1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
|
#
# CheMPS2: a spin-adapted implementation of DMRG for ab initio quantum chemistry
# Copyright (C) 2013-2018 Sebastian Wouters
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
import numpy as np
import sys
import PyCheMPS2
import ctypes
# Set the seed of the random number generator and cout.precision
Initializer = PyCheMPS2.PyInitialize()
Initializer.Init()
########################
### 1D Hubbard model ###
########################
L = 10 # Number of lattice sites
Group = 0 # C1 symmetry
U = 2.0 # On-site repulsion
T = -1.0 # Hopping term
TwoS = 5 # Two times the targeted spin
Nelec = 9 # The number of electrons
Irrep = 0 # The targeted irrep
# The Hamiltonian initializes all its matrix elements to 0.0
orbirreps = np.zeros([L], dtype=ctypes.c_int)
Ham = PyCheMPS2.PyHamiltonian(L, Group, orbirreps)
for cnt in range(0, L):
Ham.setVmat(cnt, cnt, cnt, cnt, U)
for cnt in range(0, L-1):
Ham.setTmat(cnt, cnt+1, T)
# Setting up the Problem
Prob = PyCheMPS2.PyProblem(Ham, TwoS, Nelec, Irrep)
# Setting up the ConvergenceScheme
# setInstruction(instruction, D, Econst, maxSweeps, noisePrefactor)
OptScheme = PyCheMPS2.PyConvergenceScheme(2) # 2 instructions
OptScheme.setInstruction(0, 30, 1e-10, 3, 0.1)
OptScheme.setInstruction(1, 1000, 1e-10, 10, 0.0)
# Do DMRG calculation and print the correlations
theDMRG = PyCheMPS2.PyDMRG(Prob, OptScheme)
EnergyDMRG = theDMRG.Solve()
theDMRG.calc2DMandCorrelations()
theDMRG.printCorrelations()
# Clean-up
# theDMRG.deleteStoredMPS()
theDMRG.deleteStoredOperators()
del theDMRG
del OptScheme
del Prob
# Do FCI calculation
Nel_up = ( Nelec + TwoS ) / 2
Nel_down = ( Nelec - TwoS ) / 2
maxMemWorkMB = 10.0
FCIverbose = 1
theFCI = PyCheMPS2.PyFCI(Ham, Nel_up, Nel_down, Irrep, maxMemWorkMB, FCIverbose)
GSvector = np.zeros([ theFCI.getVecLength() ], dtype=ctypes.c_double)
theFCI.FillRandom( theFCI.getVecLength() , GSvector )
EnergyFCI = theFCI.GSDavidson(GSvector)
# Clean-up
del theFCI
del Ham
del Initializer
# Check whether the test succeeded
if (np.fabs(EnergyDMRG - EnergyFCI) < 1e-8):
print("================> Did test 4 succeed : yes")
else:
print("================> Did test 4 succeed : no")
|