelations(self):
        return self.thisptr.getDumpCorrelations()
    def getStateAveraging(self):
        return self.thisptr.getStateAveraging()
    def setDoDIIS(self, bool val):
        self.thisptr.setDoDIIS(val)
    def setDIISGradientBranch(self, double val):
        self.thisptr.setDIISGradientBranch(val)
    def setNumDIISVecs(self, int val):
        self.thisptr.setNumDIISVecs(val)
    def setStoreDIIS(self, bool val):
        self.thisptr.setStoreDIIS(val)
    def setMaxIterations(self, int val):
        self.thisptr.setMaxIterations(val)
    def setGradientThreshold(self, double val):
        self.thisptr.setGradientThreshold(val)
    def setStoreUnitary(self, bool val):
        self.thisptr.setStoreUnitary(val)
    def setWhichActiveSpace(self, int val):
        self.thisptr.setWhichActiveSpace(val)
    def setDumpCorrelations(self, bool val):
        self.thisptr.setDumpCorrelations(val)
    def setStateAveraging(self, bool val):
        self.thisptr.setStateAveraging(val)
        
cdef class PyCASSCF:
    cdef DMRGSCF.CASSCF * thisptr
    def __cinit__(self, PyHamiltonian theHam, np.ndarray[int, ndim=1, mode="c"] DOCC not None, np.ndarray[int, ndim=1, mode="c"] SOCC not None, np.ndarray[int, ndim=1, mode="c"] NOCC not None, np.ndarray[int, ndim=1, mode="c"] NDMRG not None, np.ndarray[int, ndim=1, mode="c"] NVIRT not None):
        assert  DOCC.flags['C_CONTIGUOUS']
        assert  SOCC.flags['C_CONTIGUOUS']
        assert  NOCC.flags['C_CONTIGUOUS']
        assert NDMRG.flags['C_CONTIGUOUS']
        assert NVIRT.flags['C_CONTIGUOUS']
        self.thisptr = new DMRGSCF.CASSCF(theHam.thisptr, &DOCC[0], &SOCC[0], &NOCC[0], &NDMRG[0], &NVIRT[0])
    def __dealloc__(self):
        del self.thisptr
    def solve(self, int Nel, int TwoS, int Irrep, PyConvergenceScheme OptScheme, int rootNum, PyDMRGSCFoptions theDMRGSCFopts):
        return self.thisptr.solve(Nel, TwoS, Irrep, OptScheme.thisptr, rootNum, theDMRGSCFopts.thisptr)
    def caspt2(self, int Nel, int TwoS, int Irrep, PyConvergenceScheme OptScheme, int rootNum, PyDMRGSCFoptions theDMRGSCFopts, double IPEA, double IMAG, bool PSEUDOCANONICAL):
        return self.thisptr.caspt2(Nel, TwoS, Irrep, OptScheme.thisptr, rootNum, theDMRGSCFopts.thisptr, IPEA, IMAG, PSEUDOCANONICAL)
    def solve_fci(self, int Nel, int TwoS, int Irrep, int rootNum, PyDMRGSCFoptions theDMRGSCFopts):
        return self.thisptr.solve(Nel, TwoS, Irrep, NULL, rootNum, theDMRGSCFopts.thisptr)
    def caspt2_fci(self, int Nel, int TwoS, int Irrep, int rootNum, PyDMRGSCFoptions theDMRGSCFopts, double IPEA, double IMAG, bool PSEUDOCANONICAL):
        return self.thisptr.caspt2(Nel, TwoS, Irrep, NULL, rootNum, theDMRGSCFopts.thisptr, IPEA, IMAG, PSEUDOCANONICAL)
    def deleteStoredUnitary(self):
        self.thisptr.deleteStoredUnitary()
    def deleteStoredDIIS(self):
        self.thisptr.deleteStoredDIIS()
        
cdef class PyFCI:
    cdef FullCI.FCI * thisptr
    def __cinit__(self, PyHamiltonian theHam, unsigned int Nel_up, unsigned int Nel_down, int TargetIrrep, double maxMemWorkMB=100.0, int FCIverbose=1):
        self.thisptr = new FullCI.FCI(theHam.thisptr, Nel_up, Nel_down, TargetIrrep, maxMemWorkMB, FCIverbose)
