1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
/*
CheMPS2: a spin-adapted implementation of DMRG for ab initio quantum chemistry
Copyright (C) 2013-2018 Sebastian Wouters
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <iostream>
#include <math.h>
#include <string.h>
#include "Initialize.h"
#include "DMRG.h"
#include "FCI.h"
#include "MPIchemps2.h"
using namespace std;
int main(void){
#ifdef CHEMPS2_MPI_COMPILATION
CheMPS2::MPIchemps2::mpi_init();
#endif
CheMPS2::Initialize::Init();
//The path to the matrix elements
string matrixelements = "${CMAKE_SOURCE_DIR}/tests/matrixelements/CH4.STO3G.FCIDUMP";
//The Hamiltonian
const int psi4groupnumber = 5; // c2v -- see Irreps.h and CH4.sto3g.out
CheMPS2::Hamiltonian * Ham = new CheMPS2::Hamiltonian( matrixelements, psi4groupnumber );
cout << "The group was found to be " << CheMPS2::Irreps::getGroupName(Ham->getNGroup()) << endl;
//The targeted state
int TwoS = 0;
int N = 10;
int Irrep = 0;
CheMPS2::Problem * Prob = new CheMPS2::Problem(Ham, TwoS, N, Irrep);
//The convergence scheme
CheMPS2::ConvergenceScheme * OptScheme = new CheMPS2::ConvergenceScheme(2);
//OptScheme->setInstruction(instruction, DSU(2), Econvergence, maxSweeps, noisePrefactor);
OptScheme->setInstruction(0, 30, 1e-10, 3, 0.1);
OptScheme->setInstruction(1, 1000, 1e-10, 10, 0.0);
//Run ground state calculation
CheMPS2::DMRG * theDMRG = new CheMPS2::DMRG(Prob, OptScheme);
const double EnergyDMRG = theDMRG->Solve();
const bool do_3rdm = true;
theDMRG->calc_rdms_and_correlations(do_3rdm);
//Get a diagonal block of the 4-RDM
const int L = Ham->getL();
const int ham_orbz = 2;
double * dmrg_diag_4rdm = new double[ L*L*L*L*L*L ];
theDMRG->Symm4RDM( dmrg_diag_4rdm, ham_orbz, ham_orbz, true );
//Calculate FCI reference energy and compare the DMRG and FCI 2-RDMs
double EnergyFCI = 0.0;
double RMSerror2DM = 0.0;
double RMSerror3DM = 0.0;
double RMSerror4DM = 0.0;
#ifdef CHEMPS2_MPI_COMPILATION
if ( CheMPS2::MPIchemps2::mpi_rank() == MPI_CHEMPS2_MASTER )
#endif
{
const int Nel_up = ( N + TwoS ) / 2;
const int Nel_down = ( N - TwoS ) / 2;
const double maxMemWorkMB = 10.0;
const int FCIverbose = 1;
CheMPS2::FCI * theFCI = new CheMPS2::FCI(Ham, Nel_up, Nel_down, Irrep, maxMemWorkMB, FCIverbose);
double * inoutput = new double[theFCI->getVecLength(0)];
theFCI->ClearVector(theFCI->getVecLength(0), inoutput);
inoutput[ theFCI->LowestEnergyDeterminant() ] = 1.0;
EnergyFCI = theFCI->GSDavidson(inoutput);
theFCI->CalcSpinSquared(inoutput);
double * RDMspace = new double[ L*L*L*L*L*L ];
theFCI->Fill2RDM(inoutput, RDMspace);
for (int orb1=0; orb1<L; orb1++){
for (int orb2=0; orb2<L; orb2++){
for (int orb3=0; orb3<L; orb3++){
for (int orb4=0; orb4<L; orb4++){
const double difference = RDMspace[orb1 + L*(orb2 + L*(orb3 + L*orb4))]
- theDMRG->get2DM()->getTwoDMA_HAM(orb1, orb2, orb3, orb4);
