File: fasl.c

package info (click to toggle)
chezscheme 9.5.4%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 61,640 kB
  • sloc: ansic: 17,508; sh: 759; makefile: 509; csh: 423
file content (1661 lines) | stat: -rw-r--r-- 55,624 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
/* fasl.c
 * Copyright 1984-2017 Cisco Systems, Inc.
 * 
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 * 
 * http://www.apache.org/licenses/LICENSE-2.0
 * 
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/* fasl representation:
 *
 * <fasl-file> -> <fasl-group>*
 *
 * <fasl-group> -> <fasl-header><fasl-object>*
 *
 * <fasl-header> -> {header}\0\0\0chez<uptr version><uptr machine-type>(<bootfile-name> ...)
 *
 * <bootfile-name> -> <octet char>*
 *
 * <fasl-object> -> <situation><uptr size><pcfasl> # size is the size in bytes of <pcfasl>
 *
 * <situation> -> {visit} | {revisit} | {visit-revisit}
 *
 * <pcfasl> -> <compressed><uptr uncompressed-size><compressed fasl> | {uncompressed}<fasl>
 * 
 * <compressed> -> {gzip} | {lz4}
 *
 * <fasl> -> {pair}<uptr n><fasl elt1>...<fasl eltn><fasl last-cdr>
 *
 *        -> {weak-pair}<fasl><fasl>
 *
 *        -> {box}<fasl>
 *
 *        -> {symbol}<faslstring>
 *
 *        -> {gensym}<faslstring name><faslstring uname>
 *
 *        -> {string}<faslstring>
 *
 *        -> {vector}<uptr n><fasl elt1>...<fasl eltn>
 *
 *        -> {fxvector}<uptr n><iptr elt1>...<iptr eltn>
 *
 *        -> {bytevector}<uptr n><octet elt1>...<octet eltn>
 *
 *        -> {immediate}<uptr>
 *
 *        -> {small-integer}<iptr>
 *
 *        -> {large-integer}<byte sign><uptr n><uptr bigit1>...<uptr bigitn>
 *
 *        -> {ratum}<fasl numerator><fasl denominator>
 *
 *        -> {inexactnum}<fasl real-part><fasl imag-part>
 *
 *        -> {exactnum}<fasl real-part><fasl imag-part>
 *
 *        -> {flonum}<uptr high><uptr low>
 *
 *        -> {entry}<uptr index>
 *
 *        -> {library}<uptr index>
 *
 *        -> {library-code}<uptr index>
 *
 *        -> {graph}<uptr graph-length><fasl object>
 *
 *        -> {graph-def}<uptr index><fasl object>
 *
 *        -> {graph-ref}<uptr index>
 *
 *        -> {base-rtd}
 *
 *        -> {rtd}<fasl uid><faslrecord>
 *
 *        -> {record}<faslrecord>
 *
 *        -> {eq-hashtable}<byte mutable?>
 *                         <byte weak?>
 *                         <uptr minlen>
 *                         <uptr veclen>
 *                         <uptr n>
 *                         <keyval1>...<keyvaln>
 *           <keyval> -> <fasl key><fasl val>
 *
 *        -> {symbol-hashtable}<byte mutable?>
 *                             <uptr minlen>
 *                             <byte equiv>     ; 0: eq?, 1: eqv?, 2: equal?, 3: symbol=?
 *                             <uptr veclen>
 *                             <uptr n>
 *                         <keyval1>...<keyvaln>
 *           <keyval> -> <fasl key><fasl val>
 *
 *        -> {closure}<uptr offset><fasl code>
 *
 *        -> {code}<byte flags>
 *                 <uptr free>       # number of free variables
 *                 <uptr n>          # length in bytes of code
 *                 <fasl name>
 *                 <fasl arity-mask> # two's complement encoding of accepted argument counts
 *                 <fasl info>       # inspector info
 *                 <fasl pinfo*>     # profiling info
 *                 <byte code1>...<byte coden>
 *                 <uptr m>          # length in uptrs of relocation table
 *                 <faslreloc>       # first relocation entry
 *                 ...
 *                 <faslreloc>       # last relocation entry
 *
 * <faslreloc> -> <byte type-etc>    # bit 0: extended entry, bit 1: expect item offset, bit 2+: type
 *                <uptr code-offset>
 *                <uptr item-offset> # omitted if bit 1 of type-etc is 0
 *                <fasl object>
 *
 * <faslstring> -> <uptr n><uptr char1>...<uptr charn>
 *
 * <faslrecord> -> <uptr size>       # size in bytes, not necessarily ptr-aligned
 *                 <uptr n>          # number of flds
 *                 <fasl rtd>
 *                 <field elt1>
 *                 ...
 *                 <field eltn>
 * <field> -> <padty fld-type-ptr><fasl object>
 *            <padty fld-type-u8><octet>
 *            <padty fld-type-i16><iptr>
 *            <padty fld-type-i24><iptr>
 *            <padty fld-type-i32><iptr>
 *            <padty fld-type-i40><iptr high><uptr low>      # 32-bit target
 *            <padty fld-type-i40><iptr>                     # 64-bit target
 *            <padty fld-type-i48><iptr high><uptr low>      # 32-bit target
 *            <padty fld-type-i48><iptr>                     # 64-bit target
 *            <padty fld-type-i56><iptr high><uptr low>      # 32-bit target
 *            <padty fld-type-i56><iptr>                     # 64-bit target
 *            <padty fld-type-i64><iptr high><uptr low>      # 32-bit target
 *            <padty fld-type-i64><iptr>                     # 64-bit target
 *            <padty fld-type-single><uptr>
 *            <padty fld-type-double><uptr high><uptr low>
 * <padty fld-type> -> <byte pad << 5 | fld-type>
 *
 * <uptr n> -> <ubyte1>*<ubyte0>
 * <ubyte1> -> k << 1 | 1, 0 <= k <= 127
 * <ubyte0> -> k << 1 | 0, 0 <= k <= 127
 *         each ubyte represents 7 bits of the uptr, least-significant first
 *         low-order bit is continuation bit: 1 iff more bytes are present
 *
 * <iptr n> -> <ibyte0> | <ibyte1><ubyte1>*<ubyte0>
 * <ibyte1> -> sign << 7 | k << 1 | 1, 0 <= k <= 63
 * <ibyte0> -> sign << 7 | k << 1 | 0, 0 <= k <= 63
 *         leading ibyte represents least-significant 6 bits and sign
 *         each ubyte represents 7 of the remaining bits of the iptr,
 *         least-significant first
 *
 * Notes:
 *  * a list of length n will appear to be shorter in the fasl
 *    representation when the tail of the list is shared, since the
 *    shared tail will be a {graph-def} or {graph-ref}.
 *
 *  * the length of a relocation table is the number of uptrs in the
 *    table, not the number of relocation entries.
 *
 *  * closure offset is the amount added to the code object before
 *    storing it in the code field of the closure.
 *
 *  * {graph} defines the size of the graph used to commonize shared
 *    structure, including cycles.  It must appear before {graph-def}
 *    or {graph-ref}.  A {graph-def} at index i must appear before
 *    a {graph-ref} at index i.
 *
 *  * after an rtd is read: if its uname is unbound, the rtd is placed
 *    into the symbol value slot of the uname; otherwise, the rtd is
 *    discarded and the existing symbol value of uname is returned
 *    instead.  Note that when many records appear within the same
 *    aggregrate structure, the full rtd will appear only in the
 *    first occurrence; the remainder will simply be graph references.
 *
 *  * at present, the fasl representation supports only records
 *    containing only scheme-object fields.
 */

#include "system.h"
#include "zlib.h"

#ifdef WIN32
#include <io.h>
#endif /* WIN32 */

#ifdef NAN_INCLUDE
#include NAN_INCLUDE
#endif

#define UFFO_TYPE_FD 2
#define UFFO_TYPE_BV 3

#define PREPARE_BYTEVECTOR(bv,n) {if (bv == Sfalse || Sbytevector_length(bv) < (n)) bv = S_bytevector(n);}

typedef struct unbufFaslFileObj {
  ptr path;
  INT type;
  INT fd;
} *unbufFaslFile;

typedef struct faslFileObj {
  unbufFaslFile uf;
  iptr size;
  octet *next;
  octet *end;
  octet *buf;
} *faslFile;