    def __dealloc__(self):
        del self.thisptr
    def getVecLength(self):
        return self.thisptr.getVecLength(0)
    def LowestEnergyDeterminant(self):
        return self.thisptr.LowestEnergyDeterminant()
    def GSDavidson(self, np.ndarray[double, ndim=1, mode="c"] inoutput not None):
        assert inoutput.flags['C_CONTIGUOUS']
        Energy = self.thisptr.GSDavidson(&inoutput[0])
        return Energy
    def CalcSpinSquared(self, np.ndarray[double, ndim=1, mode="c"] GSvector not None):
        assert GSvector.flags['C_CONTIGUOUS']
        SpinSquared = self.thisptr.CalcSpinSquared(&GSvector[0])
        return SpinSquared
    def Fill2RDM(self, np.ndarray[double, ndim=1, mode="c"] GSvector not None, np.ndarray[double, ndim=1, mode="c"] TwoRDM not None):
        assert GSvector.flags['C_CONTIGUOUS']
        assert   TwoRDM.flags['C_CONTIGUOUS']
        EnergyByContraction = self.thisptr.Fill2RDM(&GSvector[0], &TwoRDM[0])
        return EnergyByContraction
    def Fill3RDM(self, np.ndarray[double, ndim=1, mode="c"] GSvector not None, np.ndarray[double, ndim=1, mode="c"] ThreeRDM not None):
        assert GSvector.flags['C_CONTIGUOUS']
        assert ThreeRDM.flags['C_CONTIGUOUS']
        self.thisptr.Fill3RDM(&GSvector[0], &ThreeRDM[0])
    def Fill4RDM(self, np.ndarray[double, ndim=1, mode="c"] GSvector not None, np.ndarray[double, ndim=1, mode="c"] FourRDM not None):
        assert GSvector.flags['C_CONTIGUOUS']
        assert  FourRDM.flags['C_CONTIGUOUS']
        self.thisptr.Fill4RDM(&GSvector[0], &FourRDM[0])
    def Diag4RDM(self, np.ndarray[double, ndim=1, mode="c"] GSvector not None, np.ndarray[double, ndim=1, mode="c"] ThreeRDM not None, unsigned int ham_orbz, np.ndarray[double, ndim=1, mode="c"] output not None):
        assert GSvector.flags['C_CONTIGUOUS']
        assert ThreeRDM.flags['C_CONTIGUOUS']
        assert   output.flags['C_CONTIGUOUS']
        self.thisptr.Diag4RDM(&GSvector[0], &ThreeRDM[0], ham_orbz, &output[0])
    def FillRandom(self, unsigned int vecLength, np.ndarray[double, ndim=1, mode="c"] vector not None):
        assert vector.flags['C_CONTIGUOUS']
        self.thisptr.FillRandom(vecLength, &vector[0])
    def getFCIcoefficient(self, np.ndarray[int, ndim=1, mode="c"] alpha not None, np.ndarray[int, ndim=1, mode="c"] beta not None, np.ndarray[double, ndim=1, mode="c"] GSvector not None):
        assert    alpha.flags['C_CONTIGUOUS']
        assert     beta.flags['C_CONTIGUOUS']
        assert GSvector.flags['C_CONTIGUOUS']
        return self.thisptr.getFCIcoeff(&alpha[0], &beta[0], &GSvector[0])
    def RetardedGF(self, double omega, double eta, int orb_alpha, int orb_beta, bool isUp, double GSenergy, np.ndarray[double, ndim=1, mode="c"] GSvector not None, PyHamiltonian Hami):
        cdef np.ndarray[double, ndim=1, mode="c"] RePart = np.zeros([1])
        cdef np.ndarray[double, ndim=1, mode="c"] ImPart = np.zeros([1])
        assert GSvector.flags['C_CONTIGUOUS']
        assert   RePart.flags['C_CONTIGUOUS']
        assert   ImPart.flags['C_CONTIGUOUS']
        self.thisptr.RetardedGF(omega, eta, orb_alpha, orb_beta, isUp, GSenergy, &GSvector[0], Hami.thisptr, &RePart[0], &ImPart[0])
