File: system.stex

package info (click to toggle)
chezscheme 9.5.4%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 61,640 kB
  • sloc: ansic: 17,508; sh: 759; makefile: 509; csh: 423
file content (5344 lines) | stat: -rw-r--r-- 216,010 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
% Copyright 2005-2018 Cisco Systems, Inc.
%
% Licensed under the Apache License, Version 2.0 (the "License");
% you may not use this file except in compliance with the License.
% You may obtain a copy of the License at
%
% http://www.apache.org/licenses/LICENSE-2.0
%
% Unless required by applicable law or agreed to in writing, software
% distributed under the License is distributed on an "AS IS" BASIS,
% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
% See the License for the specific language governing permissions and
% limitations under the License.
\chapter{System Operations\label{CHPTSYSTEM}}

This chapter describes operations for
handling exceptions, interrupts, environments,
compilation and evaluation, profiling,
controlling the operation of the system,
timing and statistics,
defining and setting parameters,
and
querying the operating system environment.

\schemeinit
(load "docond.ss")
\endschemeinit

\section{Exceptions\label{SECTSYSTEMEXCEPTIONS}}

\index{exception handling}{\ChezScheme} provides some extensions to the
Revised$^6$ Report exception-handling mechanism, including mechanisms
for producing formatted error messages, displaying conditions,
and redefining the base exception handler.
These extensions are described in this section.


%----------------------------------------------------------------------------
\entryheader
\formdef{warning}{\categoryprocedure}{(warning \var{who} \var{msg} \var{irritant} \dots)}
\returns unspecified
\listlibraries
\endentryheader

\scheme{warning} raises a continuable exception with condition type
\scheme{&warning} and should be used to describe situations for which the
\scheme{&warning} condition type is appropriate, typically a situation
that should not prevent the program from continuing but might result
in a more serious problem at some later point.

The continuation object with which the exception is raised also includes
a \scheme{&who} condition whose who field is \var{who} if \var{who} is
not \scheme{#f}, a \scheme{&message} condition whose message field is
\var{msg}, and an \scheme{&irritants} condition whose irritants field
is \scheme{(\var{irritant} \dots)}.

\var{who} must be a string, a symbol, or \scheme{#f} identifying the procedure
or syntactic form reporting the warning upon whose behalf the warning is being
reported.
It is usually best to identify a procedure the programmer has called rather
than some other procedure the programmer may not be aware is involved in
carrying out the operation.
\var{msg} must be a string and should describe the exceptional situation.
The irritants may be any Scheme objects and should include values that may
have caused or been materially involved in the exceptional situation.


%----------------------------------------------------------------------------
\entryheader
\formdef{assertion-violationf}{\categoryprocedure}{(assertion-violationf \var{who} \var{msg} \var{irritant} \dots)}
\returns does not return
\formdef{errorf}{\categoryprocedure}{(errorf \var{who} \var{msg} \var{irritant} \dots)}
\returns does not return
\formdef{warningf}{\categoryprocedure}{(warningf \var{who} \var{msg} \var{irritant} \dots)}
\returns unspecified
\listlibraries
\endentryheader

\index{formatted error messages}%
These procedures are like \scheme{assertion-violation}, \scheme{error},
and \scheme{warning} except
that \var{msg} is assumed to be a format string, as if in a call to
\scheme{format} (Section~\ref{SECTFORMAT}), with
\scheme{\var{irritant} \dots} treated as the additional arguments to
\scheme{format}.
This allows programs to control the appearance of the error message, at
least when the default exception handler is in place.

For each of these procedures, the continuation object with which the exception
is raised includes a \scheme{&format} condition to signify that the string
contained in the condition object's \scheme{&message} condition is a
\scheme{format} string and the objects contained in the condition object's
\scheme{&irritants} condition should be treated as the additional
\scheme{format} arguments.

%----------------------------------------------------------------------------
\entryheader
\conditionformdef{(define-condition-type &format &condition
  make-format-condition format-condition?)}
\endentryheader

\noindent
Presence of this condition type within a compound condition indicates
that the string provided by the \scheme{&message} condition, if
present, is a \scheme{format} string and the list of objects provided by
the \scheme{&irritants} condition, if present, should be treated as
additional \scheme{format} arguments.
\showit


%----------------------------------------------------------------------------
\entryheader
\conditionformdef{(define-condition-type &source &condition
  make-source-condition source-condition?
  (form source-condition-form))}
\endentryheader

\noindent
This condition type can be included within a compound condition when a
source expression can be identified in situations in which a
\scheme{&syntax} condition would be inappropriate, such as when a
run-time assertion violation is detected.
The \scheme{form} argument should be an s-expression or syntax object
representing the source expression.
\showit


%----------------------------------------------------------------------------
\entryheader
\conditionformdef{(define-condition-type &continuation &condition
  make-continuation-condition continuation-condition?
  (continuation condition-continuation))}
\endentryheader

\noindent
This condition type can be included within a compound condition to indicate
the current continuation at the point where the exception described by the
condition occurred.
The continuation of a failed \scheme{assert} or a call to
\scheme{assertion-violation}, \scheme{assertion-violationf},
\scheme{error}, \scheme{errorf}, or \scheme{syntax-error} is now included
via this condition type in the conditions passed to \scheme{raise}.
The \scheme{continuation} argument should be a continuation.
\showit

%----------------------------------------------------------------------------
\entryheader
\formdef{display-condition}{\categoryprocedure}{(display-condition \var{obj})}
\formdef{display-condition}{\categoryprocedure}{(display-condition \var{obj} \var{textual-output-port})}
\returns unspecified
\listlibraries
\endentryheader

If \var{textual-output-port} is not supplied, it defaults to the current output port.
This procedure displays a message to the effect that an exception
has occurred with value \var{obj}.
If \var{obj} is a condition (Chapter~\ref{TSPL:CHPTEXCEPTIONS} of
{\TSPLFOUR}), it displays information encapsulated within the condition,
handling messages, \var{who} conditions, irritants, source information,
etc., as appropriate.

%----------------------------------------------------------------------------
\entryheader
\formdef{default-exception-handler}{\categoryprocedure}{(default-exception-handler \var{obj})}
\returns unspecified
\listlibraries
\endentryheader

This procedure is the default value of the \scheme{base-exception-handler}
parameter called on a condition when no other exception handler has been
defined or when all dynamically established exception handlers have chosen
not to handle the condition.
It first displays \var{obj}, as if with \scheme{display-condition}, to the
console error port.
For non-serious warning conditions, it returns immediately after displaying
the condition.

For serious or other non-warning conditions, it
saves the condition in the parameter \scheme{debug-condition}, where
\scheme{debug} (Section~\ref{SECTDEBUGINTERACTIVE}) can retrieve it and
allow it to be inspected.
If the \scheme{debug-on-exception} parameter is set to \scheme{#f} (the
default unless the \index{\scheme{--debug-on-exception} command-line
option}\scheme{--debug-on-exception} command-line option is provided), the
handler prints a message instructing the user to type \scheme{(debug)} to
enter the debugger, then resets to the current caf\'e.
Otherwise, the handler invokes \scheme{debug} directly and resets if
\scheme{debug} returns.

If an I/O exception occurs while attempting to display the condition,
the default exception handler resets (as if by calling \scheme{reset}).
The intent is to avoid an infinite regression (ultimately ending
in exhaustion of memory) in which the process repeatedly recurs
back to the default exception handler trying to write to a console-error
port (typically stderr) that is no longer writable, e.g., due to
the other end of a pipe or socket having been closed.

%----------------------------------------------------------------------------
\entryheader
\formdef{debug-on-exception}{\categoryglobalparameter}{debug-on-exception}
\listlibraries
\endentryheader

The value of this parameter determines whether the default exception handler
immediately enters the debugger immediately when it receives a serious or
non-warning condition.
If the \index{\scheme{--debug-on-exception} command-line option}\scheme{--debug-on-exception}
command-line option (Section~\ref{SECTUSEINTERACTION}) has been provided, the
initial value of this parameter is \scheme{#t}.
Otherwise, the initial value is \scheme{#f}.


%----------------------------------------------------------------------------
\entryheader
\formdef{base-exception-handler}{\categorythreadparameter}{base-exception-handler}
\listlibraries
\endentryheader

The value of this parameter must be a procedure, and the procedure
should accept one argument.
The default value of \scheme{base-exception-handler} is
the procedure \scheme{default-exception-handler}.

The value of this parameter is invoked whenever no exception handler
established by a program has chosen to handle an exception.

%----------------------------------------------------------------------------
\entryheader
\formdef{debug-condition}{\categorythreadparameter}{debug-condition}
\listlibraries
\endentryheader

This parameter is used by the default exception handler to hold the
last serious or non-warning condition received by the handler, where
it can be inspected via the \scheme{debug} procedure
(Section~\ref{SECTDEBUGINTERACTIVE}).
It can also be invoked by user code to store or retrieve a
condition.

