File: debug.stex

package info (click to toggle)
chezscheme 9.5.4%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 61,640 kB
  • sloc: ansic: 17,508; sh: 759; makefile: 509; csh: 423
file content (1571 lines) | stat: -rw-r--r-- 56,376 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
% Copyright 2005-2017 Cisco Systems, Inc.
% 
% Licensed under the Apache License, Version 2.0 (the "License");
% you may not use this file except in compliance with the License.
% You may obtain a copy of the License at
% 
% http://www.apache.org/licenses/LICENSE-2.0
% 
% Unless required by applicable law or agreed to in writing, software
% distributed under the License is distributed on an "AS IS" BASIS,
% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
% See the License for the specific language governing permissions and
% limitations under the License.
\chapter{Debugging\label{CHPTDEBUG}}

{\ChezScheme} has several features that support debugging.
In addition to providing error messages when fully type-checked code is
run, {\ChezScheme} also permits tracing of procedure calls, interruption
of any computation, redefinition of exception and interrupt handlers,
and inspection of any object, including the continuations of exceptions and
interrupts.

Programmers new to Scheme or {\ChezScheme}, and even more experienced
Scheme programmers, might want to consult
the tutorial ``How to Debug Chez Scheme Programs.''
HTML and PDF versions
% of the tutorial
are available at
\hyperlink{http://www.cs.indiana.edu/chezscheme/debug/}{http://www.cs.indiana.edu/chezscheme/debug/}.


\section{Tracing\label{SECTDEBUGTRACING}}

Tracing is one of the most useful mechanisms for debugging Scheme programs.
{\ChezScheme} permits any primitive or user-defined procedure to be traced.
The trace package prints the arguments and return values for each
traced procedure with a compact indentation mechanism that shows the
nesting depth of calls.
The distinction between tail calls and nontail calls is reflected
properly by an increase in indentation for nontail calls only.
For nesting depths of 10 or greater, a number in brackets is used in
place of indentation to signify nesting depth.

This section covers the mechanisms for tracing procedures and
controlling trace output.

%----------------------------------------------------------------------------
\entryheader
\formdef{trace-lambda}{\categorysyntax}{(trace-lambda \var{name} \var{formals} \var{body_1} \var{body_2} \dots)}
\returns a traced procedure
\listlibraries
\endentryheader

\noindent
\index{\scheme{lambda}}A \scheme{trace-lambda} expression is equivalent to a
\scheme{lambda} expression with the same formals and body
except that trace information is printed to the trace output port whenever
the procedure is invoked, using \var{name} to identify the procedure.
The trace information shows the value of the arguments passed to the
procedure and the values returned by the procedure, with indentation to
show the nesting of calls.

The traced procedure \index{\scheme{half}}\scheme{half} defined below
returns the integer quotient of its argument and 2.

\schemedisplay
(define half
  (trace-lambda half (x)
    (cond
      [(zero? x) 0]
      [(odd? x) (half (- x 1))]
      [(even? x) (+ (half (- x 1)) 1)])))
\endschemedisplay

\noindent
A trace of the call \scheme{(half 5)}, which returns 2, is shown below.

\schemedisplay
|(half 5)
|(half 4)
| (half 3)
| (half 2)
| |(half 1)
| |(half 0)
| |0
| 1
|2
\endschemedisplay

\noindent
This example highlights the proper treatment of tail and nontail calls
by the trace package.
Since \scheme{half} tail calls itself when its argument is odd, the call
\scheme{(half 4)} appears at the same level of indentation as the call
\scheme{(half 5)}.
Furthermore, since the return values of \scheme{(half 5)} and
\scheme{(half 4)} are necessarily the same, only one return value is
shown for both calls.

%----------------------------------------------------------------------------
\entryheader
\formdef{trace-case-lambda}{\categorysyntax}{(trace-case-lambda \var{name} \var{clause} \dots)}
\returns a traced procedure
\listlibraries
\endentryheader

\noindent
\index{\scheme{case-lambda}}A \scheme{trace-case-lambda} expression is
equivalent to a \scheme{case-lambda} expression with the same clauses
except that trace information is printed to the trace output port whenever
the procedure is invoked, using \var{name} to identify the procedure.
The trace information shows the value of the arguments passed to the
procedure and the values returned by the procedure, with indentation to
show the nesting of calls.


%----------------------------------------------------------------------------
\entryheader
\formdef{trace-let}{\categorysyntax}{(trace-let \var{name} ((\var{var} \var{expr}) \dots) \var{body_1} \var{body_2} \dots)}
\returns the values of the body \scheme{\var{body_1} \var{body_2} \dots}
\listlibraries
\endentryheader

\noindent
\index{\scheme{let}}A \scheme{trace-let} expression is equivalent to a
named \scheme{let} expression with the same name, bindings, and body
except that trace information is printed to the trace output port on
entry or reentry (via invocation of the procedure bound to \scheme{name})
into the \scheme{trace-let} expression.

A \scheme{trace-let} expression of the form

\schemedisplay
(trace-let \var{name} ([\var{var} \var{expr}] \dots)
  \var{body_1} \var{body_2} \dots)
\endschemedisplay

\noindent
can be rewritten in terms of \scheme{trace-lambda} as follows:

\schemedisplay
((letrec ([\var{name}
           (trace-lambda \var{name} (\var{var} \dots)
             \var{body_1} \var{body_2} \dots)])
   \var{name})
 \var{expr} \dots)
\endschemedisplay

\noindent
\scheme{trace-let} may be used to trace ordinary \scheme{let} expressions
as well as \scheme{let} expressions as long as the name inserted along
with the \scheme{trace-let} keyword in place of \scheme{let} does not
appear free within the body of the \scheme{let} expression.
It is also sometimes useful to insert a \scheme{trace-let} expression
into a program simply to display the value of an arbitrary expression
at the current trace indentation.
For example, a call to the following variant of \scheme{half}

\schemedisplay
(define half
  (trace-lambda half (x)
    (cond
      [(zero? x) 0]
      [(odd? x) (half (trace-let decr-value () (- x 1)))]
      [(even? x) (+ (half (- x 1)) 1)])))
\endschemedisplay

\noindent
with argument 5 results in the trace:

\schemedisplay
|(half 5)
| (decr-value)
| 4
|(half 4)
| (half 3)
| |(decr-value)
| |2
| (half 2)
| |(half 1)
| | (decr-value)
| | 0
| |(half 0)
| 1
|2
\endschemedisplay

%----------------------------------------------------------------------------
\entryheader
\formdef{trace-do}{\categorysyntax}{(trace-do ((\var{var} \var{init} \var{update}) \dots) (\var{test} \var{result} \dots) \var{expr} \dots)}
\returns the values of the last \var{result} expression
\listlibraries
\endentryheader

\noindent
\index{\scheme{do}}A \scheme{trace-do} expression is equivalent to a
\scheme{do} expression with the same subforms,
except that trace information is printed to the trace output port,
showing the values of \scheme{\var{var} \dots} and each iteration and
the final value of the loop on termination.
For example, the expression

\schemedisplay
(trace-do ([old '(a b c) (cdr old)]
           [new '() (cons (car old) new)])
  ((null? old) new))
\endschemedisplay

produces the trace

\schemedisplay
|(do (a b c) ())
|(do (b c) (a))
|(do (c) (b a))
|(do () (c b a))
|(c b a)
\endschemedisplay

and returns \scheme{(c b a)}.