/* locally defined functions */
static INT uf_read PROTO((unbufFaslFile uf, octet *s, iptr n));
static octet uf_bytein PROTO((unbufFaslFile uf));
static uptr uf_uptrin PROTO((unbufFaslFile uf, INT *bytes_consumed));
static ptr fasl_entry PROTO((ptr tc, IFASLCODE situation, unbufFaslFile uf));
static ptr bv_fasl_entry PROTO((ptr tc, ptr bv, unbufFaslFile uf));
static void fillFaslFile PROTO((faslFile f));
static void bytesin PROTO((octet *s, iptr n, faslFile f));
static void toolarge PROTO((ptr path));
static iptr iptrin PROTO((faslFile f));
static uptr uptrin PROTO((faslFile f));
static float singlein PROTO((faslFile f));
static double doublein PROTO((faslFile f));
static iptr stringin PROTO((ptr *pstrbuf, iptr start, faslFile f));
static void faslin PROTO((ptr tc, ptr *x, ptr t, ptr *pstrbuf, faslFile f));
static void fasl_record PROTO((ptr tc, ptr *x, ptr t, ptr *pstrbuf, faslFile f));
static IBOOL rtd_equiv PROTO((ptr x, ptr y));
static IBOOL equalp PROTO((ptr x, ptr y));
#ifdef ARMV6
static void arm32_set_abs PROTO((void *address, uptr item));
static uptr arm32_get_abs PROTO((void *address));
static void arm32_set_jump PROTO((void *address, uptr item, IBOOL callp));
static uptr arm32_get_jump PROTO((void *address));
#endif /* ARMV6 */
#ifdef PPC32
static void ppc32_set_abs PROTO((void *address, uptr item));
static uptr ppc32_get_abs PROTO((void *address));
static void ppc32_set_jump PROTO((void *address, uptr item, IBOOL callp));
static uptr ppc32_get_jump PROTO((void *address));
#endif /* PPC32 */
#ifdef X86_64
static void x86_64_set_jump PROTO((void *address, uptr item, IBOOL callp));
static uptr x86_64_get_jump PROTO((void *address));
#endif /* X86_64 */
#ifdef SPARC64
static INT extract_reg_from_sethi PROTO((void *address));
static void emit_sethi_lo PROTO((U32 item, INT destreg, void *address));
static uptr sparc64_get_literal PROTO((void *address));
static void sparc64_set_call PROTO((void *address, U32 *call_addr, uptr item));
static U32 adjust_delay_inst PROTO((U32 delay_inst, U32 *old_call_addr, U32 *new_call_addr));
static INT sparc64_set_lit_only PROTO((void *address, uptr item, I32 destreg));
static void sparc64_set_literal PROTO((void *address, uptr item));
#endif /* SPARC64 */

static double s_nan;

void S_fasl_init() {
    if (S_boot_time) {
        S_protect(&S_G.base_rtd);
        S_G.base_rtd = Sfalse;
        S_protect(&S_G.rtd_key);
        S_G.rtd_key = S_intern((const unsigned char *)"*rtd*");
        S_protect(&S_G.eq_symbol);
        S_G.eq_symbol = S_intern((const unsigned char *)"eq");
        S_protect(&S_G.eq_ht_rtd);
        S_G.eq_ht_rtd = Sfalse;
        S_protect(&S_G.symbol_symbol);
        S_G.symbol_symbol = S_intern((const unsigned char *)"symbol");
        S_protect(&S_G.symbol_ht_rtd);
        S_G.symbol_ht_rtd = Sfalse;
        S_protect(&S_G.eqp);
        S_G.eqp = Sfalse;
        S_protect(&S_G.eqvp);
        S_G.eqvp = Sfalse;
        S_protect(&S_G.equalp);
        S_G.equalp = Sfalse;
        S_protect(&S_G.symboleqp);
        S_G.symboleqp = Sfalse;
    }

    MAKE_NAN(s_nan)
#ifndef WIN32 /* msvc returns true for s_nan==s_nan! */
    if (s_nan == s_nan) {
        fprintf(stderr, "s_nan == s_nan\n");
        S_abnormal_exit();
    }
#endif
}

ptr S_fasl_read(INT fd, IFASLCODE situation, ptr path) {
  ptr tc = get_thread_context();
  ptr x; struct unbufFaslFileObj uffo;

 /* acquire mutex in case we modify code pages */
  tc_mutex_acquire()
  uffo.path = path;
  uffo.type = UFFO_TYPE_FD;
  uffo.fd = fd;
  x = fasl_entry(tc, situation, &uffo);
  tc_mutex_release()
  return x;
}

ptr S_bv_fasl_read(ptr bv, ptr path) {
  ptr tc = get_thread_context();
  ptr x; struct unbufFaslFileObj uffo;

 /* acquire mutex in case we modify code pages */
  tc_mutex_acquire()
  uffo.path = path;
  uffo.type = UFFO_TYPE_BV;
  x = bv_fasl_entry(tc, bv, &uffo);
  tc_mutex_release()
  return x;
}

ptr S_boot_read(INT fd, const char *path) {
  ptr tc = get_thread_context();
  struct unbufFaslFileObj uffo;

  uffo.path = Sstring_utf8(path, -1);
  uffo.type = UFFO_TYPE_FD;
  uffo.fd = fd;
  return fasl_entry(tc, fasl_type_visit_revisit, &uffo);
}

#ifdef WIN32
#define IO_SIZE_T unsigned int
#else /* WIN32 */
#define IO_SIZE_T size_t
#endif /* WIN32 */

static INT uf_read(unbufFaslFile uf, octet *s, iptr n) {
  iptr k;
  while (n > 0) {
    uptr nx = n;

#if (iptr_bits > 32)
  if (WIN32 && (unsigned int)nx != nx) nx = 0xffffffff;
#endif

    switch (uf->type) {
      case UFFO_TYPE_FD:
        k = READ(uf->fd, s, (IO_SIZE_T)nx);
        if (k > 0)
          n -= k;
        else if (k == 0)
          return -1;
        else if (errno != EINTR)
         S_error1("", "error reading from ~a", uf->path);
        break;
      default:
        return -1;
    }

    s += k;
  }
  return 0;
}

static void uf_skipbytes(unbufFaslFile uf, iptr n) {
  switch (uf->type) {
    case UFFO_TYPE_FD:
       if (LSEEK(uf->fd, n, SEEK_CUR) == -1) {
         S_error1("", "error seeking ~a", uf->path);
       }
       break;
  }
}

static octet uf_bytein(unbufFaslFile uf) {
  octet buf[1];
  if (uf_read(uf, buf, 1) < 0)
    S_error1("", "unexpected eof in fasl file ~a", uf->path);
  return buf[0];
}

static uptr uf_uptrin(unbufFaslFile uf, INT *bytes_consumed) {
  uptr n, m; octet k;

  if (bytes_consumed) *bytes_consumed = 1;
  k = uf_bytein(uf);
  n = k >> 1;
  while (k & 1) {
    if (bytes_consumed) *bytes_consumed += 1;
    k = uf_bytein(uf);
    m = n << 7;
    if (m >> 7 != n) toolarge(uf->path);
    n = m | (k >> 1);
  }

  return n;
}

char *S_format_scheme_version(uptr n) {
  static char buf[16]; INT len;
  if ((n >> 16) != ((n >> 16) & 0xffff)) return "unknown";
  if ((n & 0xff) == 0)
    len = snprintf(buf, 16, "%d.%d", (int) n >> 16, (int) (n >> 8) & 0xff);
  else
    len = snprintf(buf, 16, "%d.%d.%d", (int) n >> 16, (int) (n >> 8) & 0xff, 
                   (int) n & 0xff);
  return len > 0 ? buf : "unknown";
}

char *S_lookup_machine_type(uptr n) {
  static char *machine_type_table[] = machine_type_names;
  if (n < machine_type_limit)
    return machine_type_table[n];
  else
    return "unknown";
}

static ptr fasl_entry(ptr tc, IFASLCODE situation, unbufFaslFile uf) {
  ptr x; ptr strbuf = S_G.null_string;
  octet tybuf[1]; IFASLCODE ty; iptr size;
  /* gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-28) co-locates buf and x if we put the declaration of buf down where we use it */
  octet buf[SBUFSIZ];

  for (;;) {
    if (uf_read(uf, tybuf, 1) < 0) return Seof_object; 
    ty = tybuf[0];

    while (ty == fasl_type_header) {
      uptr n; ICHAR c;
    