%----------------------------------------------------------------------------
\entryheader
\formdef{current-exception-state}{\categorythreadparameter}{current-exception-state}
\listlibraries
\endentryheader

\scheme{current-exception-state} may be used to get or set
the current exception state.
When called without arguments, \scheme{current-exception-state} returns
an \emph{exception state} comprising the current stack of handlers established
by \scheme{with-exception-handler} and \scheme{guard}.
When called with a single argument, which must be an exception state,
\scheme{current-exception-state} sets the exception state.

%----------------------------------------------------------------------------
\entryheader
\formdef{create-exception-state}{\categoryprocedure}{(create-exception-state)}
\formdef{create-exception-state}{\categoryprocedure}{(create-exception-state \var{procedure})}
\listlibraries
\endentryheader

\scheme{create-exception-state} creates an exception
state whose stack of exception handlers is empty except for, in effect,
an infinite number of occurrences of \emph{handler} at its
base.
\var{handler} must be a procedure, and should accept one argument.
If not provided, \var{handler} defaults to a procedure equivalent
to the value of the following expression.

\schemedisplay
(lambda (x) ((base-exception-handler) x))
\endschemedisplay

\section{Interrupts\label{SECTSYSTEMINTERRUPTS}}

\index{interrupts}{\ChezScheme} allows programs to control
the action of the Scheme system when various events
occur, including an interrupt from the
keyboard, the expiration of an internal timer set by \scheme{set-timer},
a breakpoint caused by a call to \scheme{break}, or a request from the
storage manager to initiate a garbage collection.
These mechanisms are described in this section, except for the
collect request mechanism, which is described in Section~\ref{SECTSMGMTGC}.

Timer, keyboard, and collect-request interrupts are supported via a counter
that is decremented approximately once for each call to a nonleaf procedure.
(A leaf procedure is one that does not itself make any calls.)
When no timer is running, this counter is set to a default value (1000
in Version~9) when a program starts or after an interrupt occurs.
If a timer is set (via \scheme{set-timer}), the counter is set to the
minimum of the default value and the number of ticks to which the timer is
set.
When the counter reaches zero, the system looks to see if the timer
is set and has expired or if a keyboard or collect request interrupt
has occurred.
If so, the current procedure call is pended (``put on hold'') while the
appropriate interrupt handler is invoked to handle the interrupt.
When (if) the interrupt handler returns, the pended call takes place.
Thus, timer, keyboard, and collect-request interrupts effectively occur
synchronously with respect to the procedure call mechanism, and
keyboard and collect request interrupts may be delayed by a number
of calls equal to the default timer value.

Calls to the break handler occur immediately
whenever \scheme{break} is called.

%----------------------------------------------------------------------------
\entryheader
\formdef{break}{\categoryprocedure}{(break \var{who} \var{msg} \var{irritant} \dots)}
\formdef{break}{\categoryprocedure}{(break \var{who})}
\formdef{break}{\categoryprocedure}{(break)}
\returns unspecified
\listlibraries
\endentryheader

\noindent
The arguments to \scheme{break} follow the protocol described above for
\scheme{errorf}.
The default break handler (see \scheme{break-handler}) displays a message and
invokes the \index{debugger}debugger.
The format string and objects may be omitted, in which case the
message issued by the default break handler identifies the break
using the \var{who} argument but provides no more information
about the break.
If the \var{who} argument is omitted as well, no message is generated.
The default break handler returns normally if the debugger
exits normally.

%----------------------------------------------------------------------------
\entryheader
\formdef{break-handler}{\categorythreadparameter}{break-handler}
\listlibraries
\endentryheader

\noindent
The value of this parameter must be a procedure.
The current break handler is called by \scheme{break}, which passes
along its arguments.
See \scheme{break} for a description of the default break
handler.
The example below shows how to disable breaks.

\schemedisplay
(break-handler (lambda args (void)))
\endschemedisplay


%----------------------------------------------------------------------------
\entryheader
\formdef{keyboard-interrupt-handler}{\categorythreadparameter}{keyboard-interrupt-handler}
\listlibraries
\endentryheader

\noindent
The value of this parameter must be a procedure.
The keyboard-interrupt handler is called (with no arguments) when
a keyboard interrupt occurs.
The default keyboard-interrupt handler invokes the interactive
\index{debugger}debugger.
If the debugger exits normally the interrupted computation is
resumed.
The example below shows how to install a keyboard-interrupt handler
that resets without invoking the debugger.

\schemedisplay
(keyboard-interrupt-handler
  (lambda ()
    (newline (console-output-port))
    (reset)))
\endschemedisplay


%----------------------------------------------------------------------------
\entryheader\label{desc:set-timer}
\formdef{set-timer}{\categoryprocedure}{(set-timer \var{n})}
\returns previous current timer value
\listlibraries
\endentryheader

\noindent
\index{timer interrupts}\var{n} must be a nonnegative integer.
When \var{n} is nonzero, \scheme{set-timer} starts an internal timer with
an initial value of \var{n}.
When \var{n} ticks elapse, a timer interrupt occurs, resulting in
invocation of the timer interrupt handler.
Each tick corresponds roughly to one nonleaf procedure call (see the
introduction to this section); thus, ticks are not
uniform time units but instead depend heavily on how much work is done
by each procedure call.

When \var{n} is zero, \scheme{set-timer} turns the timer off.

The value returned in either case is the value of the timer before the
call to \scheme{set-timer}.
A return value of 0 should not be taken to imply that the timer was not on;
the return value may also be 0 if the timer was just about to fire when
the call to \scheme{set-timer} occurred.

The engine mechanism (Section~\ref{SECTENGINES}) is built on top of the
timer interrupt so timer interrupts should not be used with engines.


%----------------------------------------------------------------------------
\entryheader
\formdef{timer-interrupt-handler}{\categorythreadparameter}{timer-interrupt-handler}
\listlibraries
\endentryheader

\noindent
\index{timer interrupts}The value of this parameter must be a procedure.
The timer interrupt handler is called by the system when the internal timer
(set by \scheme{set-timer}) expires.
The default handler raises an exception with condition type \scheme{&assertion}
to say that the handler has not
been defined; any program that uses the timer should redefine the
handler before setting the timer.

%----------------------------------------------------------------------------
\entryheader
\formdef{disable-interrupts}{\categoryprocedure}{(disable-interrupts)}
\formdef{enable-interrupts}{\categoryprocedure}{(enable-interrupts)}
\returns disable count
\listlibraries
\endentryheader

\noindent
\scheme{disable-interrupts} disables the handling of interrupts,
including timer, keyboard, and collect request interrupts.
\scheme{enable-interrupts} re-enables these interrupts.
The system maintains a disable count that starts at zero; when zero,
interrupts are enabled.
Each call to \scheme{disable-interrupts} increments the count,
effectively disabling interrupts.
Each call to \scheme{enable-interrupts} decrements the count, if
not already zero, effectively enabling interrupts.
For example, two calls to \scheme{disable-interrupts} followed by one call to
\scheme{enable-interrupts} leaves interrupts disabled.
Calls to \scheme{enable-interrupts} when the count is already zero
(and interrupts are enabled) have no effect.
The value returned by either procedure is the number of calls to
\scheme{enable-interrupts} required to enable interrupts.

Great care should be exercised when using these procedures, since disabling
interrupts inhibits the normal processing of keyboard interrupts,
timer interrupts, and, perhaps most importantly, collect request interrupts.
Since garbage collection does not happen automatically when interrupts are
disabled, it is possible for the storage allocator to run out of space
unnecessarily should interrupts be disabled for a long period of time.

The \scheme{with-interrupts-disabled} syntactic form should be used instead of
these more primitive procedures whenever possible,
since \scheme{with-interrupts-disabled} ensures that interrupts are re-enabled
whenever a nonlocal exit occurs, such as when an exception is handled by
the default exception handler.


%----------------------------------------------------------------------------
\entryheader
\formdef{with-interrupts-disabled}{\categorysyntax}{(with-interrupts-disabled \var{body_1} \var{body_2} \dots)}
\formdef{critical-section}{\categorysyntax}{(critical-section \var{body_1} \var{body_2} \dots)}
\returns the values of the body \scheme{\var{body_1} \var{body_2} \dots}
\listlibraries
\endentryheader

\noindent
\scheme{with-interrupts-disabled} evaluates the body
\scheme{\var{body_1} \var{body_2} \dots} with interrupts disabled.
That is, upon entry, interrupts are disabled, and
upon exit, interrupts are re-enabled.
Thus, \scheme{with-interrupts-disabled} allows the implementation of indivisible
operations in nonthreaded versions of {\ChezScheme} or within a single thread
in threaded versions of {\ChezScheme}.
\scheme{critical-section} is the same as \scheme{with-interrupts-disabled} and
is provided for backward compatibility.

\scheme{with-interrupts-disabled} can be defined as follows.

\schemedisplay
(define-syntax with-interrupts-disabled
  (syntax-rules ()
    [(_ b1 b2 ...)
     (dynamic-wind
       disable-interrupts
       (lambda () b1 b2 ...)
       enable-interrupts)]))
\endschemedisplay

\noindent
The use of \scheme{dynamic-wind} ensures that interrupts are
disabled whenever the body of the \scheme{with-interrupts-disabled} expression
is active and re-enabled whenever it is not.
Since calls to \scheme{disable-interrupts} are counted (see the
discussion under \scheme{disable-interrupts} and
\scheme{enable-interrupts} above), \scheme{with-interrupts-disabled}
expressions may be nested with the desired effect.