        return (RePart[0], ImPart[0])
    def RetardedGF_addition(self, double omega, double eta, int orb_alpha, int orb_beta, bool isUp, double GSenergy, np.ndarray[double, ndim=1, mode="c"] GSvector not None, PyHamiltonian Hami, np.ndarray[double, ndim=1, mode="c"] Re2RDM not None, np.ndarray[double, ndim=1, mode="c"] Im2RDM not None, np.ndarray[double, ndim=1, mode="c"] Add2RDM not None):
        cdef np.ndarray[double, ndim=1, mode="c"] RePart = np.zeros([1])
        cdef np.ndarray[double, ndim=1, mode="c"] ImPart = np.zeros([1])
        assert GSvector.flags['C_CONTIGUOUS']
        assert   RePart.flags['C_CONTIGUOUS']
        assert   ImPart.flags['C_CONTIGUOUS']
        assert   Re2RDM.flags['C_CONTIGUOUS']
        assert   Im2RDM.flags['C_CONTIGUOUS']
        assert  Add2RDM.flags['C_CONTIGUOUS']
        self.thisptr.RetardedGF_addition(omega, eta, orb_alpha, orb_beta, isUp, GSenergy, &GSvector[0], Hami.thisptr, &RePart[0], &ImPart[0], &Re2RDM[0], &Im2RDM[0], &Add2RDM[0])
        return (RePart[0], ImPart[0])
    def RetardedGF_removal(self, double omega, double eta, int orb_alpha, int orb_beta, bool isUp, double GSenergy, np.ndarray[double, ndim=1, mode="c"] GSvector not None, PyHamiltonian Hami, np.ndarray[double, ndim=1, mode="c"] Re2RDM not None, np.ndarray[double, ndim=1, mode="c"] Im2RDM not None, np.ndarray[double, ndim=1, mode="c"] Rem2RDM not None):
        cdef np.ndarray[double, ndim=1, mode="c"] RePart = np.zeros([1])
        cdef np.ndarray[double, ndim=1, mode="c"] ImPart = np.zeros([1])
        assert GSvector.flags['C_CONTIGUOUS']
        assert   RePart.flags['C_CONTIGUOUS']
        assert   ImPart.flags['C_CONTIGUOUS']
        assert   Re2RDM.flags['C_CONTIGUOUS']
        assert   Im2RDM.flags['C_CONTIGUOUS']
        assert  Rem2RDM.flags['C_CONTIGUOUS']
        self.thisptr.RetardedGF_removal(omega, eta, orb_alpha, orb_beta, isUp, GSenergy, &GSvector[0], Hami.thisptr, &RePart[0], &ImPart[0], &Re2RDM[0], &Im2RDM[0], &Rem2RDM[0])
        return (RePart[0], ImPart[0])
    def GFmatrix_add(self, double alpha, double beta, double eta, np.ndarray[int, ndim=1, mode="c"] orbsLeft not None, np.ndarray[int, ndim=1, mode="c"] orbsRight not None, bool isUp, np.ndarray[double, ndim=1, mode="c"] GSvector not None, PyHamiltonian Hami):
        cdef np.ndarray[double, ndim=1, mode="c"] RePart = np.zeros([len(orbsLeft)*len(orbsRight)])
        cdef np.ndarray[double, ndim=1, mode="c"] ImPart = np.zeros([len(orbsLeft)*len(orbsRight)])
        assert  GSvector.flags['C_CONTIGUOUS']
        assert    RePart.flags['C_CONTIGUOUS']
        assert    ImPart.flags['C_CONTIGUOUS']
        assert  orbsLeft.flags['C_CONTIGUOUS']
        assert orbsRight.flags['C_CONTIGUOUS']
        self.thisptr.GFmatrix_addition(alpha, beta, eta, &orbsLeft[0], len(orbsLeft), &orbsRight[0], len(orbsRight), isUp, &GSvector[0], Hami.thisptr, &RePart[0], &ImPart[0])
        return ( RePart, ImPart )
    def GFmatrix_rem(self, double alpha, double beta, double eta, np.ndarray[int, ndim=1, mode="c"] orbsLeft not None, np.ndarray[int, ndim=1, mode="c"] orbsRight not None, bool isUp, np.ndarray[double, ndim=1, mode="c"] GSvector not None, PyHamiltonian Hami):