     /* check for remainder of magic number */
      if (uf_bytein(uf) != 0 ||
          uf_bytein(uf) != 0 ||
          uf_bytein(uf) != 0 || 
          uf_bytein(uf) != 'c' || 
          uf_bytein(uf) != 'h' || 
          uf_bytein(uf) != 'e' || 
          uf_bytein(uf) != 'z')
        S_error1("", "malformed fasl-object header (missing magic word) found in ~a", uf->path);
    
      if ((n = uf_uptrin(uf, (INT *)0)) != scheme_version)
        S_error2("", "incompatible fasl-object version ~a found in ~a", S_string(S_format_scheme_version(n), -1), uf->path);
    
      if ((n = uf_uptrin(uf, (INT *)0)) != machine_type_any && n != machine_type)
        S_error2("", "incompatible fasl-object machine-type ~a found in ~a", S_string(S_lookup_machine_type(n), -1), uf->path);
    
      if (uf_bytein(uf) != '(')
        S_error1("", "malformed fasl-object header (missing open paren) found in ~a", uf->path);
    
      while ((c = uf_bytein(uf)) != ')')
        if (c < 0) S_error1("", "malformed fasl-object header (missing close paren) found in ~a", uf->path);
  
      ty = uf_bytein(uf);
    }
  
    switch (ty) {
      case fasl_type_visit:
      case fasl_type_revisit:
      case fasl_type_visit_revisit:
        break;
      default:
        S_error2("", "malformed fasl-object header (missing situation, got ~s) found in ~a", FIX(ty), uf->path);
        return (ptr)0;
    }
  
    size = uf_uptrin(uf, (INT *)0);
  
    if (ty == situation || situation == fasl_type_visit_revisit || ty == fasl_type_visit_revisit) {
      struct faslFileObj ffo;

      ty = uf_bytein(uf);
      switch (ty) {
        case fasl_type_gzip:
        case fasl_type_lz4: {
          ptr result; INT bytes_consumed;
          iptr dest_size = uf_uptrin(uf, &bytes_consumed);
          iptr src_size = size - (1 + bytes_consumed); /* adjust for u8 compression type and uptr dest_size */

          PREPARE_BYTEVECTOR(SRCBV(tc), src_size);
          PREPARE_BYTEVECTOR(DSTBV(tc), dest_size);
          if (uf_read(uf, &BVIT(SRCBV(tc),0), src_size) < 0)
            S_error1("", "unexpected eof in fasl file ~a", uf->path);
          result = S_bytevector_uncompress(DSTBV(tc), 0, dest_size, SRCBV(tc), 0, src_size,
                      (ty == fasl_type_gzip ? COMPRESS_GZIP : COMPRESS_LZ4));
          if (result != FIX(dest_size)) {
            if (Sstringp(result)) S_error2("fasl-read", "~@?", result, SRCBV(tc));
            S_error3("fasl-read", "uncompressed size ~s for ~s is smaller than expected size ~s", result, SRCBV(tc), FIX(dest_size));
          }
          ffo.size = dest_size;
          ffo.next = ffo.buf = &BVIT(DSTBV(tc),0);
          ffo.end = &BVIT(DSTBV(tc),dest_size);
          ffo.uf = uf;
          break;
        }
        case fasl_type_uncompressed: {
          ffo.size = size - 1; /* adjust for u8 compression type */
          ffo.next = ffo.end = ffo.buf = buf;
          ffo.uf = uf;
          break;
        }
        default:
          S_error2("", "malformed fasl-object header (missing possibly-compressed, got ~s) found in ~a", FIX(ty), uf->path);
          return (ptr)0;
      }
      faslin(tc, &x, S_G.null_vector, &strbuf, &ffo);
      S_flush_instruction_cache(tc);
      return x;
    } else {
      uf_skipbytes(uf, size);
    }
  }
}

static ptr bv_fasl_entry(ptr tc, ptr bv, unbufFaslFile uf) {
  ptr x; ptr strbuf = S_G.null_string;
  struct faslFileObj ffo;

  ffo.size = Sbytevector_length(bv);
  ffo.next = ffo.buf = &BVIT(bv, 0);
  ffo.end = &BVIT(bv, ffo.size);
  ffo.uf = uf;

  faslin(tc, &x, S_G.null_vector, &strbuf, &ffo);
  S_flush_instruction_cache(tc);
  return x;
}

static void fillFaslFile(faslFile f) {
  iptr n = f->size < SBUFSIZ ? f->size : SBUFSIZ;
  if (uf_read(f->uf, f->buf, n) < 0)
    S_error1("", "unexpected eof in fasl file ~a", f->uf->path);
  f->end = (f->next = f->buf) + n;
  f->size -= n;
}

#define bytein(f) ((((f)->next == (f)->end) ? fillFaslFile(f) : (void)0), *((f)->next++))

static void bytesin(octet *s, iptr n, faslFile f) {
  iptr avail = f->end - f->next;
  if (avail < n) {
    if (avail != 0) {
      memcpy(s, f->next, avail);
      f->next = f->end;
      n -= avail;
      s += avail;
    }
    if (uf_read(f->uf, s, n) < 0)
      S_error1("", "unexpected eof in fasl file ~a", f->uf->path);
    f->size -= n;
  } else {
    memcpy(s, f->next, n);
    f->next += n;
  }
}

static void toolarge(ptr path) {
  S_error1("", "fasl value too large for this machine type in ~a", path);
}

static iptr iptrin(faslFile f) {
  uptr n, m; octet k, k0;

  k0 = k = bytein(f);
  n = (k & 0x7f) >> 1;
  while (k & 1) {
    k = bytein(f);
    m = n << 7;
    if (m >> 7 != n) toolarge(f->uf->path);
    n = m | (k >> 1);
  }

  if (k0 & 0x80) {
    if (n < ((uptr)1 << (ptr_bits - 1))) {
      return -(iptr)n;
    } else if (n > ((uptr)1 << (ptr_bits - 1))) {
      toolarge(f->uf->path);
    }
#if (fixnum_bits > 32)
    return (iptr)0x8000000000000000;
#else
    return (iptr)0x80000000;
#endif
  } else {
    if (n >= ((uptr)1 << (ptr_bits - 1))) toolarge(f->uf->path);
    return (iptr)n;
  }
}

static uptr uptrin(faslFile f) {
  uptr n, m; octet k;

  k = bytein(f);
  n = k >> 1;
  while (k & 1) {
    k = bytein(f);
    m = n << 7;
    if (m >> 7 != n) toolarge(f->uf->path);
    n = m | (k >> 1);
  }

  return n;
}

static float singlein(faslFile f) {
  union { float f; U32 u; } val;

  val.u = (U32)uptrin(f);

  return val.f;
}

static double doublein(faslFile f) {
#ifdef LITTLE_ENDIAN_IEEE_DOUBLE
  union { double d; struct { U32 l; U32 h; } u; } val;
#else
  union { double d; struct { U32 h; U32 l; } u; } val;
#endif

  val.u.h = (U32)uptrin(f);
  val.u.l = (U32)uptrin(f);

  return val.d;
}

static iptr stringin(ptr *pstrbuf, iptr start, faslFile f) {
  iptr end, n, i; ptr p = *pstrbuf;

  end = start + (n = uptrin(f));
  if (Sstring_length(*pstrbuf) < end) {
     ptr newp = S_string((char *)0, end);
     for (i = 0; i != start; i += 1) Sstring_set(newp, i, Sstring_ref(p, i));
     *pstrbuf = p = newp;
  }
  for (i = start; i != end; i += 1) Sstring_set(p, i, uptrin(f));
  return n;
}