%----------------------------------------------------------------------------
\entryheader
\formdef{register-signal-handler}{\categoryprocedure}{(register-signal-handler \var{sig} \var{procedure})}
\returns unspecified
\listlibraries
\endentryheader

\noindent
\scheme{register-signal-handler} is used to
establish a signal handler for a given low-level signal.
\var{sig} must be an exact integer identifying a valid signal, and
\var{procedure} should accept one argument.
See your host system's \scheme{<signal.h>} or documentation for a list
of valid signals and their numbers.
After a signal handler for a given signal has been registered, receipt
of the specified signal results in a call to the handler.
The handler is passed the signal number, allowing the same handler to
be used for different signals while differentiating among them.

Signals handled in this fashion are treated like keyboard interrupts in
that the handler is not called immediately when the signal is delivered
to the process, but rather at some procedure call boundary after the
signal is delivered.
It is generally not a good idea, therefore, to establish handlers for
memory faults, illegal instructions, and the like, since the code that
causes the fault or illegal instruction will continue to execute
(presumably erroneously) for some time before the handler is invoked.
A finite amount of storage is used to buffer as-yet unhandled
signals, after which additional signals are dropped.

\scheme{register-signal-handler} is supported only on Unix-based
systems.


\section{Environments\label{SECTMISCENVIRONMENTS}}

Environments are first-class objects containing identifier bindings.
They are similar to modules but, unlike modules, may be manipulated
at run time.
Environments may be provided as optional arguments to \scheme{eval},
\scheme{expand}, and the procedures that define, assign, or
reference top-level values.

There are several built-in environments, and new environments can
be created by copying existing environments or selected bindings
from existing environments.

Environments can be mutable or immutable.
A mutable environment can be extended with new bindings, its
existing bindings can be modified, and its variables can be assigned.
An immutable environment cannot be modified in any of these ways.

%----------------------------------------------------------------------------
\entryheader
\formdef{environment?}{\categoryprocedure}{(environment? \var{obj})}
\returns \scheme{#t} if \var{obj} is an environment, otherwise \scheme{#f}
\listlibraries
\endnoskipentryheader

\schemedisplay
(environment? (interaction-environment)) ;=> #t
(environment? 'interaction-environment) ;=> #f
(environment? (copy-environment (scheme-environment))) ;=> #t
(environment? (environment '(prefix (rnrs) $rnrs-))) ;=> #t
\endschemedisplay

%----------------------------------------------------------------------------
\entryheader
\formdef{environment-mutable?}{\categoryprocedure}{(environment-mutable? \var{env})}
\returns \scheme{#t} if \var{env} is mutable, otherwise \scheme{#f}
\listlibraries
\endnoskipentryheader

\schemedisplay
(environment-mutable? (interaction-environment)) ;=> #t
(environment-mutable? (scheme-environment)) ;=> #f
(environment-mutable? (copy-environment (scheme-environment))) ;=> #t
(environment-mutable? (environment '(prefix (rnrs) $rnrs-))) ;=> #f
\endschemedisplay

%----------------------------------------------------------------------------
\entryheader
\formdef{scheme-environment}{\categoryprocedure}{(scheme-environment)}
\returns an environment
\listlibraries
\endentryheader

\noindent
\scheme{scheme-environment} returns an environment containing
the initial top-level bindings.
This environment corresponds to the \scheme{scheme} module.

The environment returned by this procedure is immutable.

\schemedisplay
(define cons 3)
(top-level-value 'cons (scheme-environment)) ;=> #<procedure cons>
(set-top-level-value! 'cons 3 (scheme-environment)) ;=> \var{exception}
\endschemedisplay

%----------------------------------------------------------------------------
\entryheader
\formdef{ieee-environment}{\categoryprocedure}{(ieee-environment)}
\returns an IEEE/ANSI standard compatibility environment
\listlibraries
\endentryheader

\noindent
\scheme{ieee-environment} returns an environment containing
bindings for the keywords and variables whose meanings are
defined by the IEEE/ANSI Standard for Scheme~\cite{IEEE:1178}.

The bindings for each of the identifiers in the IEEE environment are those
of the corresponding Revised$^6$ Report library, so this does not provide
full backward compatibility.

The environment returned by this procedure is immutable.

\schemedisplay
(define cons 3)
(top-level-value 'cons (ieee-environment)) ;=> #<procedure cons>
(set-top-level-value! 'cons 3 (ieee-environment)) ;=> \var{exception}
\endschemedisplay

%----------------------------------------------------------------------------
\entryheader
\formdef{interaction-environment}{\categorythreadparameter}{interaction-environment}
\listlibraries
\endentryheader

\noindent
The original value of \scheme{interaction-environment} is the default
top-level environment.
It is initially set to a mutable copy of
\scheme{(scheme-environment)} and which may be extended or otherwise
altered by top-level definitions and assignments.
It may be set to any environment, mutable or not, to change the
default top-level evaluation environment.

An expression's top-level bindings resolve to the environment that is
in effect when the expression is expanded, and changing the value
of this parameter has no effect on running code.
Changes affect only code that is subsequently expanded, e.g., as the
result of a call to \scheme{eval}, \scheme{load}, or
\scheme{compile-file}.

\schemedisplay
(define cons 3)
cons ;=> 3
(top-level-value 'cons (interaction-environment)) ;=> 3

(interaction-environment (scheme-environment))
cons ;=> #<procedure cons>
(set! cons 3) ;=> \var{exception: attempt to assign immutable variable}
(define cons 3) ;=> \var{exception: invalid definition in immutable environment}
\endschemedisplay

%----------------------------------------------------------------------------
\entryheader
\formdef{copy-environment}{\categoryprocedure}{(copy-environment \var{env})}
\formdef{copy-environment}{\categoryprocedure}{(copy-environment \var{env} \var{mutable?})}
\formdef{copy-environment}{\categoryprocedure}{(copy-environment \var{env} \var{mutable?} \var{syms})}
\returns a new environment
\listlibraries
\endentryheader

\scheme{copy-environment} returns a copy of \var{env}, i.e., a new
environment that contains the same bindings as \var{env}.

The environment is mutable if \var{mutable?} is omitted or true;
if \var{mutable?} is false, the environment is immutable.

The set of bindings copied from \var{env} to the new environment
is determined by \var{syms}, which defaults to the value of
\scheme{(environment-symbols \var{env})}.
The binding, if any, for each element of \var{syms} is copied to the
new environment, and no other bindings are present in the new
environment.

In the current implementation, the storage space used by an environment
is never collected, so repeated use of \scheme{copy-environment} will
eventually cause the system to run out of memory.

\schemedisplay
(define e (copy-environment (scheme-environment)))
(eval '(define cons +) e)
(eval '(cons 3 4) e)                    ;=> 7
(eval '(cons 3 4) (scheme-environment)) ;=> (3 . 4)
\endschemedisplay

%----------------------------------------------------------------------------
\entryheader
\formdef{environment-symbols}{\categoryprocedure}{(environment-symbols \var{env})}
\returns a list of symbols
\listlibraries
\endentryheader

This procedure returns a list of symbols representing the identifiers
bound in environment \var{env}.
It is primarily useful in building the list of symbols to be copied
from one environment to another.

\schemedisplay
(define listless-environment
  (copy-environment
    (scheme-environment)
    #t
    (remq 'list (environment-symbols (scheme-environment)))))
(eval '(let ([x (cons 3 4)]) x) listless-environment) ;=> (3 . 4)
(eval '(list 3 4) listless-environment) ;=> \var{exception}
\endschemedisplay

%----------------------------------------------------------------------------
\entryheader
\formdef{apropos-list}{\categoryprocedure}{(apropos-list \var{s})}
\formdef{apropos-list}{\categoryprocedure}{(apropos-list \var{s} \var{env})}
\returns see below
\listlibraries
\endentryheader

This procedure returns a selected list of symbols and pairs.
Each symbol in the list represents an identifier bound in \var{env}.
Each pair represents a set of identifiers exported by a
predefined library or a library previously defined or loaded
into the system.
The car of the pair is the library name, and the cdr is a list
of symbols.
If \var{s} is a string, only entries whose names have \var{s} as a
substring are included, and if \var{s} is a symbol, only those whose names
have the name of \var{s} as a substring are selected.
If no environment is provided, it defaults to the value of
\scheme{interaction-environment}.

\schemedisplay
(library (a) (export a-vector-sortof) (import (rnrs))
  (define a-vector-sortof '(vector 1 2 3)))
(apropos-list 'vector-sort) ;=>
  (vector-sort vector-sort!
   ((a) a-vector-sortof)
   ((chezscheme) vector-sort vector-sort!)
   ((rnrs) vector-sort vector-sort!)
   ((rnrs sorting) vector-sort vector-sort!)
   ((scheme) vector-sort vector-sort!))
\endschemedisplay


%----------------------------------------------------------------------------
\entryheader
\formdef{apropos}{\categoryprocedure}{(apropos \var{s})}
\formdef{apropos}{\categoryprocedure}{(apropos \var{s} \var{env})}
\returns unspecified
\listlibraries
\endentryheader

\scheme{apropos} is like \scheme{apropos-list} except the information is
displayed to the current output port, as shown in the following
transcript.

