1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
|
#
# CheMPS2: a spin-adapted implementation of DMRG for ab initio quantum chemistry
# Copyright (C) 2013-2018 Sebastian Wouters
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
import numpy as np
import sys
import PyCheMPS2
import ctypes
# Set the seed of the random number generator and cout.precision
Initializer = PyCheMPS2.PyInitialize()
Initializer.Init()
# Read in the FCIDUMP
psi4group = 7 # d2h: see chemps2/Irreps.h
filename = b'../../tests/matrixelements/N2.CCPVDZ.FCIDUMP'
orbirreps = np.array([-1, -1], dtype=ctypes.c_int) # CheMPS2 reads it in from FCIDUMP
Ham = PyCheMPS2.PyHamiltonian( -1, psi4group, orbirreps, filename )
# Define the symmetry sector
TwoS = 0 # Two times the targeted spin
Nelec = 14 # The number of electrons
Irrep = 0 # The targeted irrep
# Define the CASSCF
DOCC = np.array([ 3, 0, 0, 0, 0, 2, 1, 1 ], dtype=ctypes.c_int) # see N2.ccpvdz.out
SOCC = np.array([ 0, 0, 0, 0, 0, 0, 0, 0 ], dtype=ctypes.c_int)
NOCC = np.array([ 1, 0, 0, 0, 0, 1, 0, 0 ], dtype=ctypes.c_int)
NDMRG = np.array([ 2, 0, 1, 1, 0, 2, 1, 1 ], dtype=ctypes.c_int)
NVIRT = np.array([ 4, 1, 2, 2, 1, 4, 2, 2 ], dtype=ctypes.c_int)
theDMRGSCF = PyCheMPS2.PyCASSCF(Ham, DOCC, SOCC, NOCC, NDMRG, NVIRT)
# Setting the DMRGSCFoptions and run DMRGSCF
root_num = 1 # Ground state only
scf_options = PyCheMPS2.PyDMRGSCFoptions()
scf_options.setDoDIIS( True )
IPEA = 0.0
IMAG = 0.0
PSEUDOCANONICAL = False
Energy1 = theDMRGSCF.solve_fci( Nelec, TwoS, Irrep, root_num, scf_options)
Energy2 = theDMRGSCF.caspt2_fci(Nelec, TwoS, Irrep, root_num, scf_options, IPEA, IMAG, PSEUDOCANONICAL)
# Clean-up
if scf_options.getStoreUnitary():
theDMRGSCF.deleteStoredUnitary()
if scf_options.getStoreDIIS():
theDMRGSCF.deleteStoredDIIS()
# The order of deallocation matters!
del scf_options
del theDMRGSCF
del Ham
del Initializer
# Check whether the test succeeded
if (( np.fabs( Energy1 + 109.103502335253 ) < 1e-8 ) and ( np.fabs( Energy2 + 0.159997813112638 ) < 1e-8 )):
print("================> Did test 13 succeed : yes")
else:
print("================> Did test 13 succeed : no")
|