static void faslin(ptr tc, ptr *x, ptr t, ptr *pstrbuf, faslFile f) {
    IFASLCODE ty = bytein(f);
    switch (ty) {
        case fasl_type_pair: {
            iptr n; ptr p;
            n = uptrin(f);
            *x = p = Scons(FIX(0), FIX(0));
            faslin(tc, &INITCAR(p), t, pstrbuf, f);
            while (--n) {
                INITCDR(p) = Scons(FIX(0), FIX(0));
                p = INITCDR(p);
                faslin(tc, &INITCAR(p), t, pstrbuf, f);
            }
            faslin(tc, &INITCDR(p), t, pstrbuf, f);
            return;
        }
        case fasl_type_box:
        case fasl_type_immutable_box:
            *x = Sbox(FIX(0));
            faslin(tc, &INITBOXREF(*x), t, pstrbuf, f);
            if (ty == fasl_type_immutable_box)
              BOXTYPE(*x) = type_immutable_box;
            return;
        case fasl_type_symbol: {
            iptr n;
            n = stringin(pstrbuf, 0, f);
            *x = S_intern_sc(&STRIT(*pstrbuf, 0), n, Sfalse);
            return;
        }
        case fasl_type_gensym: {
            iptr pn, un;
            pn = stringin(pstrbuf, 0, f);
            un = stringin(pstrbuf, pn, f);
            *x = S_intern3(&STRIT(*pstrbuf, 0), pn, &STRIT(*pstrbuf, pn), un, Sfalse, Sfalse);
            return;
        }
        case fasl_type_ratnum:
            *x = S_rational(FIX(0), FIX(0));
            faslin(tc, &RATNUM(*x), t, pstrbuf, f);
            faslin(tc, &RATDEN(*x), t, pstrbuf, f);
            return;
        case fasl_type_exactnum:
            *x = S_exactnum(FIX(0), FIX(0));
            faslin(tc, &EXACTNUM_REAL_PART(*x), t, pstrbuf, f);
            faslin(tc, &EXACTNUM_IMAG_PART(*x), t, pstrbuf, f);
            return;
        case fasl_type_vector:
        case fasl_type_immutable_vector: {
            iptr n; ptr *p;
            n = uptrin(f);
            *x = S_vector(n);
            p = &INITVECTIT(*x, 0);
            while (n--) faslin(tc, p++, t, pstrbuf, f);
            if (ty == fasl_type_immutable_vector) {
              if (Svector_length(*x) == 0)
                *x = NULLIMMUTABLEVECTOR(tc);
              else
                VECTTYPE(*x) |= vector_immutable_flag;
            }
            return;
        }
        case fasl_type_fxvector:
        case fasl_type_immutable_fxvector: {
            iptr n; ptr *p;
            n = uptrin(f);
            *x = S_fxvector(n);
            p = &FXVECTIT(*x, 0);
            while (n--) {
              iptr t = iptrin(f);
              if (!FIXRANGE(t)) toolarge(f->uf->path);
              *p++ = FIX(t);
            }
            if (ty == fasl_type_immutable_fxvector) {
              if (Sfxvector_length(*x) == 0)
                *x = NULLIMMUTABLEFXVECTOR(tc);
              else
                FXVECTOR_TYPE(*x) |= fxvector_immutable_flag;
            }
            return;
        }
        case fasl_type_bytevector:
        case fasl_type_immutable_bytevector: {
            iptr n;
            n = uptrin(f);
            *x = S_bytevector(n);
            bytesin(&BVIT(*x,0), n, f);
            if (ty == fasl_type_immutable_bytevector) {
              if (Sbytevector_length(*x) == 0)
                *x = NULLIMMUTABLEBYTEVECTOR(tc);
              else
                BYTEVECTOR_TYPE(*x) |= bytevector_immutable_flag;
            }
            return;
        }
        case fasl_type_base_rtd: {
            ptr rtd;
            if ((rtd = S_G.base_rtd) == Sfalse) {
              if (!Srecordp(rtd)) S_error_abort("S_G.base-rtd has not been set");
            }
            *x = rtd;
            return;
        } case fasl_type_rtd: {
            ptr rtd, rtd_uid, plist, ls;

            faslin(tc, &rtd_uid, t, pstrbuf, f);

           /* look for rtd on uid's property list */
            plist = SYMSPLIST(rtd_uid);
            for (ls = plist; ls != Snil; ls = Scdr(Scdr(ls))) {
              if (Scar(ls) == S_G.rtd_key) {
                ptr tmp;
                *x = rtd = Scar(Scdr(ls));
                fasl_record(tc, &tmp, t, pstrbuf, f);
                if (!rtd_equiv(tmp, rtd))
                  S_error2("", "incompatible record type ~s in ~a", RECORDDESCNAME(tmp), f->uf->path);
                return;
              }
            }

            fasl_record(tc, x, t, pstrbuf, f);
            rtd = *x;