\schemedisplay
> (library (a) (export a-vector-sortof) (import (rnrs))
    (define a-vector-sortof '(vector 1 2 3)))
> (apropos 'vector-sort)
interaction environment:
  vector-sort, vector-sort!
(a):
  a-vector-sortof
(chezscheme):
  vector-sort, vector-sort!
(rnrs):
  vector-sort, vector-sort!
(rnrs sorting):
  vector-sort, vector-sort!
(scheme):
  vector-sort, vector-sort!
\endschemedisplay

\section{Compilation, Evaluation, and Loading\label{SECTMISCCOMPILEEVAL}}


%----------------------------------------------------------------------------
\noskipentryheader
\formdef{eval}{\categoryprocedure}{(eval \var{obj})}
\formdef{eval}{\categoryprocedure}{(eval \var{obj} \var{env})}
\returns value of the Scheme form represented by \var{obj}
\listlibraries
\endnoskipentryheader

\noindent
\scheme{eval} treats \var{obj} as the representation of an expression.
It evaluates the expression in environment \var{env} and returns
its value.
If no environment is provided, it defaults to the environment
returned by \scheme{interaction-environment}.

Single-argument \scheme{eval} is a {\ChezScheme} extension.
{\ChezScheme} also permits \var{obj} to be the representation of a
nonexpression form, i.e., a definition, whenever the environment
is mutable.
{\ChezScheme} further allows \var{obj} to be an annotation
(Section~\ref{SECTSYNTAXANNOTATIONS}), and the default evaluators
make use of annotations to incorporate source-file
information in error messages and associate source-file
information with compiled code.

In {\ChezScheme}, \scheme{eval} is actually a wrapper that simply
passes its arguments to the current evaluator.
(See \scheme{current-eval}.)
The default evaluator is \scheme{compile}, which expands the
expression via the current expander (see
\scheme{current-expand}), compiles it,
executes the resulting code, and returns its value.
If the environment argument, \var{env}, is present,
\scheme{compile} passes it along to the current expander,
which is \scheme{sc-expand} by default.


%----------------------------------------------------------------------------
\entryheader
\formdef{current-eval}{\categorythreadparameter}{current-eval}
\listlibraries
\endentryheader

\noindent
\scheme{current-eval} determines the evaluation procedure used by the
procedures \index{\scheme{eval}}\scheme{eval}, \scheme{load}, and
\scheme{new-cafe}.
\scheme{current-eval} is initially bound to the value of
\index{\scheme{compile}}\scheme{compile}.
(In {\PetiteChezScheme}, it is initially bound to the value of
\index{\scheme{interpret}}\scheme{interpret}.)
The evaluation procedureshould expect one or two arguments: an object
to evaluate and an optional environment.
The second argument might be an annotation
(Section~\ref{SECTSYNTAXANNOTATIONS}).

\schemedisplay
(current-eval interpret)
(+ 1 1) ;=> 2

(current-eval (lambda (x . ignore) x))
(+ 1 1) ;=> (+ 1 1)
\endschemedisplay


%----------------------------------------------------------------------------
\entryheader
\formdef{compile}{\categoryprocedure}{(compile \var{obj})}
\formdef{compile}{\categoryprocedure}{(compile \var{obj} \var{env})}
\returns value of the Scheme form represented by \var{obj}
\listlibraries
\endentryheader

\noindent
\var{obj}, which can be an annotation (Section~\ref{SECTSYNTAXANNOTATIONS})
or unannotated value, is treated as a Scheme expression, expanded with the
current expander (the value of \scheme{current-expand}) in the specified
environment (or the interaction environment, if no environment
is provided), compiled to machine code, and executed.
\scheme{compile} is the default value of the \scheme{current-eval}
parameter.


%----------------------------------------------------------------------------
\entryheader
\formdef{interpret}{\categoryprocedure}{(interpret \var{obj})}
\formdef{interpret}{\categoryprocedure}{(interpret \var{obj} \var{env})}
\returns value of the Scheme form represented by \var{obj}
\listlibraries
\endentryheader

\noindent
\scheme{interpret} is like \scheme{compile}, except that the expression
is interpreted rather than compiled.
\scheme{interpret} may be used as a replacement for \scheme{compile},
with the following caveats:

\begin{itemize}
\item
Interpreted code runs significantly slower.

\item
Inspector information is not generated for
interpreted code, so the inspector is not as useful for interpreted
code as it is for compiled code.

\item
Foreign procedure expressions cannot be
interpreted, so the interpreter invokes the compiler for all
foreign procedure expressions (this is done transparently).
\end{itemize}

\noindent
\scheme{interpret} is sometimes faster than \scheme{compile} when the
form to be evaluated is short running, since it avoids some of the
work done by \scheme{compile} prior to evaluation.


%----------------------------------------------------------------------------
\entryheader
\formdef{load}{\categoryprocedure}{(load \var{path})}
\formdef{load}{\categoryprocedure}{(load \var{path} \var{eval-proc})}
\returns unspecified
\listlibraries
\endentryheader

\noindent
\var{path} must be a string.
\scheme{load} reads and evaluates the contents of the file specified by
\var{path}.
The file may contain source or object code.
By default, \scheme{load} employs \scheme{eval} to evaluate each source
expression found in a source file.
If \var{eval-proc} is specified, \scheme{load} uses this procedure instead.
\var{eval-proc} must accept one argument, the expression to evaluate.
The expression passed to \var{eval-proc} might be an annotation
(Section~\ref{SECTSYNTAXANNOTATIONS}) or an unannotated value.

The \var{eval-proc} argument
facilitates the implementation of embedded Scheme-like languages
and the use of alternate
evaluation mechanisms to be used for Scheme programs.
\var{eval-proc} can be put to other uses as well.
For example,

\schemedisplay
(load "myfile.ss"
  (lambda (x)
    (pretty-print
      (if (annotation? x)
          (annotation-stripped x)
          x))
    (newline)
    (eval x)))
\endschemedisplay

\noindent
pretty-prints each expression before evaluating it.

\index{\scheme{source-directories}}%
The parameter \scheme{source-directories} (Section~\ref{SECTSYSTEMSOURCE})
determines the set of directories searched for source files not identified
by absolute path names.

%----------------------------------------------------------------------------
\entryheader
\formdef{load-library}{\categoryprocedure}{(load-library \var{path})}
\formdef{load-library}{\categoryprocedure}{(load-library \var{path} \var{eval-proc})}
\returns unspecified
\listlibraries
\endentryheader

\scheme{load-library} is identical to \scheme{load} except
that it treats the input file as if it were prefixed by an implicit
\scheme{#!r6rs}.
This effectively disables any non-R6RS lexical
syntax except where subsequently overridden by \scheme{#!chezscheme}.


%----------------------------------------------------------------------------
\entryheader
\formdef{load-program}{\categoryprocedure}{(load-program \var{path})}
\formdef{load-program}{\categoryprocedure}{(load-program \var{path} \var{eval-proc})}
\returns unspecified
\listlibraries
\endentryheader

\noindent
\var{path} must be a string.
\scheme{load-program} reads and evaluates the contents of the file specified by
\var{path}.
The file may contain source or object code.
If it contains source code, \scheme{load-program} wraps
the code in a \scheme{top-level-program} form so that the file's
content is treated as an RNRS top-level program
(Section~\ref{TSPL:SECTLIBPROGRAMS} of {\TSPLFOUR}).
By default, \scheme{load-program} employs \scheme{eval} to evaluate each source
expression found in the file.
If \var{eval-proc} is specified, \scheme{load-program} uses this procedure instead.
\var{eval-proc} must accept one argument, the expression to evaluate.
The expression passed to \var{eval-proc} might be an annotation
(Section~\ref{SECTSYNTAXANNOTATIONS}) or an unannotated value.

\index{\scheme{source-directories}}%
The parameter \scheme{source-directories} (Section~\ref{SECTSYSTEMSOURCE})
determines the set of directories searched for source files not identified
by absolute path names.

%----------------------------------------------------------------------------

\entryheader
\formdef{verify-loadability}{\categoryprocedure}{(verify-loadability \var{situation} \var{input} \dots)}
\returns unspecified
\listlibraries
\endentryheader

\noindent
\var{situation} must be one of the symbols \scheme{visit}, \scheme{revisit}, or \scheme{load}.
Each \var{input} must be a string pathname or a pair of a string pathname and a library search path.
Each of the pathnames should name a file containing object code for a set of libraries and
top-level programs, such as would be produced by
\index{\scheme{compile-program}}\scheme{compile-program},
\index{\scheme{compile-library}}\scheme{compile-library},
\index{\scheme{compile-whole-program}}\scheme{compile-whole-program},
or
\index{\scheme{compile-whole-library}}\scheme{compile-whole-library}.
A library search path must be a suitable argument for
\index{\scheme{library-directories}}\scheme{library-directories}.

