1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
/*
CheMPS2: a spin-adapted implementation of DMRG for ab initio quantum chemistry
Copyright (C) 2013-2018 Sebastian Wouters
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <iostream>
#include <math.h>
#include <string.h>
#include "Initialize.h"
#include "DMRG.h"
#include "FCI.h"
#include "MPIchemps2.h"
using namespace std;
void counter2bits( const int L, const int counter, int * bits, CheMPS2::Hamiltonian * ham, int * nelec, int * irrep ){
nelec[ 0 ] = 0;
irrep[ 0 ] = 0;
for ( int orb = 0; orb < L; orb++ ){
bits[ orb ] = ( counter & ( 1 << orb ) ) >> orb;
if ( bits[ orb ] == 1 ){
nelec[ 0 ] += bits[ orb ];
irrep[ 0 ] = CheMPS2::Irreps::directProd( irrep[ 0 ], ham->getOrbitalIrrep( orb ) );
}
}
}
int relative_phase( const int L, int * string_up, int * string_down ){
int phase = 1;
for ( int orb_down = 0; orb_down < L - 1; orb_down++ ){
if ( string_down[ orb_down ] == 1 ){
for ( int orb_up = orb_down + 1; orb_up < L; orb_up++ ){
if ( string_up[ orb_up ] == 1 ){
phase *= -1;
}
}
}
}
return phase;
}
int main(void){
#ifdef CHEMPS2_MPI_COMPILATION
CheMPS2::MPIchemps2::mpi_init();
#endif
CheMPS2::Initialize::Init();
// The Hamiltonian
const int psi4groupnumber = 7; // d2h -- see Irreps.h and N2.sto3g.out
const string matrixelements = "${CMAKE_SOURCE_DIR}/tests/matrixelements/N2.STO3G.FCIDUMP";
CheMPS2::Hamiltonian * Ham = new CheMPS2::Hamiltonian( matrixelements, psi4groupnumber );
cout << "The group was found to be " << CheMPS2::Irreps::getGroupName( Ham->getNGroup() ) << endl;
// Look at six symmetry sectors
const int Nelec = 14;
const int num_sectors = 6;
int TwoS[] = { 0, 2, 4, 4, 2, 2 };
int Irreps[] = { 0, 5, 0, 5, 2, 6 };
double E_dmrg[ 6 ]; // DMRG energy
double E_fci [ 6 ]; // FCI energy
double C_dev [ 6 ]; // RMS difference of DMRG and FCI coefficients
double S_fci [ 6 ]; // FCI spin squared
for ( int sector = 0; sector < num_sectors; sector++ ){
// The targeted symmetry sector and the Hamiltonian form together a FCI problem
CheMPS2::Problem * prob = new CheMPS2::Problem( Ham, TwoS[ sector ], Nelec, Irreps[ sector ] );
// To perform DMRG, a set of convergence instructions should be provided
CheMPS2::ConvergenceScheme opt_scheme( 2 );
// ConvergenceScheme::set_instruction( counter, virtual_dimension, energy_convergence, max_sweeps, noise_prefactor, dvdson_rtol );
opt_scheme.set_instruction( 0, 500, 1e-10, 2, 0.0, 1e-5 );
opt_scheme.set_instruction( 1, 1000, 1e-10, 30, 0.0, 1e-10 ); // Tight convergence for accurate FCI coefficients
// Do DMRG calculation
CheMPS2::DMRG * dmrg_solver = new CheMPS2::DMRG( prob, &opt_scheme );
E_dmrg[ sector ] = dmrg_solver->Solve();
dmrg_solver->calc2DMandCorrelations();
//Perform full configuration interation
#ifdef CHEMPS2_MPI_COMPILATION
if ( CheMPS2::MPIchemps2::mpi_rank() == MPI_CHEMPS2_MASTER )
#endif
{
const int nelec_up = ( Nelec + TwoS[ sector ] ) / 2;
const int nelec_down = ( Nelec - TwoS[ sector ] ) / 2;
const double workmem_mb = 10.0;