           /* register rtd on uid's property list */
            SETSYMSPLIST(rtd_uid, Scons(S_G.rtd_key, Scons(rtd, plist)));
            return;
        }
        case fasl_type_record: {
            fasl_record(tc, x, t, pstrbuf, f);
            return;
        }
        case fasl_type_eq_hashtable: {
            ptr rtd, ht, v; uptr subtype; uptr veclen, i, n;
            if ((rtd = S_G.eq_ht_rtd) == Sfalse) {
              S_G.eq_ht_rtd = rtd = SYMVAL(S_intern((const unsigned char *)"$eq-ht-rtd"));
              if (!Srecordp(rtd)) S_error_abort("$eq-ht-rtd has not been set");
            }
            *x = ht = S_record(size_record_inst(UNFIX(RECORDDESCSIZE(rtd))));
            RECORDINSTTYPE(ht) = rtd;
            INITPTRFIELD(ht,eq_hashtable_type_disp) = S_G.eq_symbol;
            INITPTRFIELD(ht,eq_hashtable_mutablep_disp) = bytein(f) ? Strue : Sfalse;
            switch ((subtype = bytein(f))) {
            case eq_hashtable_subtype_normal:
            case eq_hashtable_subtype_weak:
            case eq_hashtable_subtype_ephemeron:
              INITPTRFIELD(ht,eq_hashtable_subtype_disp) = FIX(subtype);
              break;
            default:
              S_error2("", "invalid eq-hashtable subtype code", FIX(subtype), f->uf->path);
            }
            INITPTRFIELD(ht,eq_hashtable_minlen_disp) = FIX(uptrin(f));
            veclen = uptrin(f);
            INITPTRFIELD(ht,eq_hashtable_vec_disp) = v = S_vector(veclen);
            n = uptrin(f);
            INITPTRFIELD(ht,eq_hashtable_size_disp) = FIX(n);
            for (i = 0; i < veclen ; i += 1) { INITVECTIT(v, i) = FIX(i); }
            while (n > 0) {
              ptr keyval;
              switch (subtype) {
              case eq_hashtable_subtype_normal:
                keyval = Scons(FIX(0), FIX(0));
                break;
              case eq_hashtable_subtype_weak:
                keyval = S_cons_in(space_weakpair, 0, FIX(0), FIX(0));
                break;
              case eq_hashtable_subtype_ephemeron:
              default:
                keyval = S_cons_in(space_ephemeron, 0, FIX(0), FIX(0));
                break;
              }
              faslin(tc, &INITCAR(keyval), t, pstrbuf, f);
              faslin(tc, &INITCDR(keyval), t, pstrbuf, f);
              i = ((uptr)Scar(keyval) >> primary_type_bits) & (veclen - 1);
              INITVECTIT(v, i) = S_tlc(keyval, ht, Svector_ref(v, i));
              n -= 1;
            }
            return;
        }
        case fasl_type_symbol_hashtable: {
            ptr rtd, ht, equiv, v; uptr equiv_code, veclen, i, n;
            if ((rtd = S_G.symbol_ht_rtd) == Sfalse) {
              S_G.symbol_ht_rtd = rtd = SYMVAL(S_intern((const unsigned char *)"$symbol-ht-rtd"));
              if (!Srecordp(rtd)) S_error_abort("$symbol-ht-rtd has not been set");
            }
            *x = ht = S_record(size_record_inst(UNFIX(RECORDDESCSIZE(rtd))));
            RECORDINSTTYPE(ht) = rtd;
            INITPTRFIELD(ht,symbol_hashtable_type_disp) = S_G.symbol_symbol;
            INITPTRFIELD(ht,symbol_hashtable_mutablep_disp) = bytein(f) ? Strue : Sfalse;
            INITPTRFIELD(ht,symbol_hashtable_minlen_disp) = FIX(uptrin(f));
            equiv_code = bytein(f);
            switch (equiv_code) {
              case 0:
                if ((equiv = S_G.eqp) == Sfalse) {
                  S_G.eqp = equiv = SYMVAL(S_intern((const unsigned char *)"eq?"));
                  if (!Sprocedurep(equiv)) S_error_abort("fasl: eq? has not been set");
                }
                break;
              case 1:
                if ((equiv = S_G.eqvp) == Sfalse) {
                  S_G.eqvp = equiv = SYMVAL(S_intern((const unsigned char *)"eqv?"));
                  if (!Sprocedurep(equiv)) S_error_abort("fasl: eqv? has not been set");
                }
                break;
              case 2:
                if ((equiv = S_G.equalp) == Sfalse) {
                  S_G.equalp = equiv = SYMVAL(S_intern((const unsigned char *)"equal?"));
                  if (!Sprocedurep(equiv)) S_error_abort("fasl: equal? has not been set");
                }
                break;
              case 3:
                if ((equiv = S_G.symboleqp) == Sfalse) {
                  S_G.symboleqp = equiv = SYMVAL(S_intern((const unsigned char *)"symbol=?"));
                  if (!Sprocedurep(equiv)) S_error_abort("fasl: symbol=? has not been set");
                }
                break;
              default:
                S_error2("", "invalid symbol-hashtable equiv code", FIX(equiv_code), f->uf->path);
                /* make compiler happy */
                equiv = Sfalse;
            }
            INITPTRFIELD(ht,symbol_hashtable_equivp_disp) = equiv;
            veclen = uptrin(f);
            INITPTRFIELD(ht,symbol_hashtable_vec_disp) = v = S_vector(veclen);
            n = uptrin(f);
            INITPTRFIELD(ht,symbol_hashtable_size_disp) = FIX(n);
            for (i = 0; i < veclen ; i += 1) { INITVECTIT(v, i) = Snil; }
            while (n > 0) {
              ptr keyval;
              keyval = Scons(FIX(0), FIX(0));
              faslin(tc, &INITCAR(keyval), t, pstrbuf, f);
              faslin(tc, &INITCDR(keyval), t, pstrbuf, f);
              i = UNFIX(SYMHASH(Scar(keyval))) & (veclen - 1);
              INITVECTIT(v, i) = Scons(keyval, Svector_ref(v, i));
              n -= 1;
            }
            return;
        }
        case fasl_type_closure: {
            ptr cod; iptr offset;
            offset = uptrin(f);
            *x = S_closure((ptr)0, 0);
            faslin(tc, &cod, t, pstrbuf, f);
            CLOSENTRY(*x) = (ptr)((uptr)cod + offset);
            return;
        }
        case fasl_type_flonum: {
            *x = Sflonum(doublein(f));
            return;
        }
        case fasl_type_inexactnum: {
            ptr rp, ip;
            faslin(tc, &rp, t, pstrbuf, f);
            faslin(tc, &ip, t, pstrbuf, f);
            *x = S_inexactnum(FLODAT(rp), FLODAT(ip));
            return;
        }
        case fasl_type_string:
        case fasl_type_immutable_string: {
            iptr i, n; ptr str;
            n = uptrin(f);
            str = S_string((char *)0, n);
            for (i = 0; i != n; i += 1) Sstring_set(str, i, uptrin(f));
            if (ty == fasl_type_immutable_string) {
              if (n == 0)
                str = NULLIMMUTABLESTRING(tc);
              else
                STRTYPE(str) |= string_immutable_flag;
            }
            *x = str;
            return;
        }
        case fasl_type_small_integer:
            *x = Sinteger(iptrin(f));
            return;
        case fasl_type_large_integer: {
            IBOOL sign; iptr n; ptr t; bigit *p;
            sign = bytein(f);
            n = uptrin(f);
            t = S_bignum(tc, n, sign);
            p = &BIGIT(t, 0);
            while (n--) *p++ = (bigit)uptrin(f);
            *x = S_normalize_bignum(t);
            return;
        }
        case fasl_type_weak_pair:
            *x = S_cons_in(space_weakpair, 0, FIX(0), FIX(0));
            faslin(tc, &INITCAR(*x), t, pstrbuf, f);
            faslin(tc, &INITCDR(*x), t, pstrbuf, f);
            return;
        case fasl_type_ephemeron:
            *x = S_cons_in(space_ephemeron, 0, FIX(0), FIX(0));
            faslin(tc, &INITCAR(*x), t, pstrbuf, f);
            faslin(tc, &INITCDR(*x), t, pstrbuf, f);
            return;
        case fasl_type_code: {
            iptr n, m, a; INT flags; iptr free;
            ptr co, reloc, name, pinfos;
            flags = bytein(f);
            free = uptrin(f);
            n = uptrin(f) /* length in bytes of code */;
            *x = co = S_code(tc, type_code | (flags << code_flags_offset), n);
            CODEFREE(co) = free;
            faslin(tc, &name, t, pstrbuf, f);
            if (Sstringp(name)) name = SYMNAME(S_intern_sc(&STRIT(name, 0), Sstring_length(name), name));
            CODENAME(co) = name;
            faslin(tc, &CODEARITYMASK(co), t, pstrbuf, f);
            faslin(tc, &CODEINFO(co), t, pstrbuf, f);
            faslin(tc, &pinfos, t, pstrbuf, f);
            CODEPINFOS(co) = pinfos;
            if (pinfos != Snil) {
              S_G.profile_counters = Scons(S_weak_cons(co, pinfos), S_G.profile_counters);
            }
            bytesin((octet *)&CODEIT(co, 0), n, f);
            m = uptrin(f);
            CODERELOC(co) = reloc = S_relocation_table(m);
            RELOCCODE(reloc) = co;
            a = 0;
            n = 0;
            while (n < m) {
              INT type_etc, type; uptr item_off, code_off;
              ptr obj;
              type_etc = bytein(f);
              type = type_etc >> 2;
              code_off = uptrin(f);
              item_off = (type_etc & 2) ? uptrin(f) : 0;
              if (type_etc & 1) {
                RELOCIT(reloc,n) = (type << reloc_type_offset)|reloc_extended_format ;    n += 1;
                RELOCIT(reloc,n) = item_off; n += 1;
                RELOCIT(reloc,n) = code_off; n += 1;
              } else {
                RELOCIT(reloc,n) = MAKE_SHORT_RELOC(type,code_off,item_off); n += 1;
              }
              a += code_off;
              faslin(tc, &obj, t, pstrbuf, f);
              S_set_code_obj("read", type, co, a, obj, item_off);
            }
            return;
        }
        case fasl_type_immediate:
            *x = (ptr)uptrin(f);
            return;
        case fasl_type_entry:
            *x = (ptr)S_lookup_c_entry(uptrin(f));
            return;
        case fasl_type_library:
            *x = S_lookup_library_entry(uptrin(f), 1);
            return;
        case fasl_type_library_code:
            *x = CLOSCODE(S_lookup_library_entry(uptrin(f), 1));
            return;
        case fasl_type_graph:
            faslin(tc, x, S_vector(uptrin(f)), pstrbuf, f);
            return;
        case fasl_type_graph_def: {
            ptr *p;
            p = &INITVECTIT(t, uptrin(f));
            faslin(tc, p, t, pstrbuf, f);
            *x = *p;
            return;
        }
        case fasl_type_graph_ref:
            *x = Svector_ref(t, uptrin(f));
            return;
        default:
            S_error2("", "invalid object type ~d in fasl file ~a", FIX(ty), f->uf->path);
    }
}

#define big 0
#define little 1
static void fasl_record(ptr tc, ptr *x, ptr t, ptr *pstrbuf, faslFile f) {
  uptr size, n, addr; ptr p; UINT padty;