\scheme{verify-loadability} verifies, without actually loading any
code or definining any libraries, whether the object files named
by the specified pathnames and their library dependencies, direct
or indirect, are present, readable, and mutually compatible.
The type of dependencies for each named object file is determined
by the \var{situation} argument: compile-time dependencies for
\var{visit}, run-time dependencies for \var{revisit} and both for
\var{load}.

For each input pathname that is paired with a search path,
the \scheme{library-directories} parameter is parameterized to the
library search path during the recursive search for dependencies
of the programs and libraries found in the object file named by the
pathname.

If \scheme{verify-loadabilty} finds a problem, such as a missing
library dependency or compilation-instance mismatch, it raises an
exception with an appropriate condition.
Otherwise, it returns an unspecified value.

Since \scheme{verify-loadability} does not load or run any code
from the files it processes, it cannot determine whether errors
unrelated to missing or unreadable files or mutual compatibility
will occur when the files are actually loaded.


%----------------------------------------------------------------------------
\entryheader
\formdef{load-compiled-from-port}{\categoryprocedure}{(load-compiled-from-port \var{input-port})}
\returns result of the last compiled expression
\listlibraries
\endentryheader

\noindent
\scheme{load-compiled-from-port} reads and evaluates the object-code contents
of \var{input-port} as previously created by functions like \scheme{compile-file},
\scheme{compile-script}, \scheme{compile-library}, and
\scheme{compile-to-port}.

The return value is the value of the last expression whose compiled
form is in \var{input-port}. If \var{input-port} is empty, then the
result value is unspecified.
The port is left at end-of-file but is not closed.


%----------------------------------------------------------------------------
\entryheader
\formdef{visit-compiled-from-port}{\categoryprocedure}{(visit-compiled-from-port \var{input-port})}
\returns result of the last compiled expression processed
\listlibraries
\endentryheader

\noindent
\scheme{visit-compiled-from-port} reads and evaluates the object-code contents
of \var{input-port} as previously created by functions like \scheme{compile-file},
\scheme{compile-script}, \scheme{compile-library}, and
\scheme{compile-to-port}.  In the process, it skips any revisit (run-time-only) code.

The return value is the value of the last expression whose last non-revisit compiled
form is in \var{input-port}. If there are no such forms, then the
result value is unspecified.
The port is left at end-of-file but is not closed.


%----------------------------------------------------------------------------
\entryheader
\formdef{revisit-compiled-from-port}{\categoryprocedure}{(revisit-compiled-from-port \var{input-port})}
\returns result of the last compiled expression processed
\listlibraries
\endentryheader

\noindent
\scheme{revisit-compiled-from-port} reads and evaluates the object-code contents
of \var{input-port} as previously created by functions like \scheme{compile-file},
\scheme{compile-script}, \scheme{compile-library}, and
\scheme{compile-to-port}.  In the process, it skips any visit (compile-time-only) code.

The return value is the value of the last expression whose last non-visit compiled
form is in \var{input-port}. If there are no such forms, then the
result value is unspecified.
The port is left at end-of-file but is not closed.


%----------------------------------------------------------------------------
\entryheader
\formdef{visit}{\categoryprocedure}{(visit \var{path})}
\returns unspecified
\listlibraries
\endentryheader

\noindent
\var{path} must be a string.
\scheme{visit} reads the named file, which must contain compiled object
code compatible with the current machine type and version, and it
runs those portions of the compiled object code that
establish compile-time information or correspond to expressions
identified as ``visit'' time by \scheme{eval-when} forms contained in
the original source file.

For example, assume the file \scheme{t1.ss} contains the following
forms:

\schemedisplay
(define-syntax a (identifier-syntax 3))
(module m (x) (define x 4))
(define y 5)
\endschemedisplay

If \scheme{t1.ss} is compiled to \scheme{t1.so}, applying \scheme{load}
to \scheme{t1.so} has the effect of defining all three identifiers.
Applying \scheme{visit} to \scheme{t1.so}, however, has the effect of
installing the transformer for \scheme{a}, installing the interface for
\scheme{m} (for use by \scheme{import}),  and recording \scheme{y} as
a variable.
\scheme{visit} is useful when separately compiling one file that depends
on bindings defined in another without actually loading and evaluating
the code in the supporting file.

\index{\scheme{source-directories}}%
The parameter \scheme{source-directories} (Section~\ref{SECTSYSTEMSOURCE})
determines the set of directories searched for source files not identified
by absolute path names.

%----------------------------------------------------------------------------
\entryheader
\formdef{revisit}{\categoryprocedure}{(revisit \var{path})}
\returns unspecified
\listlibraries
\endentryheader

\noindent
\var{path} must be a string.
\scheme{revisit} reads the named file, which must contain compiled object
code compatible with the current machine type and version, and it
runs those portions of the compiled object code that compute
run-time values or correspond to expressions identified as ``revisit'' time by
\scheme{eval-when} forms contained in the original source file.

Continuing the example given for \scheme{visit} above,
applying \scheme{revisit} to the object file, \scheme{t1.so}, has
the effect of establishing the values of the variable \scheme{x}
exported from \scheme{m} and the top-level variable \scheme{y},
without installing either the interface for \scheme{m} or
the transformer for \scheme{a}.

\scheme{revisit} is useful for loading compiled application code without
loading unnecessary compile-time information.
Care must be taken when using this feature if the application calls
\scheme{eval} or uses \scheme{top-level-value},
\scheme{set-top-level-value!}, or \scheme{top-level-syntax} to access
top-level bindings at run-time, since these procedures use compile-time
information to resolve top-level bindings.

\index{\scheme{source-directories}}%
The parameter \scheme{source-directories} (Section~\ref{SECTSYSTEMSOURCE})
determines the set of directories searched for source files not identified
by absolute path names.

%----------------------------------------------------------------------------
\entryheader
\formdef{compile-file}{\categoryprocedure}{(compile-file \var{input-filename})}
\formdef{compile-file}{\categoryprocedure}{(compile-file \var{input-filename} \var{output-filename})}
\returns unspecified
\listlibraries
\endentryheader

\noindent
\var{input-filename} and \var{output-filename} must be strings.
\var{input-filename} must name an existing, readable file.
It must contain a sequence of zero or more source expressions;
if this is not the case, \scheme{compile-file} raises an exception
with condition type \scheme{&syntax}.

The normal evaluation process proceeds in two steps: \index{compilation}compilation and
execution.
\scheme{compile-file} performs the compilation process for an entire source
file, producing an object file.
When the object file is subsequently loaded (see \index{\scheme{load}}\scheme{load}), the
compilation process is not necessary, and the file typically loads
several times faster.

If the optional \var{output-filename} argument is omitted, the
actual input and output filenames are determined as follows.
If \var{input-filename} has no extension, the input filename
is \var{input-filename} followed by \scheme{.ss}  and the
output filename is \var{input-filename} followed by \scheme{.so}.
If \var{input-filename} has the extension \scheme{.so}, the
input filename is \var{input-filename} and the output filename
is \var{input-filename} followed by \scheme{.so}.
Otherwise, the input filename is \var{input-filename} and the
output filename is \var{input-filename} without its extension,
followed by \scheme{.so}.
For example, \scheme{(compile-file "myfile")} produces an object file
with the name \scheme{"myfile.so"} from the source file named
\scheme{"myfile.ss"}, \scheme{(compile-file "myfile.sls")} produces an
object file with the name \scheme{"myfile.so"} from the source file named
\scheme{"myfile.sls"}, and
\scheme{(compile-file "myfile1" "myfile2")} produces an object file with
the name \scheme{"myfile2"} from the source file name \scheme{"myfile1"}.

Before compiling a file, \scheme{compile-file} saves the values of the
following parameters:

\schemedisplay
optimize-level
debug-level
run-cp0
cp0-effort-limit
cp0-score-limit
cp0-outer-unroll-limit
generate-inspector-information
generate-procedure-source-information
compile-profile
generate-covin-files
generate-interrupt-trap
enable-cross-library-optimization
\endschemedisplay

It restores the values after the file has been compiled.
This allows the programmer to control the values of these parameters on
a per-file basis, e.g., via an \scheme{eval-when} with situation
\scheme{compile} embedded in the source file.
For example, if

\schemedisplay
(eval-when (compile) (optimize-level 3))
\endschemedisplay

appears at the top of a source file, the optimization level is set
to 3 just while the remainder of file is compiled.

%----------------------------------------------------------------------------
\entryheader
\formdef{compile-script}{\categoryprocedure}{(compile-script \var{input-filename})}
\formdef{compile-script}{\categoryprocedure}{(compile-script \var{input-filename} \var{output-filename})}
\returns unspecified
\listlibraries
\endentryheader

\noindent
\var{input-filename} and \var{output-filename} must be strings.

\scheme{compile-script} is like \scheme{compile-file} but differs in
that it copies the leading \scheme{#!} line from the
source-file script into the object file.

\scheme{compile-script} permits compiled script files to be created from
source script to reduce script load time.
As with source-code scripts, compiled scripts may be run with the
\index{\scheme{--script} command-line option}\scheme{--script}
command-line option.