const int verbose = 1;
CheMPS2::FCI * fci_solver = new CheMPS2::FCI( Ham, nelec_up, nelec_down, Irreps[ sector ], workmem_mb, verbose );
double * GSvector = new double[ fci_solver->getVecLength( 0 ) ];
fci_solver->ClearVector( fci_solver->getVecLength( 0 ), GSvector );
GSvector[ fci_solver->LowestEnergyDeterminant() ] = 1.0;
E_fci[ sector ] = fci_solver->GSDavidson( GSvector );
S_fci[ sector ] = fci_solver->CalcSpinSquared( GSvector );
{ //Compare the FCI and DMRG determinant coefficients
int maxcount = 1;
for ( int orb = 0; orb < Ham->getL(); orb++ ){ maxcount *= 2; }
int n_up;
int n_down;
int irrep_up;
int irrep_down;
int * string_up = new int[ Ham->getL() ];
int * string_down = new int[ Ham->getL() ];
double rms_error1 = 0.0;
double rms_error2 = 0.0;
for ( int count_up = 0; count_up < maxcount; count_up++ ){
counter2bits( Ham->getL(), count_up, string_up, Ham, &n_up, &irrep_up );
if ( n_up == nelec_up ){
for ( int count_down = 0; count_down < maxcount; count_down++ ){
counter2bits( Ham->getL(), count_down, string_down, Ham, &n_down, &irrep_down );
if (( n_down == nelec_down ) && ( CheMPS2::Irreps::directProd( irrep_up, irrep_down ) == Irreps[ sector ] )){
const double coeff_dmrg = dmrg_solver->getFCIcoefficient( string_up, string_down, false );
const double coeff_fci = fci_solver->getFCIcoeff( string_up, string_down, GSvector );
const double phase_diff = relative_phase( Ham->getL(), string_up, string_down );
const double temp1 = coeff_dmrg - phase_diff * coeff_fci;
const double temp2 = coeff_dmrg + phase_diff * coeff_fci;
rms_error1 += temp1 * temp1;
rms_error2 += temp2 * temp2;
}
}
}
}
C_dev[ sector ] = sqrt( ( rms_error1 < rms_error2 ) ? rms_error1 : rms_error2 ); // The global phase of the wavefunction is arbitrary, hence.
cout << "RMS difference FCI and DMRG determinant coefficients = " << C_dev[ sector ] << endl;
delete [] string_up;
delete [] string_down;
}
delete [] GSvector;
delete fci_solver;
}
//Clean up
if ( CheMPS2::DMRG_storeMpsOnDisk ){ dmrg_solver->deleteStoredMPS(); }
if ( CheMPS2::DMRG_storeRenormOptrOnDisk ){ dmrg_solver->deleteStoredOperators(); }
delete dmrg_solver;
delete prob;
}
#ifdef CHEMPS2_MPI_COMPILATION
CheMPS2::MPIchemps2::broadcast_array_double( E_fci, num_sectors, MPI_CHEMPS2_MASTER );
CheMPS2::MPIchemps2::broadcast_array_double( C_dev, num_sectors, MPI_CHEMPS2_MASTER );
#endif
// Clean up the Hamiltonian
delete Ham;
// Check success
bool success = true;
for ( int sector = 0; sector < num_sectors; sector++ ){
success = ( success ) && ( fabs( E_dmrg[ sector ] - E_fci[ sector ] ) < 1e-8 );
success = ( success ) && ( C_dev[ sector ] < 1e-5 );
success = ( success ) && ( fabs( S_fci[ sector ] - 0.25 * TwoS[ sector ] * ( TwoS[ sector ] + 2 ) ) < 1e-8 );
}
#ifdef CHEMPS2_MPI_COMPILATION
CheMPS2::MPIchemps2::mpi_finalize();
#endif
cout << "================> Did test 1 succeed : ";
if ( success ){
cout << "yes" << endl;
return 0; //Success
}
cout << "no" << endl;
return 7; //Fail
}
|