  size = uptrin(f);
  n = uptrin(f);
  *x = p = S_record(size_record_inst(size));
  faslin(tc, &RECORDINSTTYPE(p), t, pstrbuf, f);
  addr = (uptr)&RECORDINSTIT(p, 0);
  for (; n != 0; n -= 1) {
    padty = bytein(f);
    addr += padty >> 4;
    switch (padty & 0xf) {
      case fasl_fld_ptr:
        faslin(tc, (ptr *)addr, t, pstrbuf, f);
        addr += sizeof(ptr);
        break;
      case fasl_fld_u8:
        *(U8 *)addr = (U8)bytein(f);
        addr += 1;
        break;
      case fasl_fld_i16:
        *(I16 *)addr = (I16)iptrin(f);
        addr += 2;
        break;
      case fasl_fld_i24: {
        iptr q = iptrin(f);
#if (native_endianness == little)
        *(U16 *)addr = (U16)q;
        *(U8 *)(addr + 2) = (U8)(q >> 16);
#elif (native_endianness == big)
        *(U16 *)addr = (U16)(q >> 8);
        *(U8 *)(addr + 2) = (U8)q;
#else
        unexpected_endianness();
#endif
        addr += 3;
        break;
      }
      case fasl_fld_i32:
        *(I32 *)addr = (I32)iptrin(f);
        addr += 4;
        break;
      case fasl_fld_i40: {
        I64 q;
#if (ptr_bits == 32)
        q = (I64)iptrin(f) << 32;
        q |= (U32)uptrin(f);
#elif (ptr_bits == 64)
        q = (I64)iptrin(f);
#else
        unexpected_ptr_bits();
#endif
#if (native_endianness == little)
        *(U32 *)addr = (U32)q;
        *(U8 *)(addr + 4) = (U8)(q >> 32);
#elif (native_endianness == big)
        *(U32 *)addr = (U32)(q >> 8);
        *(U8 *)(addr + 4) = (U8)q;
#else
        unexpected_endianness();
#endif
        addr += 5;
        break;
      }
      case fasl_fld_i48: {
        I64 q;
#if (ptr_bits == 32)
        q = (I64)iptrin(f) << 32;
        q |= (U32)uptrin(f);
#elif (ptr_bits == 64)
        q = (I64)iptrin(f);
#else
        unexpected_ptr_bits();
#endif
#if (native_endianness == little)
        *(U32 *)addr = (U32)q;
        *(U16 *)(addr + 4) = (U16)(q >> 32);
#elif (native_endianness == big)
        *(U32 *)addr = (U32)(q >> 16);
        *(U16 *)(addr + 4) = (U16)q;
#else
        unexpected_endianness();
#endif
        addr += 6;
        break;
      }
      case fasl_fld_i56: {
        I64 q;
#if (ptr_bits == 32)
        q = (I64)iptrin(f) << 32;
        q |= (U32)uptrin(f);
#elif (ptr_bits == 64)
        q = (I64)iptrin(f);
#else
        unexpected_ptr_bits();
#endif
#if (native_endianness == little)
        *(U32 *)addr = (U32)q;
        *(U16 *)(addr + 4) = (U16)(q >> 32);
        *(U8 *)(addr + 6) = (U8)(q >> 48);
#elif (native_endianness == big)
        *(U32 *)addr = (U32)(q >> 24);
        *(U32 *)(addr + 3) = (U32)q;
#else
        unexpected_endianness();
#endif
        addr += 7;
        break;
      }
      case fasl_fld_i64: {
        I64 q;
#if (ptr_bits == 32)
        q = (I64)iptrin(f) << 32;
        q |= (U32)uptrin(f);
#elif (ptr_bits == 64)
        q = (I64)iptrin(f);
#else
        unexpected_ptr_bits();
#endif
        *(I64 *)addr = q;
        addr += 8;
        break;
      }
      case fasl_fld_single:
        *(float *)addr = (float)singlein(f);
        addr += sizeof(float);
        break;
      case fasl_fld_double:
        *(double *)addr = (double)doublein(f);
        addr += sizeof(double);
        break;
      default:
        S_error1("", "unrecognized record fld type ~d", FIX(padty & 0xf));
        break;
    }
  }
}

/* limited version for checking rtd fields */
static IBOOL equalp(x, y) ptr x, y; {
  if (x == y) return 1;
  if (Spairp(x)) return Spairp(y) && equalp(Scar(x), Scar(y)) && equalp(Scdr(x), Scdr(y));
  if (Svectorp(x)) {
    iptr n;
    if (!Svectorp(y)) return 0;
    if ((n = Svector_length(x)) != Svector_length(y)) return 0;
    while (--n >= 0) if (!equalp(Svector_ref(x, n), Svector_ref(y, n))) return 0;
    return 1;
  }
  return Sbignump(x) && Sbignump(y) && S_big_eq(x, y);
}

static IBOOL rtd_equiv(x, y) ptr x, y; {
  return RECORDINSTTYPE(x) == RECORDINSTTYPE(y) &&
         RECORDDESCPARENT(x) == RECORDDESCPARENT(y) &&
         equalp(RECORDDESCPM(x), RECORDDESCPM(y)) &&
         equalp(RECORDDESCMPM(x), RECORDDESCMPM(y)) &&
         equalp(RECORDDESCFLDS(x), RECORDDESCFLDS(y)) &&
         RECORDDESCSIZE(x) == RECORDDESCSIZE(y) &&
         RECORDDESCFLAGS(x) == RECORDDESCFLAGS(y);
}

#ifdef HPUX
INT pax_decode21(INT x)
{
  INT x0_4, x5_6, x7_8, x9_19, x20;

  x20   = x & 0x1; x >>= 1;
  x9_19 = x & 0x7ff; x >>= 11;
  x7_8  = x & 0x3; x >>= 2;
  x5_6  = x & 0x3;
  x0_4  = x >> 2;

  return (((x20<<11 | x9_19)<<2 | x5_6)<<5 | x0_4)<<2 | x7_8;
}

INT pax_encode21(INT n)
{
  INT x0_4, x5_6, x7_8, x9_19, x20;

  x7_8  = n & 0x3; n >>= 2;
  x0_4  = n & 0x1f; n >>= 5;
  x5_6  = n & 0x3; n >>= 2;
  x9_19 = n & 0x7ff;
  x20   = n >> 11;

  return (((x0_4<<2 | x5_6)<<2 | x7_8)<<11 | x9_19)<<1 | x20;
}
#endif /* HPUX */

/* used here, in S_gc(), and in compile.ss */
void S_set_code_obj(who, typ, p, n, x, o) char *who; IFASLCODE typ; iptr n, o; ptr p, x; {
    void *address; uptr item;

    address = (void *)((uptr)p + n);
    item = (uptr)x + o;
    switch (typ) {
        case reloc_abs:
            *(uptr *)address = item;
            break;
#ifdef ARMV6
        case reloc_arm32_abs:
            arm32_set_abs(address, item);
            break;
        case reloc_arm32_jump:
            arm32_set_jump(address, item, 0);
            break;
        case reloc_arm32_call:
            arm32_set_jump(address, item, 1);
            break;
#endif /* ARMV6 */
#ifdef PPC32
        case reloc_ppc32_abs:
            ppc32_set_abs(address, item);
            break;
        case reloc_ppc32_jump:
            ppc32_set_jump(address, item, 0);
            break;
        case reloc_ppc32_call:
            ppc32_set_jump(address, item, 1);
            break;
#endif /* PPC32 */
#ifdef I386
        case reloc_rel:
            item = item - ((uptr)address + sizeof(uptr));
            *(uptr *)address = item;
            break;
#endif /* I386 */
#ifdef X86_64
        case reloc_x86_64_jump:
            x86_64_set_jump(address, item, 0);
            break;
        case reloc_x86_64_call:
            x86_64_set_jump(address, item, 1);
            break;
#endif /* X86_64 */
#ifdef SPARC64
        case reloc_sparc64abs:
            sparc64_set_literal(address, item);
            break;
      /* we don't use this presently since it can't handle out-of-range
         relocations */
        case reloc_sparc64rel:
           /* later: make the damn thing local by copying it an
              every other code object we can reach into a single
              close area of memory */
            item = item - (uptr)address;
            if ((iptr)item < -0x20000000 || (iptr)item > 0x1FFFFFFF)
              S_error1("", "sparc64rel address out of range ~x",
                       Sunsigned((uptr)address));
            *(U32 *)address = *(U32 *)address & ~0x3fffffff | item >> 2 & 0x3fffffff;
            break;
#endif /* SPARC64 */
#ifdef SPARC
        case reloc_sparcabs:
            *(U32 *)address = *(U32 *)address & ~0x3fffff | item >> 10 & 0x3fffff;
            *((U32 *)address + 1) = *((U32 *)address + 1) & ~0x3ff | item & 0x3ff;
            break;
        case reloc_sparcrel:
            item = item - (uptr)address;
            *(U32 *)address = *(U32 *)address & ~0x3fffffff | item >> 2 & 0x3fffffff;
            break;
#endif /* SPARC */
        default:
            S_error1(who, "invalid relocation type ~s", FIX(typ));
    }
}