%----------------------------------------------------------------------------
\entryheader
\formdef{compile-library}{\categoryprocedure}{(compile-library \var{input-filename})}
\formdef{compile-library}{\categoryprocedure}{(compile-library \var{input-filename} \var{output-filename})}
\returns unspecified
\listlibraries
\endentryheader

\noindent
\var{input-filename} and \var{output-filename} must be strings.

\scheme{compile-library} is identical to \scheme{compile-file} except
that it treats the input file as if it were prefixed by an implicit
\scheme{#!r6rs}.
This effectively disables any non-R6RS lexical
syntax except where subsequently overridden by \scheme{#!chezscheme}.

%----------------------------------------------------------------------------
\entryheader
\formdef{compile-program}{\categoryprocedure}{(compile-program \var{input-filename})}
\formdef{compile-program}{\categoryprocedure}{(compile-program \var{input-filename} \var{output-filename})}
\returns a list of libraries invoked by the program
\listlibraries
\endentryheader

\noindent
\var{input-filename} and \var{output-filename} must be strings.

\scheme{compile-program} is like \scheme{compile-script} but differs in
that it implements the semantics of RNRS top-level programs, while
\scheme{compile-script} implements the semantics of the interactive
top-level.
The resulting compiled program will also run faster than if compiled
via \scheme{compile-file} or \scheme{compile-script}.

\scheme{compile-program} returns a list of libraries directly
invoked by the compiled top-level program, excluding built-in
libraries like \scheme{(rnrs)} and \scheme{(chezscheme)}.
The procedure \scheme{library-requirements} may be used to determine
the indirect requirements, i.e., additional libraries required by
the directly invoked libraries.
When combined with \scheme{library-object-filename}, this information can
be used to determine the set of files that must be distributed with the
compiled program file.

A program invokes a library only if it references one or more variables
exported from the library.
The set of libraries invoked by a top-level program, and hence
loaded when the program is loaded, might be smaller than the set
imported by the program, and it might be larger than the set
directly imported by the program.

As with source-code top-level programs, compiled top-level programs may be
run with the
\index{\scheme{--program} command-line option}\scheme{--program}
command-line option.

%----------------------------------------------------------------------------
\entryheader
\formdef{maybe-compile-file}{\categoryprocedure}{(maybe-compile-file \var{input-filename})}
\formdef{maybe-compile-file}{\categoryprocedure}{(maybe-compile-file \var{input-filename} \var{output-filename})}
\formdef{maybe-compile-library}{\categoryprocedure}{(maybe-compile-library \var{input-filename})}
\formdef{maybe-compile-library}{\categoryprocedure}{(maybe-compile-library \var{input-filename} \var{output-filename})}
\formdef{maybe-compile-program}{\categoryprocedure}{(maybe-compile-program \var{input-filename})}
\formdef{maybe-compile-program}{\categoryprocedure}{(maybe-compile-program \var{input-filename} \var{output-filename})}
\returns see below
\listlibraries
\endentryheader

These procedures are like their non-\scheme{maybe} counterparts but
compile the source file only if the object file is out-of-date.
An object file \var{X} is considered out-of-date if it does not exist or
if it is older than the source file or any files included (via \scheme{include})
when \var{X} was created.
When the value of the parameter \scheme{compile-imported-libraries}
is \scheme{#t}, \var{X} is also considered out-of-date if the object
file for any library imported when \var{X} was compiled is out-of-date.
If \scheme{maybe-compile-file} determines that compilation is necessary,
it compiles the source file by passing \scheme{compile-file} the
input and output filenames.
\scheme{compile-library} does so by similarly invoking the value of the
\scheme{compile-library-handler} parameter, and
\scheme{compile-program} does so by similarly invoking the value of the
\scheme{compile-program-handler} parameter.

When \var{output-filename} is not specified, the input and output
filenames are determined in the same manner as for \scheme{compile-file}.

%----------------------------------------------------------------------------
\entryheader
\formdef{compile-library-handler}{\categorythreadparameter}{compile-library-handler}
\listlibraries
\endentryheader

This parameter must be set to a procedure, and the procedure should
accept two string arguments naming a source file and an object file.
The procedure should typically invoke \scheme{compile-library} and
pass it the two arguments, but it can also use one of the other
file or port compilation procedures.
For example, it might read the source file using its own parser and
use \index{\scheme{compile-to-file}}\scheme{compile-to-file} to finish
the compilation process.
The procedure can perform other actions as well, such as parameterizing
compilation parameters, establishing guards, or gathering statistics.
The default value of this parameter simply invokes
\scheme{compile-library} on the two string arguments without taking
any other action.

The value of this parameter is called by \scheme{maybe-compile-library}
when the object file is out-of-date.
It is also called by the expander to compile an
imported library when \scheme{compile-imported-libraries} is \scheme{#t}
and the expander determines the object file is out-of-date.

%----------------------------------------------------------------------------
\entryheader
\formdef{compile-program-handler}{\categorythreadparameter}{compile-program-handler}
\listlibraries
\endentryheader

This parameter must be set to a procedure, and the procedure should
accept two string arguments naming a source file and an object file.
The procedure should typically invoke \scheme{compile-program} and
pass it the two arguments, but it can also use one of the other
file or port compilation procedures.
For example, it might read the source file using its own parser and
use \index{\scheme{compile-to-file}}\scheme{compile-to-file} to finish
the compilation process.
The procedure can perform other actions as well, such as parameterizing
compilation parameters, establishing guards, or gathering statistics.
The default value of this parameter simply invokes
\scheme{compile-program} on the two string arguments without taking
any other action and returns the list of libraries returned by
\scheme{compile-program}.

The value of this parameter is called by \scheme{maybe-compile-program}
when the object file is out-of-date.

%----------------------------------------------------------------------------
\entryheader
\formdef{compile-whole-program}{\categoryprocedure}{(compile-whole-program \var{input-filename} \var{output-filename})}
\formdef{compile-whole-program}{\categoryprocedure}{(compile-whole-program \var{input-filename} \var{output-filename} \var{libs-visible?})}
\returns a list of libraries left to be loaded at run time
\listlibraries
\endentryheader

\scheme{compile-whole-program} accepts as input a filename naming
a ``whole program optimization'' (wpo) file for a top-level program
and produces an object file incorporating the program and each
library upon which it depends, provided that a wpo file for the
library can be found.

If a wpo file for a required library cannot be found, but an object
file for the library can, the library is not incorporated in the
resulting object file.
Such libraries are left to be loaded at run time.
\scheme{compile-whole-program} returns a list of such libraries.
If there are no such libraries, the resulting object file is
self-contained and \scheme{compile-whole-program} returns the empty
list.

The libraries incorporated into the resulting object file are visible (for
use by \scheme{environment} and \scheme{eval}) if the \var{libs-visible?}
argument is supplied and non-false.
Any library incorporated into the resulting object file and required by
an object file left to be loaded at run time is also visible, as are any
libraries the object file depends upon, regardless of the value of
\var{libs-visible?}.

\scheme{compile-whole-program} linearizes the initialization code for the
set of incorporated libraries in a way that respects static
dependencies among the libraries but not necessary dynamic dependencies
deriving from initialization-time uses of \scheme{environment}
or \scheme{eval}.
Additional static dependencies can be added in most cases to force
an ordering that allows the dynamic imports to succeed,
though not in general since a different order might be required each
time the program is run.
Adding a static dependency of one library on a second requires
adding an import of the second in the first as well as a run-time
reference to one of the variables exported by the second in the
body of the first.

\var{input-filename} and \var{output-filename} must be strings.
\var{input-filename} must identify a wpo file, and a wpo or object
file must also be present for each required library somewhere in
the directories specified by the \scheme{library-directories}
parameter.

To the extent possible given the specified set of visible libraries
and requirements of libraries to be loaded at run time,
\scheme{compile-whole-program} discards unused code and optimizes
across program and library boundaries, potentially reducing program
load time, run time, and memory requirements.
Some optimization also occurs even across the boundaries of libraries
that are not incorporated into the output, though this optimization
is limited in nature.

\index{\scheme{generate-wpo-files}}%
The procedures \scheme{compile-file}, \scheme{compile-program}, \scheme{compile-library},
\scheme{compile-script}, and \scheme{compile-whole-library} produce wpo files as well as ordinary
object files when the \scheme{generate-wpo-files} parameter is set
to \scheme{#t} (the default is \scheme{#f}).
\scheme{compile-port} and \scheme{compile-to-port} do so when passed
an optional wpo port.

%----------------------------------------------------------------------------
\entryheader
\formdef{compile-whole-library}{\categoryprocedure}{(compile-whole-library \var{input-filename} \var{output-filename})}
\returns a list of libraries left to be loaded at run time
\listlibraries
\endentryheader

\scheme{compile-whole-library} is like \scheme{compile-whole-program},
except \var{input-filename} must specify a wpo file for a library,
all libraries are automatically made visible, and a new wpo file is
produced (when \scheme{generate-wpo-files} is \scheme{#t}) as well
as an object file for the resulting combination of libraries.