%----------------------------------------------------------------------------
\entryheader
\formdef{trace}{\categorysyntax}{(trace \var{var_1} \var{var_2} \dots)}
\returns a list of \scheme{\var{var_1} \var{var_2} \dots}
\formdef{trace}{\categorysyntax}{(trace)}
\returns a list of all currently traced top-level variables
\listlibraries
\endentryheader

\noindent
In the first form, \scheme{trace} reassigns the top-level values of
\scheme{\var{var_1} \var{var_2} \dots}, whose values must be procedures,
to equivalent procedures that display trace information in the manner
of \scheme{trace-lambda}.

\scheme{trace} works by encapsulating the old value of each var in a
traced procedure.
It could be defined approximately as follows.  (The actual version
records and returns information about traced variables.)

\schemedisplay
(define-syntax trace
  (syntax-rules ()
    [(_ var ...)
     (begin
       (set-top-level-value! 'var
         (let ([p (top-level-value 'var)])
           (trace-lambda var args (apply p args))))
       ...)]))
\endschemedisplay

Tracing for a procedure traced in this manner may be disabled via
\scheme{untrace} (see below), an assignment of the corresponding
variable to a different, untraced value, or a subsequent use of
\scheme{trace} for the same variable.
Because the value is traced and not the binding, however, a traced
value obtained before tracing is disabled and retained after tracing is
disabled will remain traced.

\scheme{trace} without subexpressions evaluates to a list of all
currently traced variables.
A variable is currently traced if it has been traced and
not subsequently untraced or assigned to a different value.

The following transcript demonstrates the use of \scheme{trace} in
an interactive session.

\schemedisplay
> (define half
    (lambda (x)
      (cond
        [(zero? x) 0]
        [(odd? x) (half (- x 1))]
        [(even? x) (+ (half (- x 1)) 1)])))
> (half 5)
2
> (trace half)
(half)
> (half 5)
|(half 5)
|(half 4)
| (half 3)
| (half 2)
| |(half 1)
| |(half 0)
| |0
| 1
|2
2
> (define traced-half half)
> (untrace half)
(half)
> (half 2)
1
> (traced-half 2)
|(half 2)
|1
1
\endschemedisplay

%----------------------------------------------------------------------------
\entryheader
\formdef{untrace}{\categorysyntax}{(untrace \var{var_1} \var{var_2} \dots)}
\formdef{untrace}{\categorysyntax}{(untrace)}
\returns a list of untraced variables
\listlibraries
\endentryheader

\noindent
\scheme{untrace} restores the original (pre-\scheme{trace}) top-level values
of each currently traced variable in
\scheme{\var{var_1} \var{var_2} \dots},
effectively disabling the tracing of the values of these variables.
Any variable in \scheme{\var{var_1} \var{var_2} \dots} that is not
currently traced is ignored.
If \scheme{untrace} is called without arguments, the values of all
currently traced variables are restored.

The following transcript demonstrates the use of \scheme{trace} and
\scheme{untrace} in an interactive session to debug an incorrect
procedure definition.

\schemedisplay
> (define square-minus-one
    (lambda (x)
      (- (* x x) 2)))
> (square-minus-one 3)
7
> (trace square-minus-one * -)
(square-minus-one * -)
> (square-minus-one 3)
|(square-minus-one 3)
| (* 3 3)
| 9
|(- 9 2)
|7
7
> (define square-minus-one
    (lambda (x)
      (- (* x x) 1))) ; change the 2 to 1
> (trace)
(- *)
> (square-minus-one 3)
|(* 3 3)
|9
|(- 9 1)
|8
8
> (untrace square-minus-one)
()
> (untrace * -)
(- *)
> (square-minus-one 3)
8
\endschemedisplay

\noindent
The first call to \scheme{square-minus-one} indicates there is an error,
the second (traced) call indicates the step at which the error occurs,
the third call demonstrates that the fix works,
and the fourth call demonstrates that
\scheme{untrace} does not wipe out the fix.


%----------------------------------------------------------------------------
\entryheader
\formdef{trace-output-port}{\categorythreadparameter}{trace-output-port}
\listlibraries
\endentryheader

\noindent
\scheme{trace-output-port} is a parameter that determines the
output port to which tracing information is sent.
When called with no arguments, \scheme{trace-output-port} returns the
current trace output port.
When called with one argument, which must be a textual output port,
\scheme{trace-output-port} changes the value of the current
trace output port.


%----------------------------------------------------------------------------
\entryheader
\formdef{trace-print}{\categorythreadparameter}{trace-print}
\listlibraries
\endentryheader

\noindent
The value of \scheme{trace-print} must be a procedure of two arguments,
an object and an output port.
The trace package uses the value of \scheme{trace-print} to print the
arguments and return values for each call to a traced procedure.
\scheme{trace-print} is set to \scheme{pretty-print} by default.

The trace package sets
\index{\scheme{pretty-initial-indent}}\scheme{pretty-initial-indent}
to an appropriate value for the current nesting level before calling
the value of \scheme{trace-print} so that multiline output can be
indented properly.


%----------------------------------------------------------------------------
\entryheader
\formdef{trace-define}{\categorysyntax}{(trace-define \var{var} \var{expr})}
\formdef{trace-define}{\categorysyntax}{(trace-define (\var{var} . \var{idspec}) \var{body_1} \var{body_2} \dots)}
\returns unspecified
\listlibraries
\endentryheader

\noindent
\scheme{trace-define} is a convenient shorthand for defining variables bound
to traced procedures of the same name.
The first form is equivalent to

\schemedisplay
(define \var{var}
  (let ([x \var{expr}])
    (trace-lambda \var{var} args
      (apply x args))))
\endschemedisplay

\noindent
and the second is equivalent to

\schemedisplay
(define \var{var}
  (trace-lambda \var{var} \var{idspec}
    \var{body_1} \var{body_2} \dots))
\endschemedisplay

\noindent
In the former case, \var{expr} must evaluate to a procedure.