/* used in S_gc() */
ptr S_get_code_obj(typ, p, n, o) IFASLCODE typ; iptr n, o; ptr p; {
    void *address; uptr item;

    address = (void *)((uptr)p + n);
    switch (typ) {
        case reloc_abs:
            item = *(uptr *)address;
            break;
#ifdef ARMV6
        case reloc_arm32_abs:
            item = arm32_get_abs(address);
            break;
        case reloc_arm32_jump:
        case reloc_arm32_call:
            item = arm32_get_jump(address);
            break;
#endif /* ARMV6 */
#ifdef PPC32
        case reloc_ppc32_abs:
            item = ppc32_get_abs(address);
            break;
        case reloc_ppc32_jump:
        case reloc_ppc32_call:
            item = ppc32_get_jump(address);
            break;
#endif /* PPC32 */
#ifdef I386
        case reloc_rel:
            item = *(uptr *)address;
            item = item + ((uptr)address + sizeof(uptr));
            break;
#endif /* I386 */
#ifdef X86_64
        case reloc_x86_64_jump:
        case reloc_x86_64_call:
            item = x86_64_get_jump(address);
            break;
#endif /* X86_64 */
#ifdef SPARC64
        case reloc_sparc64abs:
            item = sparc64_get_literal(address);
            break;
        case reloc_sparc64rel:
            item = (*(U32 *)address & 0x3fffffff) << 2;
            if (item & 0x80000000) /* sign bit set */
              item = item | 0xffffffff00000000;
            item = (uptr)address + (iptr)item;
            break;
#endif /* SPARC64 */
#ifdef SPARC
        case reloc_sparcabs:
            item = (*(U32 *)address & 0x3fffff) << 10 | *((U32 *)address + 1) & 0x3ff;
            break;
        case reloc_sparcrel:
            item = (*(U32 *)address & 0x3fffffff) << 2;
            item += (uptr)address;
            break;
#endif /* SPARC */
        default:
            S_error1("", "invalid relocation type ~s", FIX(typ));
            return (ptr)0 /* not reached */;
    }
    return (ptr)(item - o);
}


#ifdef ARMV6
static void arm32_set_abs(void *address, uptr item) {
  /* code generator produces ldrlit destreg, 0; brai 0; long 0 */
  /* we change long 0 => long item */
  *((U32 *)address + 2) = item;
}

static uptr arm32_get_abs(void *address) {
  return *((U32 *)address + 2);
}

#define MAKE_B(n) (0xEA000000 | (n))
#define MAKE_BL(n) (0xEB000000 | (n))
#define B_OR_BL_DISP(x) ((x) & 0xFFFFFF)
#define MAKE_BX(reg) (0xE12FFF10 | (reg))
#define MAKE_BLX(reg) (0xE12FFF30 | (reg))
#define MAKE_LDRLIT(dst,n) (0xE59F0000 | ((dst) << 12) | (n))
#define LDRLITP(x) (((x) & 0xFFFF0000) == 0xE59F0000)
#define LDRLIT_DST(x) (((x) >> 12) & 0xf)
#define MAKE_MOV(dst,src) (0xE1A00000 | ((dst) << 12) | (src))
#define MOV_SRC(x) ((x) & 0xf)
/* nop instruction is not supported by all ARMv6 chips, so use recommended mov r0, r0 */
#define NOP MAKE_MOV(0,0)

static void arm32_set_jump(void *address, uptr item, IBOOL callp) {
  /* code generator produces ldrlit %ip, 0; brai 0; long 0; bx or blx %ip */
  U32 inst = *((U32 *)address + 0);
  INT reg = LDRLITP(inst) ? LDRLIT_DST(inst) : MOV_SRC(*((U32 *)address + 1));
  I32 worddisp = (U32 *)item - ((U32 *)address + 2);
  if (worddisp >= -0x800000 && worddisp <= 0x7FFFFF) {
    worddisp &= 0xFFFFFF;
    *((U32 *)address + 0) = (callp ? MAKE_BL(worddisp) : MAKE_B(worddisp));
    *((U32 *)address + 1) = MAKE_MOV(reg,reg); /* effective NOP recording tmp reg for later use */
    *((U32 *)address + 2) = NOP;
    *((U32 *)address + 3) = NOP;
  } else {
    *((U32 *)address + 0) = MAKE_LDRLIT(reg,0);
    *((U32 *)address + 1) = MAKE_B(0);
    *((U32 *)address + 2) = item;
    *((U32 *)address + 3) = (callp ? MAKE_BLX(reg) : MAKE_BX(reg));
  }
}

static uptr arm32_get_jump(void *address) {
  U32 inst = *((U32 *)address + 0);
  if (LDRLITP(inst)) {
    return *((U32 *)address + 2);
  } else {
    I32 worddisp = B_OR_BL_DISP(inst);
    if (worddisp >= 0x800000) worddisp -= 0x1000000;
    return (uptr)(((U32 *)address + 2) + worddisp);
  }
}
#endif /* ARMV6 */

#ifdef PPC32

#define UPDATE_ADDIS(item, instr) (((instr) & ~0xFFFF) | (((item) >> 16) & 0xFFFF))
#define UPDATE_ADDI(item, instr)  (((instr) & ~0xFFFF) | ((item) & 0xFFFF))

#define MAKE_B(disp, callp) ((18 << 26) | (((disp) & 0xFFFFFF) << 2) | (callp))
#define MAKE_ADDIS(item)    ((15 << 26) | (((item) >> 16) & 0xFFFF))
#define MAKE_ORI(item)      ((24 << 26) | ((item) & 0xFFFF))
#define MAKE_NOP            ((24 << 26))
#define MAKE_MTCTR          ((31 << 26) | (9 << 16) | (467 << 1))
#define MAKE_BCTR(callp)    ((19 << 26) | (20 << 21) | (528 << 1) | (callp))

static void ppc32_set_abs(void *address, uptr item) {
  /* code generator produces addis destreg, %r0, 0 (hi) ; addi destreg, destreg, 0 (lo) */
  /* we change 0 (hi) => upper 16 bits of address */
  /* we change 0 (lo) => lower 16 bits of address */
  /* low part is signed: if negative, increment high part */
  item = item + (item << 1 & 0x10000);
  *((U32 *)address + 0) = UPDATE_ADDIS(item, *((U32 *)address + 0));
  *((U32 *)address + 1) = UPDATE_ADDI(item, *((U32 *)address + 1));
}

static uptr ppc32_get_abs(void *address) {
  uptr item = ((*((U32 *)address + 0) & 0xFFFF) << 16) | (*((U32 *)address + 1) & 0xFFFF);
  return item - (item << 1 & 0x10000);
}

static void ppc32_set_jump(void *address, uptr item, IBOOL callp) {
  iptr disp = (iptr *)item - (iptr *)address;
  if (-0x800000 <= disp && disp <= 0x7FFFFF) {
    *((U32 *)address + 0) = MAKE_B(disp, callp);
    *((U32 *)address + 1) = MAKE_NOP;
    *((U32 *)address + 2) = MAKE_NOP;
    *((U32 *)address + 3) = MAKE_NOP;
  } else {
    *((U32 *)address + 0) = MAKE_ADDIS(item);
    *((U32 *)address + 1) = MAKE_ORI(item);
    *((U32 *)address + 2) = MAKE_MTCTR;
    *((U32 *)address + 3) = MAKE_BCTR(callp);
  }
}

static uptr ppc32_get_jump(void *address) {
  uptr item, instr = *(U32 *)address;

  if ((instr >> 26) == 18) {
    /* bl disp */
    iptr disp = (instr >> 2) & 0xFFFFFF;
    if (disp & 0x800000) disp -= 0x1000000;
    item = (uptr)address + (disp << 2);
  } else {
    /* lis r0, high
       ori r0, r0, low */
    item = ((instr & 0xFFFF) << 16) | (*((U32 *)address + 1) & 0xFFFF);
  }

  return item;
}
#endif /* PPC32 */

#ifdef X86_64
static void x86_64_set_jump(void *address, uptr item, IBOOL callp) {
  I64 disp = (I64)item - ((I64)address + 5); /* 5 = size of call instruction */
  if ((I32)disp == disp) {
    *(octet *)address = callp ? 0xE8 : 0xE9;  /* call or jmp disp32 opcode */
    *(I32 *)((uptr)address + 1) = (I32)disp;
    *((octet *)address + 5) = 0x90; /* nop */
    *((octet *)address + 6) = 0x90; /* nop */
    *((octet *)address + 7) = 0x90; /* nop */
    *((octet *)address + 8) = 0x90; /* nop */
    *((octet *)address + 9) = 0x90; /* nop */
    *((octet *)address + 10) = 0x90; /* nop */
    *((octet *)address + 11) = 0x90; /* nop */
  } else {
    *(octet *)address = 0x48; /* REX w/REX.w set */
    *((octet *)address + 1)= 0xB8;  /* MOV imm64 to RAX */
    *(uptr *)((uptr)address + 2) = item;
    *((octet *)address + 10) = 0xFF;  /* call/jmp reg/mem opcode */
    *((octet *)address + 11) = callp ? 0xD0 : 0xE0; /* mod=11, ttt=010 (call) or 100 (jmp), r/m = 0 (RAX) */
  }
}

static uptr x86_64_get_jump(void *address) {
  if (*(octet *)address == 0x48) /* REX w/REX.w set */
   /* must be long form: move followed by call/jmp */
    return *(uptr *)((uptr)address + 2);
  else
   /* must be short form: call/jmp */
    return ((uptr)address + 5) + *(I32 *)((uptr)address + 1);
}
#endif /* X86_64 */