RMSerror2DM += difference * difference;
}
}
}
}
theFCI->Fill3RDM(inoutput, RDMspace);
for (int orb1=0; orb1<L; orb1++){
for (int orb2=0; orb2<L; orb2++){
for (int orb3=0; orb3<L; orb3++){
for (int orb4=0; orb4<L; orb4++){
for (int orb5=0; orb5<L; orb5++){
for (int orb6=0; orb6<L; orb6++){
const double difference = RDMspace[orb1 + L*(orb2 + L*(orb3 + L*(orb4 + L*(orb5 + L * orb6))))]
- theDMRG->get3DM()->get_ham_index(orb1, orb2, orb3, orb4, orb5, orb6);
RMSerror3DM += difference * difference;
}
}
}
}
}
}
double * fci_diag_4rdm = new double[ L*L*L*L*L*L ];
theFCI->Diag4RDM( inoutput, RDMspace, ham_orbz, fci_diag_4rdm );
for (int orb1=0; orb1<L; orb1++){
for (int orb2=0; orb2<L; orb2++){
for (int orb3=0; orb3<L; orb3++){
for (int orb4=0; orb4<L; orb4++){
for (int orb5=0; orb5<L; orb5++){
for (int orb6=0; orb6<L; orb6++){
const double difference = fci_diag_4rdm[orb1 + L*(orb2 + L*(orb3 + L*(orb4 + L*(orb5 + L * orb6))))]
- 0.5 * dmrg_diag_4rdm[orb1 + L*(orb2 + L*(orb3 + L*(orb4 + L*(orb5 + L * orb6))))];
RMSerror4DM += difference * difference;
}
}
}
}
}
}
delete [] fci_diag_4rdm;
delete [] RDMspace;
delete [] inoutput;
delete theFCI;
RMSerror2DM = sqrt(RMSerror2DM);
RMSerror3DM = sqrt(RMSerror3DM);
RMSerror4DM = sqrt(RMSerror4DM);
cout << "Frobenius norm of the difference of the DMRG and FCI 2-RDM = " << RMSerror2DM << endl;
cout << "Frobenius norm of the difference of the DMRG and FCI 3-RDM = " << RMSerror3DM << endl;
cout << "Frobenius norm of the difference of the DMRG and FCI diag(4-RDM) for fixed orbital " << ham_orbz << " = " << RMSerror4DM << endl;
cout << "******************************************************************" << endl;
}
#ifdef CHEMPS2_MPI_COMPILATION
CheMPS2::MPIchemps2::broadcast_array_double( &EnergyFCI, 1, MPI_CHEMPS2_MASTER );
CheMPS2::MPIchemps2::broadcast_array_double( &RMSerror2DM, 1, MPI_CHEMPS2_MASTER );
CheMPS2::MPIchemps2::broadcast_array_double( &RMSerror3DM, 1, MPI_CHEMPS2_MASTER );
CheMPS2::MPIchemps2::broadcast_array_double( &RMSerror4DM, 1, MPI_CHEMPS2_MASTER );
#endif
OptScheme->setInstruction(0, 1500, 1e-10, 3, 0.0);
OptScheme->setInstruction(1, 2000, 1e-10, 10, 0.0);
theDMRG->Solve();
theDMRG->calc2DMandCorrelations();
//Clean up DMRG
delete [] dmrg_diag_4rdm;
if (CheMPS2::DMRG_storeMpsOnDisk){ theDMRG->deleteStoredMPS(); }
if (CheMPS2::DMRG_storeRenormOptrOnDisk){ theDMRG->deleteStoredOperators(); }
delete theDMRG;
delete OptScheme;
delete Prob;
delete Ham;
//Check success
const bool success = (( fabs( EnergyDMRG - EnergyFCI ) < 1e-8 ) && ( RMSerror2DM < 1e-3 ) && ( RMSerror3DM < 1e-3 ) && ( RMSerror4DM < 1e-3 )) ? true : false;
#ifdef CHEMPS2_MPI_COMPILATION
CheMPS2::MPIchemps2::mpi_finalize();
#endif
cout << "================> Did test 10 succeed : ";
if (success){
cout << "yes" << endl;
return 0; //Success
}
cout << "no" << endl;
return 7; //Fail
}
|