The comment in the description of \scheme{compile-whole-program}
about the effect of initialization-code linearization on dynamic
dependencies applies to \scheme{compile-whole-library} as well.

%----------------------------------------------------------------------------
\entryheader
\formdef{compile-port}{\categoryprocedure}{(compile-port \var{input-port} \var{output-port})}
\formdef{compile-port}{\categoryprocedure}{(compile-port \var{input-port} \var{output-port} \var{sfd})}
\formdef{compile-port}{\categoryprocedure}{(compile-port \var{input-port} \var{output-port} \var{sfd} \var{wpo-port})}
\formdef{compile-port}{\categoryprocedure}{(compile-port \var{input-port} \var{output-port} \var{sfd} \var{wpo-port} \var{covop})}
\returns unspecified
\listlibraries
\endentryheader

\noindent
\var{input-port} must be a textual input port.
\var{output-port} and, if present and non-false, \var{wpo-port} must be binary output ports.
If present and non-false, \var{sfd} must be a source-file descriptor.
If present and non-false, \var{covop} must be a textual output port.

\scheme{compile-port} is like \scheme{compile-file} except that it takes
input from an arbitrary textual input port and sends output to an arbitrary
binary output port.
If \var{sfd} is supplied, it is passed to the reader so that source information
can be associated with the expressions read from \var{input-port}.
It is also used to associate block-profiling information with the input
file name encapsulated within \var{sfd}.
If \var{wpo-port} is supplied, \scheme{compile-port} sends whole-program optimization information
to \var{wpo-port} for use by \scheme{compile-whole-program}, as if
(and regardless of whether) \scheme{generate-wpo-files} is set.
If \var{covop} is supplied, \scheme{compile-port} sends coverage information to
\var{covop}, as if (and regardless of whether) \scheme{generate-covin-files} is set.

The ports are closed automatically after compilation under the assumption
the program that opens the ports and invokes \scheme{compile-port}
will take care of closing the ports.

%----------------------------------------------------------------------------
\entryheader
\formdef{compile-to-port}{\categoryprocedure}{(compile-to-port \var{obj-list} \var{output-port})}
\formdef{compile-to-port}{\categoryprocedure}{(compile-to-port \var{obj-list} \var{output-port} \var{sfd})}
\formdef{compile-to-port}{\categoryprocedure}{(compile-to-port \var{obj-list} \var{output-port} \var{sfd} \var{wpo-port})}
\formdef{compile-to-port}{\categoryprocedure}{(compile-to-port \var{obj-list} \var{output-port} \var{sfd} \var{wpo-port} \var{covop})}
\returns see below
\listlibraries
\endentryheader

\noindent
\var{obj-list} must be a list containing a sequence of
objects that represent syntactically valid expressions, each possibly
annotated (Section~\ref{SECTSYNTAXANNOTATIONS}).
If any of the objects does not represent a syntactically valid
expression, \scheme{compile-to-port} raises an exception with
condition type \scheme{&syntax}.
\var{output-port} and, if present, \var{wpo-port} must be binary output ports.
If present, \var{sfd} must be a source-file descriptor.

\scheme{compile-to-port} is like \scheme{compile-file} except that it takes
input from a list of objects and sends output to an arbitrary binary
output port.
\var{sfd} is used to associate block-profiling information with the
input file name encapsulated within \var{sfd}.
If \var{wpo-port} is present, \var{compile-to-port} sends whole-program optimization information
to \var{wpo-port} for use by \scheme{compile-whole-program}, as if
(and regardless of whether) \scheme{generate-wpo-files} is set.
If \var{covop} is present, \var{compile-to-port} sends coverage information to
\var{covop}, as if (and regardless of whether) \scheme{generate-covin-files} is set.

The ports are not closed automatically after compilation under the assumption
the program that opens the port and invokes \scheme{compile-to-port}
will take care of closing the port.

When \var{obj-list} contains a single list-structured element whose
first-element is the symbol \scheme{top-level-program},
\scheme{compile-to-port} returns a list of the libraries the top-level
program requires at run time, as with \scheme{compile-program}.
Otherwise, the return value is unspecified.

%----------------------------------------------------------------------------
\entryheader
\formdef{compile-to-file}{\categoryprocedure}{(compile-to-file \var{obj-list} \var{output-file})}
\formdef{compile-to-file}{\categoryprocedure}{(compile-to-file \var{obj-list} \var{output-file} \var{sfd})}
\returns see below
\listlibraries
\endentryheader

\noindent
\var{obj-list} must be a list containing a sequence of
objects that represent syntactically valid expressions, each possibly
annotated (Section~\ref{SECTSYNTAXANNOTATIONS}).
If any of the objects does not represent a syntactically valid
expression, \scheme{compile-to-file} raises an exception with
condition type \scheme{&syntax}.
\var{output-file} must be a string.
If present, \var{sfd} must be a source-file descriptor.

\scheme{compile-to-file} is like \scheme{compile-file} except that it takes
input from a list of objects.
\var{sfd} is used to associate block-profiling information with the
input file name encapsulated within \var{sfd}.

When \var{obj-list} contains a single list-structured element whose
first-element is the symbol \scheme{top-level-program},
\scheme{compile-to-file} returns a list of the libraries the top-level
program requires at run time, as with \scheme{compile-program}.
Otherwise, the return value is unspecified.

%----------------------------------------------------------------------------
\entryheader
\formdef{concatenate-object-files}{\categoryprocedure}{(concatenate-object-files \var{out-file} \var{in-file_1} \var{in-file_2} \dots)}
\returns unspecified
\listlibraries
\endentryheader

\var{out-file} and each \var{in-file} must be strings.

\scheme{concatenate-object-files} combines the header information
contained in the object files named by each \var{in-file}.  It then
writes the combined header information to the file named by
\var{out-file}, followed by the remaining object code from each
input file in turn.

%----------------------------------------------------------------------------
\entryheader
\formdef{make-boot-file}{\categoryprocedure}{(make-boot-file \var{output-filename} \var{base-boot-list} \var{input-filename} \dots)}
\returns unspecified
\listlibraries
\endentryheader

\var{output-filename}, \var{input-filename}, and the elements of
\var{base-boot-list} must be strings.

\scheme{make-boot-file} writes a boot header to the file named by
\var{output-filename}, followed by the object code for each
\var{input-filename} in turn.
If an input file is not already compiled, \scheme{make-boot-file} compiles
the file as it proceeds.

The boot header identifies the elements of \var{base-boot-list} as
alternative boot files upon which the new boot file depends.
If the list of strings naming base boot files is empty, the first named
input file should be a base boot file, i.e., petite.boot or some boot file
derived from petite.boot.

\index{\scheme{--boot} command-line option}%
\index{\scheme{-b} command-line option}%
Boot files are loaded explicitly via the \scheme{--boot} or \scheme{-b}
command-line options or implicitly based on the name of the executable
(Section~\ref{SECTUSECOMMANDLINE}).

See Section~\ref{SECTUSEAPPLICATIONS} for more information on boot files
and the use of \scheme{make-boot-file}.

%----------------------------------------------------------------------------
\entryheader
\formdef{make-boot-header}{\categoryprocedure}{(make-boot-header \var{output-filename} \var{base-boot_1} \var{base-boot_2}\dots)}
\returns unspecified
\listlibraries
\endentryheader

This procedure has been subsumed by \scheme{make-boot-file} and is provided for
backward compatibility.
The call

\schemedisplay
(make-boot-header \var{output-filename} \var{base-boot_1} \var{base-boot_2} \dots)
\endschemedisplay

is equivalent to

\schemedisplay
(make-boot-file \var{output-filename} '(\var{base-boot_1} \var{base-boot_2} \dots))
\endschemedisplay

%----------------------------------------------------------------------------
\entryheader
\formdef{strip-fasl-file}{\categoryprocedure}{(strip-fasl-file \var{input-path} \var{output-path} \var{options})}
\returns unspecified
\listlibraries
\endentryheader

\var{input-path} and \var{output-path} must be strings.
\var{input-path} must name an existing, readable file containing
object code produced by \scheme{compile-file}, one of the other
file-compiling procedures, or an earlier run of \scheme{strip-fasl-file}.
\var{options} must be an enumeration set over the symbols constituting
valid strip options, as described in the \scheme{fasl-strip-options}
entry below.

The new procedure \scheme{strip-fasl-file} allows the removal of
source information of various sorts from a compiled object (fasl)
file produced by \scheme{compile-file} or one of the other file
compiling procedures.
It also allows removal of library visit code from object files
containing compiled libraries.
Visit code is the code for macro transformers and meta definitions
required to compile (but not run) dependent libraries.

On most platforms, the input and output paths can be the same,
in which case the input file is replaced with a new file containing
the stripped object code.
Using the same path will likely fail on Windows file systems,
which do not generally permit an open file to be removed.

If \var{options} is empty, the output file is effectively equivalent
to the input file, though it will not necessarily be identical.