#ifdef SPARC64
#define ASMREG0 1
/* TMPREG is asm-literal-tmp in sparc64macros.ss */
#define TMPREG 5
/* CRETREG is retreg in sparc64macros.ss */
#define CRETREG 15
/* SRETREG is ret in sparc64macros.ss */
#define SRETREG 26

#define OP_ADDI 0x80002000
#define OP_CALL 0x40000000
#define OP_JSR 0x81C00000
#define OP_OR 0x80100000
#define OP_ORI 0x80102000
#define OP_SETHI 0x1000000
/* SLLXI is the 64-bit version */
#define OP_SLLXI 0x81283000
#define OP_XORI 0x80182000
/* NOP is sethi %g0,0 */
#define NOP 0x1000000
#define IMMMASK (U32)0x1fff
#define IMMRANGE(x) ((U32)(x) + (U32)0x1000 <= IMMMASK)
#define ADDI(src,imm,dst) (OP_ADDI | (dst) << 25 | (src) << 14 | (imm) & IMMMASK)
#define JSR(src) (OP_JSR | CRETREG << 25 | (src) << 14)
#define ORI(src,imm,dst) (OP_ORI | (dst) << 25 | (src) << 14 | (imm) & IMMMASK)
#define SETHI(dst,high) (OP_SETHI | (dst) << 25 | (high) & 0x3fffff)
#define CALL(disp) (OP_CALL | (disp) >> 2 & 0x3fffffff)


static INT extract_reg_from_sethi(address) void *address; {
  return *(U32 *)address >> 25;
}

static void emit_sethi_lo(U32 item, INT destreg, void *address) {
  U32 high = item >> 10;
  U32 low = item & 0x3ff;

 /* sethi destreg, high */
  *(U32 *)address = SETHI(destreg,high);
 /* setlo destreg, low */
  *((U32 *)address + 1) = ORI(destreg,low,destreg);
}

static uptr sparc64_get_literal(address) void *address; {
  uptr item;

 /* we may have "call disp" followed by delay instruction */
  item = *(U32 *)address;
  if (item >> 30 == OP_CALL >> 30) {
    item = (item & 0x3fffffff) << 2;
    if (item & 0x80000000) /* sign bit set */
      item = item | 0xffffffff00000000;
    item = (uptr)address + (iptr)item;
    return item;
  }

  item = (item & 0x3fffff) << 10 | *((U32 *)address + 1) & 0x3ff;
  if (*((U32 *)address + 2) != NOP) {
    item = item << 32 |
           (*((U32 *)address + 3) & 0x3fffff) << 10 |
            *((U32 *)address + 4) & 0x3ff;
  }
  return item;
}

static U32 adjust_delay_inst(delay_inst, old_call_addr, new_call_addr)
      U32 delay_inst; U32 *old_call_addr, *new_call_addr; {
  INT offset;

  offset = sizeof(U32) * (old_call_addr - new_call_addr);
  if (offset == 0) return delay_inst;

  if ((delay_inst & ~IMMMASK) == ADDI(CRETREG,0,SRETREG)) {
    INT k = delay_inst & IMMMASK;
    k = k - ((k << 1) & (IMMMASK+1));
    offset = k + offset;
    if (IMMRANGE(offset)) return ADDI(CRETREG,offset,SRETREG);
  } else if ((delay_inst & ~IMMMASK) == ADDI(CRETREG,0,CRETREG)) {
    INT k = delay_inst & IMMMASK;
    k = k - ((k << 1) & (IMMMASK+1));
    offset = k + offset;
    if (offset == 0) return NOP;
    if (IMMRANGE(offset)) return ADDI(CRETREG,offset,CRETREG);
  } else if (IMMRANGE(offset))
    return ADDI(CRETREG,offset,CRETREG);

  return 0; /* fortunately, not a valid instruction here */
}

static void sparc64_set_call(address, call_addr, item) void *address; U32 *call_addr; uptr item; {
  U32 delay_inst = *(call_addr + 1), new_delay_inst; iptr disp;

 /* later: make item local if it refers to Scheme code, i.e., is in the
    Scheme heap, by copying it and every other code object we can reach
    into a single close area of memory.  Or generate a close stub. */
  disp = item - (uptr)address;
  if (disp >= -0x20000000 && disp <= 0x1FFFFFFF &&
       (new_delay_inst = adjust_delay_inst(delay_inst, call_addr,
                                            (U32 *)address))) {
    *(U32 *)address = CALL(disp);
    *((U32 *)address + 1) = new_delay_inst;
  } else {
    INT n = sparc64_set_lit_only(address, item, ASMREG0);
    new_delay_inst = adjust_delay_inst(delay_inst, call_addr, (U32 *)address + n);
    *((U32 *)address + n) = JSR(ASMREG0);
    *((U32 *)address + n + 1) = new_delay_inst;
  }
}

static INT sparc64_set_lit_only(address, item, destreg) void *address; uptr item; I32 destreg; {

  if ((iptr)item >= -0xffffffff && item <= 0xffffffff) {
    uptr x, high, low;

    if ((iptr)item < 0) {
        x = 0x100000000 - item;
        high = x >> 10;
        low = x - (high << 10);
       /* sethi destreg, ~high */
        *(U32 *)address = OP_SETHI | destreg << 25 | ~high & 0x3fffff;
       /* xor.i destreg, low|0x1c00, destreg */
        *((U32 *)address + 1) = OP_XORI | destreg << 25 | destreg << 14 |
                   low | 0x1c00;
    } else {
        emit_sethi_lo(item, destreg, address);
    }
    *((U32 *)address + 2) = NOP;
    *((U32 *)address + 3) = NOP;
    *((U32 *)address + 4) = NOP;
    *((U32 *)address + 5) = NOP;
    return 2;
  } else {
    emit_sethi_lo(item >> 32, destreg, address);
   /* sll destreg, 32, destreg */
    *((U32 *)address + 2) = OP_SLLXI | destreg << 25 | destreg << 14 | 32;
    emit_sethi_lo(item & 0xffffffff, TMPREG, (void *)((U32 *)address+3));
   /* or destreg, tmpreg, destreg */
    *((U32 *)address + 5) = OP_OR | destreg << 25 | destreg << 14 | TMPREG;
    return 6;
  }
}

static void sparc64_set_literal(address, item) void *address; uptr item; {
  I32 destreg;

 /* case 1: we have call followed by delay inst */
  if (*(U32 *)address >> 30 == OP_CALL >> 30) {
    sparc64_set_call(address, (U32 *)address, item);
    return;
  }

  destreg = extract_reg_from_sethi(address);

 /* case 2: we have two-instr load-literal followed by jsr and delay inst */
  if (*((U32 *)address + 2) == JSR(destreg)) {
    sparc64_set_call(address, (U32 *)address + 2, item);
    return;
  }

 /* case 3: we have six-instr load-literal followed by jsr and a delay
    instruction we're willing to try to deal with */
  if (*((U32 *)address + 6) == JSR(destreg) &&
        (*((U32 *)address + 7) & ~IMMMASK == ADDI(CRETREG,0,SRETREG) ||
         *((U32 *)address + 7) == NOP)) {
    sparc64_set_call(address, (U32 *)address + 6, item);
    return;
  }

 /* case 4: we have a plain load-literal */
  sparc64_set_lit_only(address, item, destreg);
}
#endif /* SPARC64 */