\schemedisplay
> (let ()
    (trace-define plus
      (lambda (x y) 
        (+ x y)))
    (list (plus 3 4) (+ 5 6)))
|(plus 3 4)
|7
(7 11)
\endschemedisplay


%----------------------------------------------------------------------------
\entryheader
\formdef{trace-define-syntax}{\categorysyntax}{(trace-define-syntax \var{keyword} \var{expr})}
\returns unspecified
\listlibraries
\endentryheader

\noindent
\scheme{trace-define-syntax} traces the input and output to the
transformer value of \var{expr}, stripped of the contextual
information used by the expander to maintain lexical scoping.

\schemedisplay
> (trace-define-syntax let*
    (syntax-rules ()
      [(_ () b1 b2 ...)
       (let () b1 b2 ...)]
      [(_ ((x e) m ...) b1 b2 ...)
       (let ((x e))
         (let* (m ...) b1 b2 ...))]))
> (let* ([x 3] [y (+ x x)]) (list x y))
|(let* (let* [(x 3) (y (+ x x))] [list x y]))
|(let ([x 3]) (let* ([y (+ x x)]) (list x y)))
|(let* (let* [(y (+ x x))] [list x y]))
|(let ([y (+ x x)]) (let* () (list x y)))
|(let* (let* () [list x y]))
|(let () (list x y))
(3 6)
\endschemedisplay

\noindent
Without contextual information, the displayed forms are more readable
but less precise, since different identifiers with the same name are
indistinguishable, as shown in the example below.

\schemedisplay
> (let ([x 0])
    (trace-define-syntax a
      (syntax-rules ()
        [(_ y) (eq? x y)]))
    (let ([x 1])
      (a x)))
|(a (a x))
|(eq? x x)
#f
\endschemedisplay


\section{The Interactive Debugger\label{SECTDEBUGINTERACTIVE}}

The interactive debugger is entered as a result of
a call to the procedure \scheme{debug} after an exception is handled
by the default exception handler.
It can also be entered directly from the default exception handler, for
serious or non-warning conditions, if the parameter
\scheme{debug-on-exception} is true.

Within the debugger, the command ``?'' lists the debugger command options.
These include commands to:

\begin{itemize}
\item inspect the raise continuation,
\item display the condition,
\item inspect the condition, and
\item exit the debugger.
\end{itemize}

The raise continuation is the continuation encapsulated within the
condition, if any.
The standard exception reporting procedures and forms \scheme{assert},
\scheme{assertion-violation}, and \scheme{error} as well as the
{\ChezScheme} procedures \scheme{assertion-violationf}, \scheme{errorf},
and \scheme{syntax-error} all raise exceptions with conditions that
encapsulate the continuations of their calls, allowing the programmer to
inspect the frames of pending calls at the point of a violation, error, or
failed assertion.

A variant of the interactive debugger, the break handler, is entered as
the result of a keyboard interrupt handled by the default
keyboard-interrupt handler or an explicit call to the procedure 
\scheme{break} handled by the default break handler.
Again, the command ``?'' lists the command options.
These include commands to:

\begin{itemize}
\item exit the break handler and continue,
\item reset to the current caf\'e,
\item abort the entire Scheme session,
\item enter a new caf\'e,
\item inspect the current continuation, and
\item display program statistics (run time and memory usage).
\end{itemize}

\noindent
It is also usually possible to exit from the debugger or break handler by
typing the end-of-file character (``control-D'' under Unix, ``control-Z''
under Windows).



%----------------------------------------------------------------------------
\entryheader
\formdef{debug}{\categoryprocedure}{(debug)}
\returns does not return
\listlibraries
\endentryheader

\noindent
When the default exception handler receives a serious or non-warning
condition, it displays the condition and resets to the current caf\'e.
Before it resets, it saves the condition in the parameter
\scheme{debug-condition}.
The \scheme{debug} procedure may be used to inspect the condition.
Whenever one of the built-in error-reporting mechanisms is used to
raise an exception, the continuation at the point where the
exception was raised can be inspected as well.
More generally, \scheme{debug} allows the continuation contained
within any continuation condition created by
\scheme{make-continuation-condition} to be inspected.

If the parameter \scheme{debug-on-exception} is set to \scheme{#t},
the default exception handler enters the debugger directly for all
serious and non-warning conditions, delaying its reset until after
the debugger exits.
The \index{\scheme{--debug-on-exception} command-line option}\scheme{--debug-on-exception}
command-line option may be used to set \scheme{debug-on-exception} to
\scheme{#t} from the command line, which is particularly useful when
debugging scripts or top-level programs run via the
\index{\scheme{--script} command-line option}\scheme{--script} or
\index{\scheme{--program} command-line option}\scheme{--program}
command-line options.



\section{The Interactive Inspector\label{SECTDEBUGINSPECTOR}}

The \index{inspector}inspector may be called directly via the procedure \scheme{inspect} or
indirectly from the debugger.
It allows the programmer to examine circular objects, objects such as
ports and procedures that do not have a reader syntax, and objects such
as continuations and variables that are not directly accessible by the
programmer, as well as ordinary printable Scheme objects.

The primary intent of the inspector is examination, not alteration, of
objects.
The values of \index{assignable variables}assignable variables may be changed from within the
inspector, however.
Assignable variables are generally limited to those for which
assignments occur in the source program.
It is also possible to invoke arbitrary procedures
(including mutation procedures such as \scheme{set-car!}) on an object.
No mechanism is provided for altering objects that are inherently
immutable, e.g., nonassignable variables, procedures, and bignums, since
doing so can violate assumptions made by the compiler and run-time
system.

The user is presented with a prompt line that includes a printed
representation of the current object, abbreviated if necessary to
fit on the line.
Various commands are provided for displaying objects and moving around
inside of objects.
On-line descriptions of the command options are provided.
The command ``?'' displays commands that apply specifically to the
current object.
The command ``??'' displays commands that are always applicable.
The command ``h'' provides a brief description of how to use the
inspector.
The end-of-file character or the command ``q'' exits the inspector.

%----------------------------------------------------------------------------
\entryheader
\formdef{inspect}{\categoryprocedure}{(inspect \var{obj})}
\returns unspecified
\listlibraries
\endentryheader

\noindent
Invokes the inspector on \var{obj}, as described above.
The commands recognized by the inspector are listed below, categorized
by the type of the current object.


\def\Itype#1 {\bigskip\noindent\textbf{#1 commands}\nobreak\medskip\nobreak}
\def\Icmd#1{\medskip\noindent #1}

\Itype{Generally applicable}

\Icmd{\scheme{help} or \scheme{h}} displays a brief description of how to use the
inspector.

\Icmd{\scheme{?}} displays commands applicable to the current type of
object.

\Icmd{\scheme{??}} displays the generally applicable commands.

\Icmd{\scheme{print} or \scheme{p}} prints the current object (using \scheme{pretty-print}).

\Icmd{\scheme{write} or \scheme{w}} writes the current object (using \scheme{write}).