        cdef np.ndarray[double, ndim=1, mode="c"] RePart = np.zeros([len(orbsLeft)*len(orbsRight)])
        cdef np.ndarray[double, ndim=1, mode="c"] ImPart = np.zeros([len(orbsLeft)*len(orbsRight)])
        assert  GSvector.flags['C_CONTIGUOUS']
        assert    RePart.flags['C_CONTIGUOUS']
        assert    ImPart.flags['C_CONTIGUOUS']
        assert  orbsLeft.flags['C_CONTIGUOUS']
        assert orbsRight.flags['C_CONTIGUOUS']
        self.thisptr.GFmatrix_removal(alpha, beta, eta, &orbsLeft[0], len(orbsLeft), &orbsRight[0], len(orbsRight), isUp, &GSvector[0], Hami.thisptr, &RePart[0], &ImPart[0])
        return ( RePart, ImPart )
    def DensityResponseGF(self, double omega, double eta, int orb_alpha, int orb_beta, double GSenergy, np.ndarray[double, ndim=1, mode="c"] GSvector not None):
        cdef np.ndarray[double, ndim=1, mode="c"] RePart = np.zeros([1])
        cdef np.ndarray[double, ndim=1, mode="c"] ImPart = np.zeros([1])
        assert GSvector.flags['C_CONTIGUOUS']
        assert   RePart.flags['C_CONTIGUOUS']
        assert   ImPart.flags['C_CONTIGUOUS']
        self.thisptr.DensityResponseGF(omega, eta, orb_alpha, orb_beta, GSenergy, &GSvector[0], &RePart[0], &ImPart[0])
        return (RePart[0], ImPart[0])
    def DensityResponseGF_forward(self, double omega, double eta, int orb_alpha, int orb_beta, double GSenergy, np.ndarray[double, ndim=1, mode="c"] GSvector not None, np.ndarray[double, ndim=1, mode="c"] Re2RDM not None, np.ndarray[double, ndim=1, mode="c"] Im2RDM not None, np.ndarray[double, ndim=1, mode="c"] Dens2RDM not None):
        cdef np.ndarray[double, ndim=1, mode="c"] RePart = np.zeros([1])
        cdef np.ndarray[double, ndim=1, mode="c"] ImPart = np.zeros([1])
        assert GSvector.flags['C_CONTIGUOUS']
        assert   RePart.flags['C_CONTIGUOUS']
        assert   ImPart.flags['C_CONTIGUOUS']
        assert   Re2RDM.flags['C_CONTIGUOUS']
        assert   Im2RDM.flags['C_CONTIGUOUS']
        assert Dens2RDM.flags['C_CONTIGUOUS']
        self.thisptr.DensityResponseGF_forward(omega, eta, orb_alpha, orb_beta, GSenergy, &GSvector[0], &RePart[0], &ImPart[0], &Re2RDM[0], &Im2RDM[0], &Dens2RDM[0])
        return (RePart[0], ImPart[0])
    def DensityResponseGF_backward(self, double omega, double eta, int orb_alpha, int orb_beta, double GSenergy, np.ndarray[double, ndim=1, mode="c"] GSvector not None, np.ndarray[double, ndim=1, mode="c"] Re2RDM not None, np.ndarray[double, ndim=1, mode="c"] Im2RDM not None, np.ndarray[double, ndim=1, mode="c"] Dens2RDM not None):
        cdef np.ndarray[double, ndim=1, mode="c"] RePart = np.zeros([1])
        cdef np.ndarray[double, ndim=1, mode="c"] ImPart = np.zeros([1])
        assert GSvector.flags['C_CONTIGUOUS']
        assert   RePart.flags['C_CONTIGUOUS']
        assert   ImPart.flags['C_CONTIGUOUS']
        assert   Re2RDM.flags['C_CONTIGUOUS']
        assert   Im2RDM.flags['C_CONTIGUOUS']
        assert Dens2RDM.flags['C_CONTIGUOUS']
        self.thisptr.DensityResponseGF_backward(omega, eta, orb_alpha, orb_beta, GSenergy, &GSvector[0], &RePart[0], &ImPart[0], &Re2RDM[0], &Im2RDM[0], &Dens2RDM[0])
        return (RePart[0], ImPart[0])