\Icmd{\scheme{size}} writes the size in bytes occupied by the current object
(determined via \index{\scheme{compute-size}}\scheme{compute-size}),
including any objects accessible from the current object except those
for which the size was previously requested during the same interactive
inspector session.

\Icmd{\scheme{find} \var{expr} [ \var{g} ]} evaluates \var{expr}, which should evaluate
to a procedure of one argument, and searches
(via \index{\scheme{make-object-finder}}\scheme{make-object-finder})
for the first occurrence
of an object within the current object for which the predicate returns
a true value, treating immediate values (e.g., fixnums), values in
generations older than \var{g}, and values already visited during the
search as leaves.
If \var{g} is not unspecified, it defaults to the current maximum
generation, i.e., the value of \scheme{collect-maximum-generation}.
If specified, \var{g} must be an exact nonnegative integer less than or
equal to the current maximum generation or the symbol \scheme{static}
representing the static generation.
If such an object is found, the inspector's focus moves to that object
as if through a series of steps that lead from the current object to the
located object, so that the \scheme{up} command can be used to determine
where the object was found relative to the original object.

\Icmd{\scheme{find-next}} repeats the last \scheme{find}, locating an
occurrence not previously found, if any.

\Icmd{\scheme{up} or \scheme{u} \var{n}} returns to the \var{nth} previous level.
Used to move outwards in the structure of the inspected object.
\var{n} defaults to 1.

\Icmd{\scheme{top} or \scheme{t}} returns to the outermost level of the inspected
object.

\Icmd{\scheme{forward} or \scheme{f}} moves to the \var{nth} next expression.
Used to move from one element to another of an object containing
a sequence of elements, such as a list, vector, record, frame, or closure.
\var{n} defaults to 1.

\Icmd{\scheme{back} or \scheme{b}} moves to the \var{nth} previous expression.
Used to move from one element to another of an object containing
a sequence of elements, such as a list, vector, record, frame, or closure.
\var{n} defaults to 1.

\Icmd{\scheme{=>} \var{expr}} sends the current object to the procedure value
of \var{expr}.
\var{expr} may begin on the current or following line and may
span multiple lines.

\Icmd{\scheme{file} \var{path}} opens the source file at the specified path for
listing.
The parameter \scheme{source-directories} (Section~\ref{SECTSYSTEMSOURCE})
determines the set of directories
searched for source files.

\Icmd{\scheme{list} \var{line} \var{count}} lists \var{count} lines of the
current source file (see \scheme{file}) starting at \var{line}.
\var{line} defaults to the end of the previous set of lines listed and
\var{count} defaults to ten or the number of lines previously listed.
If \var{line} is negative, listing begins \var{line} lines before the
previous set of lines listed.

\Icmd{\scheme{files}} shows the currently open source files.

\Icmd{\scheme{mark} or \scheme{m} \var{m}} marks the current location with the
symbolic mark \var{m}.
If \var{m} is not specified, the current location is marked with
a unique default mark.

\Icmd{\scheme{goto} or \scheme{g} \var{m}} returns to the location marked \var{m}.
If \var{m} is not specified, the inspector returns to the location
marked with the default mark.

\Icmd{\scheme{new-cafe} or \scheme{n}} enters a new read-eval-print loop
(caf\'e), giving access to the normal top-level environment.

\Icmd{\scheme{quit} or \scheme{q}} exits from the inspector.

\Icmd{\scheme{reset} or \scheme{r}} resets to the current caf\'e.

\Icmd{\scheme{abort} or \scheme{a} \var{x}} aborts from Scheme with exit
status \var{x}, which defaults to -1.


\Itype{Continuation}

\Icmd{\scheme{show-frames} or \scheme{sf}} shows the next \var{n} frames.
If \var{n} is not specified, all frames are displayed.

\Icmd{\scheme{depth}} displays the number of frames in the continuation.

\Icmd{\scheme{down} or \scheme{d} \var{n}} move to the \var{nth} frame down in the
continuation.
\var{n} defaults to 1.

\Icmd{\scheme{show} or \scheme{s}} shows the continuation (next frame) and,
if available, the calling procedure source, the pending call source,
the closure, and the frame and free-variable values.
Source is available only if generation of inspector information
was enabled during compilation of the corresponding lambda
expression.

\Icmd{\scheme{show-local} or \scheme{sl}} is like \scheme{show} or~\scheme{s}
except that free variable values are not shown.  (If present, free variable
values can be found by inspecting the closure.)

\Icmd{\scheme{length} or \scheme{l}} displays the number of elements
in the topmost frame of the continuation.

\Icmd{\scheme{ref} or \scheme{r}} moves to the \var{nth} or named
frame element.  \var{n} defaults to 0.
If multiple elements have the same name, only one is
accessible by name, and the others must be accessed by number.

\Icmd{\scheme{code} or \scheme{c}} moves to the source for the calling procedure.

\Icmd{\scheme{call}} moves to the source for the pending call.

\Icmd{\scheme{file}} opens the source file containing the pending call,
if known.
The parameter \scheme{source-directories} (Section~\ref{SECTSYSTEMSOURCE})
determines the list of source directories searched for source files
identified by relative path names.

For absolute pathnames starting with a \scheme{/} (or \scheme{\} or a
directory specifier under Windows), the inspector tries the absolute
pathname first, then looks for the last (filename) component of the path in
the list of source directories. 
For pathnames starting with \scheme{./} (or \scheme{.\} under Windows)
or \scheme{../} (or \scheme{..\} under Windows), the inspector looks in
\scheme{"."} or \scheme{".."} first, as appropriate, then for the entire
\scheme{.}- or \scheme{..}-prefixed
pathname in the source directories, then for the last (filename)
component in the source directories.
For other (relative) pathnames, the inspector looks for the entire
relative pathname in the list of source directories, then the last
(filename) component in the list of source directories. 

If a file by the same name as but different contents from the original
source file is found during this process, it will be skipped over.
This typically happens because the file has been modified since it was
compiled.
Pass an explicit filename argument to force opening of a particular file
(see the generally applicable commands above).



\Icmd{\scheme{eval} or \scheme{e} \var{expr}} evaluates the expression
\var{expr} in an environment containing bindings for the elements of
the frame.  Within the evaluated expression, the value of each frame
element \var{n} is accessible via the variable \scheme{%\var{n}}.
Named elements are accessible via their names as well.  Names are
available only if generation of inspector information was enabled
during compilation of the corresponding lambda expression.

\Icmd{\scheme{set!} or \scheme{!} \var{n} \var{e}} sets the value of the \var{nth} frame
element to \var{e}, if the frame element corresponds to
an assignable variable.
\var{n} defaults to 0.



\Itype{Procedure}

\Icmd{\scheme{show} or \scheme{s}} shows the source and free variables of the
procedure.
Source is available only if generation of inspector information
was enabled during compilation of the corresponding lambda
expression.

\Icmd{\scheme{code} or \scheme{c}} moves to the source for the procedure.

\Icmd{\scheme{file}} opens the file containing the procedure's source code,
if known.
See the description of the continuation \scheme{file} entry above for more
information.

\Icmd{\scheme{length} or \scheme{l}} displays the number of free variables
whose values are recorded in the procedure object.

\Icmd{\scheme{ref} or \scheme{r}} moves to the \var{nth} or named
free variable.  \var{n} defaults to 0.
If multiple free variables have the same name, only one is
accessible by name, and the others must be accessed by number.

\Icmd{\scheme{set!} or \scheme{!} \var{n} \var{e}} sets the value of the \var{nth} free variable
to \var{e}, if the variable is assignable.
\var{n} defaults to 0.

\Icmd{\scheme{eval} or \scheme{e} \var{expr}} evaluates the expression
\var{expr} in an environment containing bindings for the free variables
of the procedure.
Within the evaluated expression, the value of each free variable
\var{n} is accessible via the variable \scheme{%\var{n}}.
Named free variables are accessible via their names as well.
Names are available only if generation of inspector information was
enabled during compilation of the corresponding lambda expression.


\Itype{Pair (list)}

\Icmd{\scheme{show} or \scheme{s} \var{n}} shows the first \var{n} elements of the list.
If \var{n} is not specified, all elements are displayed.

\Icmd{\scheme{length} or \scheme{l}} displays the list length.

\Icmd{\scheme{car}} moves to the object in the car of the current object.

\Icmd{\scheme{cdr}} moves to the object in the cdr.

\Icmd{\scheme{ref} or \scheme{r} \var{n}} moves to the \var{nth} element of the list.
\var{n} defaults to 0.

\Icmd{\scheme{tail} \var{n}} moves to the \var{nth} cdr of the list.
\var{n} defaults to 1.


\Itype{Vector, Bytevector, and Fxvector}

\Icmd{\scheme{show} or \scheme{s} \var{n}} shows the first \var{n} elements of the vector.
If \var{n} is not specified, all elements are displayed.

\Icmd{\scheme{length} or \scheme{l}} displays the vector length.

\Icmd{\scheme{ref} or \scheme{r} \var{n}} moves to the \var{nth} element of the vector.
\var{n} defaults to 0.


\Itype{String}

\Icmd{\scheme{show} or \scheme{s} \var{n}} shows the first \var{n} elements of the string.
If \var{n} is not specified, all elements are displayed.

\Icmd{\scheme{length} or \scheme{l}} displays the string length.

\Icmd{\scheme{ref} or \scheme{r} \var{n}} moves to the \var{nth} element of the string.
\var{n} defaults to 0.

\Icmd{\scheme{unicode} \var{n}} displays the first \var{n} elements of the string
as hexadecimal Unicode scalar values.

\Icmd{\scheme{ascii} \var{n}} displays the first \var{n} elements of the string
as hexadecimal ASCII values, using \scheme{--} to denote characters whose Unicode
scalar values are not in the ASCII range.


\Itype{Symbol}

\Icmd{\scheme{show} or \scheme{s}} shows the fields of the symbol.

\Icmd{\scheme{value} or \scheme{v}} moves to the top-level value of the symbol.

\Icmd{\scheme{name} or \scheme{n}} moves to the name of the symbol.

\Icmd{\scheme{property-list} or \scheme{pl}} moves to the property list
of the symbol.

\Icmd{\scheme{ref} or \scheme{r} \var{n}} moves to the \var{nth} field of the symbol.
Field 0 is the top-level value of the symbol, field 1 
is the symbol's name, and field 2 is its property list.
\var{n} defaults to 0.


% in subset-mode system also value-slot, system-property-list, and symbol-hash


\Itype{Character}

\Icmd{\scheme{unicode}} displays the hexadecimal Unicode scalar value for
the character.

\Icmd{\scheme{ascii}} displays the hexadecimal ASCII code for the character,
using \scheme{--} to denote characters whose Unicode scalar values are not
in the ASCII range.


\Itype{Box}

\Icmd{\scheme{show} or \scheme{s}} shows the contents of the box.

\Icmd{\scheme{unbox} or \scheme{ref} or \scheme{r}} moves to the boxed object.


\Itype{Port}

\Icmd{\scheme{show} or \scheme{s}} shows the fields of the port, including
the input and output size, index, and buffer fields.

\Icmd{\scheme{name}} moves to the port's name.

\Icmd{\scheme{handler}} moves to the port's handler.

\Icmd{\scheme{output-buffer} or \scheme{ob}} moves to the port's output buffer.

\Icmd{\scheme{input-buffer} or \scheme{ib}} moves to the port's input buffer.

% \Icmd{\scheme{info}} moves to the port's info.


\Itype{Record}

\Icmd{\scheme{show} or \scheme{s}} shows the contents of the record.

\Icmd{\scheme{fields}} moves to the list of field names
of the record.

\Icmd{\scheme{name}} moves to the name of the record.

\Icmd{\scheme{rtd}} moves to the record-type descriptor of the record.

\Icmd{\scheme{ref} or \scheme{r} \var{name}} moves to the named field of the
record, if accessible.

\Icmd{\scheme{set!} or \scheme{!} \var{name} \var{value}} sets the value
of the named field of the record, if mutable.


\Itype{Transport Link Cell (TLC)}

\Icmd{\scheme{show} or \scheme{s}} shows the fields of the TLC.

\Icmd{\scheme{keyval}} moves to the keyval of the TLC.

\Icmd{\scheme{tconc}} moves to the tconc of the TLC.

\Icmd{\scheme{next}} moves to the next link of the TLC.

\Icmd{\scheme{ref} or \scheme{r} \var{n}} moves to the \var{nth} field of the symbol.
Field 0 is the keyval, field 1 the tconc, and field 2 the next link.
\var{n} defaults to 0.


\section{The Object Inspector\label{SECTDEBUGOBJECTINSPECTOR}}

A facility for noninteractive inspection is also provided
to allow construction of different inspection interfaces.
Like the interactive facility, it allows objects to be examined in
ways not ordinarily possible.
The noninteractive system follows a simple, object-oriented protocol.
Ordinary Scheme objects are encapsulated in procedures, or inspector
objects, that take symbolic messages and return either information
about the encapsulated object or new inspector objects that encapsulate
pieces of the object.

%----------------------------------------------------------------------------
\entryheader
\formdef{inspect/object}{\categoryprocedure}{(inspect/object \var{object})}
\returns an inspector object procedure
\listlibraries
\endentryheader

\noindent
\scheme{inspect/object} is used to turn an ordinary Scheme object into an
inspector object.
All inspector objects accept the messages \scheme{type}, \scheme{print},
\scheme{write}, and \scheme{size}.
The \scheme{type} message returns a symbolic representation of the type of
the object.
The \scheme{print} and \scheme{write} messages must be accompanied by a port
parameter.
They cause a representation of the object to be written to the port,
using the Scheme procedures \scheme{pretty-print} and \scheme{write}.
The \scheme{size} message returns a fixnum representing the size
in bytes occupied by the object, including any objects accessible
from the current object except those for which the size was already
requested via an inspector object derived from the argument of the
same \scheme{inspect/object} call.

All inspector objects except for variable inspector objects accept
the message \scheme{value}, which returns the actual object encapsulated
in the inspector object.

\schemedisplay
(define x (inspect/object '(1 2 3)))
(x 'type) ;=> pair
(define p (open-output-string))
(x 'write p)
(get-output-string p) ;=> "(1 2 3)"
(x 'length) ;=> (proper 3)
(define y (x 'car))
(y 'type) ;=> simple
(y 'value) ;=> 1
\endschemedisplay

\def\instype#1{\bigskip\noindent\textbf{#1 inspector objects.}}

\def\insmsg#1#2{\medskip\noindent\scheme{(}\emph{#1-object} #2\scheme{)}}

\instype{Pair}
Pair inspector objects contain Scheme pairs.

\insmsg{pair}{\scheme{'type}}
returns the symbol \scheme{pair}.

\insmsg{pair}{\scheme{'car}}
returns an inspector object containing the ``car'' field of the pair.

\insmsg{pair}{\scheme{'cdr}}
returns an inspector object containing the ``cdr'' field of the pair.

\insmsg{pair}{\scheme{'length}}
returns a list of the form (\var{type} \var{count}).
The type field contains the symbol \scheme{proper}, the symbol \scheme{improper}, or
the symbol \scheme{circular}, depending on the structure of the list.
The count field contains the number of distinct pairs in the list.

\instype{Box}
Box inspector objects contain {\ChezScheme} boxes.

\insmsg{box}{\scheme{'type}}
returns the symbol \scheme{box}.

\insmsg{box}{\scheme{'unbox}}
returns an inspector object containing the contents of the box.

\instype{TLC}
Box inspector objects contain {\ChezScheme} boxes.

\insmsg{tlc}{\scheme{'type}}
returns the symbol \scheme{tlc}.

\insmsg{tlc}{\scheme{'keyval}}
returns an inspector object containing the TLC's keyval.

\insmsg{tlc}{\scheme{'tconc}}
returns an inspector object containing the TLC's tconc.

\insmsg{tlc}{\scheme{'next}}
returns an inspector object containing the TLC's next link.

\instype{Vector, String, Bytevector, and Fxvector}
Vector (bytevector, string, fxvector) inspector objects contain Scheme
vectors (bytevectors, strings, fxvectors).

\insmsg{vector}{\scheme{'type}}
returns the symbol \scheme{vector} (\scheme{string}, \scheme{bytevector}, \scheme{fxvector}).

\insmsg{vector}{\scheme{'length}}
returns the number of elements in the vector or string.

\insmsg{vector}{\scheme{'ref} \var{n}}
returns an inspector object containing the \var{nth} element of the
vector or string.

\instype{Simple}
Simple inspector objects contain unstructured, unmodifiable objects.
These include numbers, booleans, the empty list, the end-of-file
object, and the void object.
They may be examined directly by asking for the \scheme{value} of the object.

\insmsg{simple}{\scheme{'type}}
returns the symbol \scheme{simple}.

\instype{Unbound}
Although unbound objects are not normally accessible to Scheme programs,
they may be encountered when inspecting variables.

\insmsg{unbound}{\scheme{'type}}
returns the symbol \scheme{unbound}.

\instype{Procedure}
Procedure inspector objects contain Scheme procedures.

\insmsg{procedure}{\scheme{'type}}
returns the symbol \scheme{procedure}.

\insmsg{procedure}{\scheme{'length}}
returns the number of free variables.

\insmsg{procedure}{\scheme{'ref} \var{n}}
returns an inspector object containing the \var{nth} free variable of the
procedure.
See the description below of variable inspector objects.
\var{n} must be nonnegative and less than the length of the procedure.

\insmsg{procedure}{\scheme{'eval} \var{expr}}
evaluates expr and returns its value.
The values of the procedure's free variables are bound within the
evaluated expression to
identifiers of the form \%$n$, where $n$ is the location number
displayed by the inspector.
The values of named variables are also bound to their names.

\insmsg{procedure}{\scheme{'code}}
returns an inspector object containing the procedure's code object.
See the description below of code inspector objects.


\instype{Continuation}
Continuations created by \scheme{call/cc} are actually
procedures.
However, when inspecting such a procedure the underlying data structure
that embodies the continuation may be exposed.
A continuation structure contains the location at which computation is
to resume, the variable values necessary to perform the computation,
and a link to the next continuation.

\insmsg{continuation}{\scheme{'type}}
returns the symbol \scheme{continuation}.

\insmsg{continuation}{\scheme{'length}}
returns the number of free variables.

\insmsg{continuation}{\scheme{'ref} \var{n}}
returns an inspector object containing the \var{nth} free variable of the
continuation.
See the description below of variable inspector objects.
\var{n} must be nonnegative and less than the length of the continuation.

\insmsg{continuation}{\scheme{'eval} \var{expr}}
evaluates expr and returns its value.
The values of frame locations are bound within the
evaluated expression to
identifiers of the form \%$n$, where $n$ is the location number
displayed by the inspector.
The values of named locations are also bound to their names.

\insmsg{continuation}{\scheme{'code}}
returns an inspector object containing the code object for the procedure
that was active when the current continuation frame was created.
See the description below of code inspector objects.

\insmsg{continuation}{\scheme{'depth}}
returns the number of frames in the continuation.

\insmsg{continuation}{\scheme{'link}}
returns an inspector object containing the next continuation frame.
The depth must be greater than 1.

\insmsg{continuation}{\scheme{'link*} \var{n}}
returns an inspector object containing the \var{nth} continuation link.
\var{n} must be less than the depth.

\insmsg{continuation}{\scheme{'source}}
returns an inspector object containing the source information attached
to the continuation (representing the source for the application that
resulted in the formation of the continuation)
or \scheme{#f} if no source information is attached.

\insmsg{continuation}{\scheme{'source-object}}
returns an inspector object containing the source object for the
procedure application that resulted in the formation of the continuation
or \scheme{#f} if no source object is attached.

\insmsg{continuation}{\scheme{'source-path}}
attempts to find the pathname of the file containing the source for
the procedure application that resulted in the formation of the continuation.
If successful, three values are returned to identify the file and position
of the application within the file: \var{path}, \var{line}, and \var{char}.
Two values, a file name and an absolute character position, are returned
if the file name is known but the named file cannot be found.
The search may be unsuccessful even if a file by the expected
name is found in the path if the file has been modified since the source
code was compiled.
If no file name is known, no values are returned.
The parameter \scheme{source-directories} (Section~\ref{SECTSYSTEMSOURCE})
determines the set of directories
searched for source files identified by relative path names.


\instype{Code}
Code inspector objects contain {\ChezScheme} code objects.

\insmsg{code}{\scheme{'type}}
returns the symbol \scheme{code}.

\insmsg{code}{\scheme{'name}}
returns a string or \scheme{#f}.
The name associated with a code inspector object is the name of the
variable to which the procedure was originally bound or assigned.
Since the binding of a variable can be changed, this name association
may not always be accurate.
\scheme{#f} is returned if the inspector cannot determine a name for the
procedure.

\insmsg{code}{\scheme{'source}}
returns an inspector object containing the source information attached
to the code object or \scheme{#f} if no source information is attached.

\insmsg{continuation}{\scheme{'source-object}}
returns an inspector object containing the source object for the
code object or \scheme{#f} if no source object is attached.

\insmsg{code}{\scheme{'source-path}}
attempts to find the pathname of the file containing the source for
the lambda expression that produced the code object.
If successful, three values are returned to identify the file and position
of the application within the file: \var{path}, \var{line}, and \var{char}.
Two values, a file name and an absolute character position, are returned
if the file name is known but the named file cannot be found.
The search may be unsuccessful even if a file by the expected
name is found in the path if the file has been modified since the source
code was compiled.
If no file name is known, no values are returned.
The parameter \scheme{source-directories} (Section~\ref{SECTSYSTEMSOURCE})
determines the set of directories
searched for source files identified by relative path names.

\insmsg{code}{\scheme{'free-count}}
returns the number of free variables in any procedure for which this is
the corresponding code.


\instype{Variable}
Variable inspector objects encapsulate variable bindings.
Although the actual underlying representation varies, the variable
inspector object provides a uniform interface.

\insmsg{variable}{\scheme{'type}}
returns the symbol \scheme{variable}.

\insmsg{variable}{\scheme{'name}}
returns a symbol or \scheme{#f}.
\scheme{#f} is returned if the name is not available or if the variable is a
compiler-generated temporary variable.
Variable names are not retained when the parameter
\scheme{generate-inspector-information}
(page~\ref{desc:generate-inspector-information})
is false during compilation.

\insmsg{variable}{\scheme{'ref}}
returns an inspector object containing the current value of the
variable.

\insmsg{variable}{\scheme{'set!} \var{e}}
returns unspecified, after setting the current value of the
variable to \var{e}.
An exception is raised with condition type \scheme{&assertion} if the variable is not assignable.

% \insmsg{variable}{\scheme{id}} returns compiler's internal data structure
% representing the variable, if available.


\instype{Port}
Port inspector objects contain ports.

\insmsg{port}{\scheme{'type}}
returns the symbol \scheme{port}.

\insmsg{port}{\scheme{'input?}}
returns \scheme{#t} if the port is an input port, \scheme{#f} otherwise.

\insmsg{port}{\scheme{'output?}}
returns \scheme{#t} if the port is an output port, \scheme{#f} otherwise.

\insmsg{port}{\scheme{'binary?}}
returns \scheme{#t} if the port is a binary port, \scheme{#f} otherwise.

\insmsg{port}{\scheme{'closed?}}
returns \scheme{#t} if the port is closed, \scheme{#f} if the port is open.

\insmsg{port}{\scheme{'name}}
returns an inspector object containing the port's name.

\insmsg{port}{\scheme{'handler}}
returns a procedure inspector object encapsulating the port handler,
such as would be returned by \scheme{port-handler}.

\insmsg{port}{\scheme{'output-size}}
returns the output buffer size as a fixnum if the port is an
output port (otherwise the value is unspecified).

\insmsg{port}{\scheme{'output-index}}
returns the output buffer index as a fixnum if the port is an
output port (otherwise the value is unspecified).

\insmsg{port}{\scheme{'output-buffer}}
returns an inspector object containing the string used for buffered
output.

\insmsg{port}{\scheme{'input-size}}
returns the input buffer size as a fixnum if the port is an
input port (otherwise the value is unspecified).

\insmsg{port}{\scheme{'input-index}}
returns the input buffer index as a fixnum if the port is an
input port (otherwise the value is unspecified).

\insmsg{port}{\scheme{'input-buffer}}
returns an inspector object containing the string used for buffered
input.

% \insmsg{port}{\scheme{'info}}
% returns an inspector object containing the port's info.

\instype{Symbol}
Symbol inspector objects contain symbols.
These include gensyms.

\insmsg{symbol}{\scheme{'type}}
returns the symbol \scheme{symbol}.

\insmsg{symbol}{\scheme{'name}}
returns a string inspector object.
The string name associated with a symbol inspector object is the print
representation of a symbol, such as would be returned by the procedure
\scheme{symbol->string}.

\insmsg{symbol}{\scheme{'gensym?}}
returns \scheme{#t} if the symbol is a gensym, \scheme{#f} otherwise.
Gensyms are created by \scheme{gensym}.

\insmsg{symbol}{\scheme{'top-level-value}}
returns an inspector object containing the global value of the symbol.

\insmsg{symbol}{\scheme{'property-list}}
returns an inspector object containing the property list for the
symbol.

% also $top-level-value, system-property-list, and symbol-hash


\instype{Record}
Record inspector objects contain records.

\insmsg{record}{\scheme{'type}}
returns the symbol \scheme{record}.

\insmsg{record}{\scheme{'name}}
returns a string inspector object corresponding to the name of
the record type.

\insmsg{record}{\scheme{'fields}}
returns an inspector object containing a list of the field names of
the record type.

\insmsg{record}{\scheme{'length}}
returns the number of fields.

\insmsg{record}{\scheme{'rtd}}
returns an inspector object containing the record-type descriptor of the
record type.

\insmsg{record}{\scheme{'accessible?} \var{name}}
returns \scheme{#t} if the named field is accessible, \scheme{#f} otherwise.
A field may be inaccessible if optimized away by the compiler.

\insmsg{record}{\scheme{'ref} \var{name}}
returns an inspector object containing the value of the named field.
An exception is raised with condition type \scheme{&assertion} if the named field is not accessible.

\insmsg{record}{\scheme{'mutable?} \var{name}}
returns \scheme{#t} if the named field is mutable, \scheme{#f} otherwise.
A field is immutable if it is not declared mutable or if the compiler
optimizes away all assignments to the field.

\insmsg{record}{\scheme{'set!} \var{name} \var{value}}
sets the value of the named field to \var{value}.
An exception is raised with condition type \scheme{&assertion} if the named field is not assignable.

\section{Locating objects\label{SECTDEBUGLOCATINGOBJECTS}}

\noskipentryheader
\formdef{make-object-finder}{\categoryprocedure}{(make-object-finder \var{pred})}
\formdef{make-object-finder}{\categoryprocedure}{(make-object-finder \var{pred} \var{g})}
\formdef{make-object-finder}{\categoryprocedure}{(make-object-finder \var{pred} \var{x} \var{g})}
\returns see below
\listlibraries
\endentryheader

The procedure \scheme{make-object-finder} takes a predicate \var{pred} and two optional
arguments: a starting point \var{x} and a maximum generation \var{g}.
The starting point defaults to the value of the procedure \scheme{oblist},
and the maximum generation defaults to the value of the parameter
\scheme{collect-maximum-generation}.
\scheme{make-object-finder} returns an object finder \var{p} that can be used to
search for objects satisfying \var{pred} within the starting-point object \var{x}.
Immediate objects and objects in generations older than \var{g} are treated
as leaves.
\var{p} is a procedure accepting no arguments.
If an object \var{y} satisfying \var{pred} can be found starting with \var{x},
\var{p} returns a list whose first element is \var{y} and whose remaining
elements represent the path of objects from \var{x} to \var{y}, listed
in reverse order.
\var{p} can be invoked multiple times to find additional objects satisfying
the predicate, if any.
\var{p} returns \scheme{#f} if no more objects matching the predicate
can be found.

\var{p} maintains internal state recording where it has been so it
can restart at the point of the last found object and not return
the same object twice.
The state can be several times the size of the starting-point object
\var{x} and all that is reachable from \var{x}.

The interactive inspector provides a convenient interface to the object
finder in the form of \scheme{find} and \scheme{find-next} commands.

Relocation tables for static code objects are discarded by default, which
prevents object finders from providing accurate results when static code
objects are involved.
That is, they will not find any objects pointed to directly from a code
object that has been promoted to the static generation.
If this is a problem, the command-line argument
\index{\scheme{--retain-static-relocation} command-line option}\scheme{--retain-static-relocation}
can be used to prevent the relocation tables from being discarded.


\section{Nested object size and composition\label{SECTDEBUGOBJECTSIZES}}

The procedures \scheme{compute-size} and \scheme{compute-composition} can be
used to determine the size or composition of an object, including anything
reachable via pointers from the object.
Depending on the number of objects reachable from the object, the procedures
potentially allocate a large amount of memory.
In an application for which knowing the number, size, generation, and types
of all objects in the heap is sufficient,
\index{\scheme{object-counts}}\scheme{object-counts} is potentially much
more efficient.

These procedures treat immediate objects such as fixnums, booleans, and
characters as zero-count, zero-byte leaves.

By default, these procedures also treat static objects (those in the
initial heap) as zero-count, zero-byte leaves.
Both procedures accept an optional second argument that specifies the
maximum generation of interest, with the symbol \scheme{static} being
used to represent the static generation.

Objects sometimes point to a great deal more than one might expect.
For example, if static data is included, the procedure value of
\scheme{(lambda (x) x)} points indirectly to the exception handling
subsystem (because of the argument-count check) and many other things
as a result of that.

Relocation tables for static code objects are discarded by default,
which prevents these procedures from providing accurate results when
static code objects are involved.
That is, they will not find any objects pointed to directly from a code
object that has been promoted to the static generation.
If accurate sizes and compositions for static code objects are
required, the command-line argument
\index{\scheme{--retain-static-relocation} command-line option}\scheme{--retain-static-relocation}
can be used to prevent the relocation tables from being discarded.

\entryheader
\formdef{compute-size}{\categoryprocedure}{(compute-size \var{object})}
\formdef{compute-size}{\categoryprocedure}{(compute-size \var{object} \var{generation})}
\returns see below
\listlibraries
\endentryheader

\var{object} can be any object.
\var{generation} must be a fixnum between 0 and the value of
\scheme{collect-maximum-generation}, inclusive, or the symbol
\scheme{static}.
If \var{generation} is not supplied, it defaults to the value of
\scheme{collect-maximum-generation}.

\scheme{compute-size} returns the amount of memory, in bytes, occupied by
\var{object} and anything reachable from \var{object} in any generation
less than or equal to \var{generation}.
Immediate values such as fixnums, booleans, and characters have zero size.

The following examples are valid for machines with 32-bit pointers.

\schemedisplay
(compute-size 0) ;=> 0
(compute-size (cons 0 0)) ;=> 8
(compute-size (cons (vector #t #f) 0)) ;=> 24

(compute-size
  (let ([x (cons 0 0)])
    (set-car! x x)
    (set-cdr! x x)
    x))                  ;=> 8

(define-record-type frob (fields x))
(collect 1 1) ; force rtd into generation 1
(compute-size
  (let ([x (make-frob 0)])
    (cons x x))
  0)                       ;=> 16
\endschemedisplay

\entryheader
\formdef{compute-composition}{\categoryprocedure}{(compute-composition \var{object})}
\formdef{compute-composition}{\categoryprocedure}{(compute-composition \var{object} \var{generation})}
\returns see below
\listlibraries
\endentryheader

\var{object} can be any object.
\var{generation} must be a fixnum between 0 and the value of
\scheme{collect-maximum-generation}, inclusive, or the symbol
\scheme{static}.
If \var{generation} is not supplied, it defaults to the value of
\scheme{collect-maximum-generation}.

\scheme{compute-composition} returns an association list representing
the composition of \var{object}, including anything reachable from it
in any generation less than or equal to \var{generation}.
The association list has the following structure:

\schemedisplay
((\var{type} \var{count} . \var{bytes}) \dots)
\endschemedisplay

\var{type} is either the name of a primitive type, represented as a
symbol, e.g., \scheme{pair}, or a record-type descriptor (rtd).
\var{count} and \var{bytes} are nonnegative fixnums.

Immediate values such as fixnums, booleans, and characters are not
included in the composition.

The following examples are valid for machines with 32-bit pointers.

\schemedisplay
(compute-composition 0) ;=> ()
(compute-composition (cons 0 0)) ;=> ((pair 1 . 8))
(compute-composition
  (cons (vector #t #f) 0)) ;=> ((pair 1 . 8) (vector 1 . 16))

(compute-composition
  (let ([x (cons 0 0)])
    (set-car! x x)
    (set-cdr! x x)
    x))                 ;=> ((pair 1 . 8)

(define-record-type frob (fields x))
(collect 1 1) ; force rtd into generation 1
(compute-composition
  (let ([x (make-frob 0)])
    (cons x x))
  0)                       ;=> ((pair 1 . 8)
                                (#<record type frob> 1 . 8))
\endschemedisplay