%----------------------------------------------------------------------------
\entryheader
\formdef{fasl-strip-options}{\categorysyntax}{(fasl-strip-options \var{symbol} \dots)}
\returns a fasl-strip-options enumeration set
\listlibraries
\endentryheader

\noindent
Fasl-strip-options enumeration sets are passed to \scheme{strip-fasl-file}
to determine what is stripped.
The available options are described below.

\begin{description}
\item[\scheme{inspector-source}:]
Strip inspector source information.
This includes source expressions that might otherwise be available
for procedures and continuations with the ``code'' and ``call''
commands and messages in the interactive and object inspectors.
It also includes filename and position information that might
otherwise be available for the same via the ``file'' command and
``source'' messages.

\item[\scheme{source-annotations}:]
Strip source annotations, which typically appear only on syntax objects,
e.g., identifiers, in the templates of macro transformers.

\item[\scheme{profile-source}:]
Strip source file and character position information from profiled
code objects.
This does not remove the profile counters or eliminate the overhead
for incrementing them at run time.

\item[\scheme{compile-time-information}: ]
This strips compile-time information from compiled libraries, potentially
reducing the size of the resulting file but making it impossible to
use the file to compile dependent code.
This option is useful for creating smaller object files to ship
as part of a binary-only package.
\end{description}


%----------------------------------------------------------------------------
\entryheader
\formdef{machine-type}{\categoryprocedure}{(machine-type)}
\returns the current machine type
\listlibraries
\endentryheader

\noindent
Consult the release notes for the current version of {\ChezScheme}
for a list of supported machine types.


%----------------------------------------------------------------------------
\entryheader\label{desc:expand}
\formdef{expand}{\categoryprocedure}{(expand \var{obj})}
\formdef{expand}{\categoryprocedure}{(expand \var{obj} \var{env})}
\returns expansion of the Scheme form represented by \var{obj}
\listlibraries
\endentryheader

\noindent
\scheme{expand} treats \var{obj} as the representation of an expression.
It expands the expression in environment \var{env} and returns
an object representing the expanded form.
If no environment is provided, it defaults to the environment
returned by \scheme{interaction-environment}.

\var{obj} can be an annotation
(Section~\ref{SECTSYNTAXANNOTATIONS}), and the default expander
makes use of annotations to incorporate source-file
information in error messages.

\scheme{expand} actually passes its arguments to the current expander
(see \scheme{current-expand}), initially \scheme{sc-expand}.

\index{\scheme{expand-output}}%
See also \scheme{expand-output} (page~\pageref{desc:expand-output})
which can be used to request that the compiler or interpreter show
expander output.

%----------------------------------------------------------------------------
\entryheader
\formdef{current-expand}{\categorythreadparameter}{current-expand}
\listlibraries
\endentryheader

\noindent
\scheme{current-expand} determines the expansion procedure used by
the compiler, interpreter, and direct calls to
\index{\scheme{expand}}\scheme{expand}
to expand syntactic extensions.
\scheme{current-expand} is initially bound to the value of
\index{\scheme{sc-expand}}\scheme{sc-expand}.

It may be set another procedure, but since the format of
expanded code expected by the compiler and interpreter is not publicly
documented, only \scheme{sc-expand} produces correct output, so the
other procedure must ultimately be defined in terms of
\scheme{sc-expand}.

The first argument to the expansion procedure represents the input
expression.
It can be an annotation (Section~\ref{SECTSYNTAXANNOTATIONS}) or an
unannotated value.
the second argument is an environment.
Additional arguments might be passed to the expansion procedure
by the compiler, interpreter, and \scheme{expand}; their number
and roles are unspecified.

%----------------------------------------------------------------------------
\entryheader
\formdef{sc-expand}{\categoryprocedure}{(sc-expand \var{obj})}
\formdef{sc-expand}{\categoryprocedure}{(sc-expand \var{obj} \var{env})}
\returns the expanded form of \var{obj}
\listlibraries
\endentryheader


\noindent
The procedure
\scheme{sc-expand} is used to expand programs written using
\scheme{syntax-case} macros.
\scheme{sc-expand} is the default expander, i.e., the initial
value of \scheme{current-expand}.
\var{obj} represents the program to be expanded, and
\var{env} must be an environment.
\var{obj} can be an annotation (Section~\ref{SECTSYNTAXANNOTATIONS})
or unannotated value.
If not provided, \var{env} defaults to the environment returned by
\scheme{interaction-environment}.

%----------------------------------------------------------------------------
\entryheader\label{desc:expand/optimize}
\formdef{expand/optimize}{\categoryprocedure}{(expand/optimize \var{obj})}
\formdef{expand/optimize}{\categoryprocedure}{(expand/optimize \var{obj} \var{env})}
\returns result of expanding and optimizing form represented by \var{obj}
\listlibraries
\endentryheader

\scheme{expand/optimize} treats \var{obj} as the representation of
an expression.
\var{obj} can be an annotation (Section~\ref{SECTSYNTAXANNOTATIONS})
or unannotated value.
\scheme{expand/optimize} expands the expression in environment \var{env}
and passes the expression through the source optimizer \scheme{cp0}
(unless \scheme{cp0} is disabled via \scheme{run-cp0}).
It also simplifies \scheme{letrec} and \scheme{letrec*} expressions within
the expression and makes their undefined checks explicit.
It returns an object representing the expanded, simplified, and optimized form.
If no environment is provided, it defaults to the environment
returned by \scheme{interaction-environment}.

\scheme{expand/optimize} is primarily useful for understanding what
\scheme{cp0} does and does not optimize.
Many optimizations are performed later in the compiler,
so \scheme{expand/optimize} does not give a complete picture of
optimizations performed.

\schemedisplay
(expand/optimize
  '(let ([y '(3 . 4)])
     (+ (car y) (cdr y)))) ;=> 7

(print-gensym #f)
(expand/optimize
  '(let ([y '(3 . 4)])
     (lambda (x)
       (* (+ (car y) (cdr y)) x)))) ;=> (lambda (x) (#2%* 7 x))

(expand/optimize
  '(let ([n (expt 2 10)])
     (define even?
       (lambda (x) (or (zero? x) (not (odd? x)))))
     (define odd?
       (lambda (x) (not (even? (- x 1)))))
     (define f
       (lambda (x)
         (lambda (y)
           (lambda (z)
             (if (= z 0) (omega) (+ x y z))))))
     (define omega
       (lambda ()
         ((lambda (x) (x x)) (lambda (x) (x x)))))
     (let ([g (f 1)] [m (f n)])
       (let ([h (if (> ((g 2) 3) 5)
                    (lambda (x) (+ x 1))
                    odd?)])
         (h n))))) ;=> 1025
\endschemedisplay

\index{\scheme{expand/optimize-output}}%
See also \scheme{expand/optimize-output} (page~\pageref{desc:expand/optimize-output})
which can be used to request that the compiler or interpreter show
source-optimizer output.

%----------------------------------------------------------------------------
\entryheader
\formdef{eval-when}{\categorysyntax}{(eval-when \var{situations} \var{form_1} \var{form_2} \dots)}
\returns see below
\listlibraries
\endentryheader

\noindent
\var{situations} must be a list containing some combination of the symbols
\scheme{eval}, \scheme{compile}, \scheme{load}, \scheme{visit}, and
\scheme{revisit}.

When source files are loaded (see \scheme{load}), the forms in the file
are read, compiled, and executed sequentially, so that each form in
the file is fully evaluated before the next one is read.
When a source file is compiled (see \scheme{compile-file}), however, the
forms are read and compiled, \emph{but not executed}, in sequence.
This distinction matters only when the execution of one
form in the file affects the compilation of later forms, e.g.,
when the form results in the definition of a module or syntactic form or
sets a compilation parameter such as \scheme{optimize-level} or
\scheme{case-sensitive}.

For example, assume that a file contains the following two forms:

\schemedisplay
(define-syntax reverse-define
  (syntax-rules ()
    [(_ e x) (define x e)]))

(reverse-define 3 three)
\endschemedisplay

Loading this from source has the effect of defining
\scheme{reverse-define} as a syntactic form and binding the identifier
\scheme{three} to 3.
The situation may be different if the file is compiled with
\scheme{compile-file}, however.
Unless the system or programmer takes steps to assure that the first
form is fully executed before the second expression is compiled,
the syntax expander will not recognize \scheme{reverse-define} as a syntactic
form and will generate code for a procedure call to \scheme{reverse-define}
instead of generating code to define \scheme{three} to be 3.
When the object file is subsequently loaded, the attempt to reference
either \scheme{reverse-define} or \scheme{three} will fail.

As it happens, when a \scheme{define-syntax}, \scheme{module},
\scheme{import}, or \scheme{import-only} form appears at top level, as in the
example above, the compiler does indeed arrange to evaluate it before
going on to compile the remainder of the file.
If the compiler encounters a variable definition for an identifier that
was previously something else, it records that fact as well.
The compiler also generates the
appropriate code so that the bindings will be present as well when
the object file is subsequently loaded.
This solves most, but not all, problems of this nature, since most are
related to the use of \scheme{define-syntax} and modules.
Some problems are not so straightforwardly handled, however.
For example, assume that the file contains the following definitions
for \index{\scheme{nodups?}}\scheme{nodups?} and \index{\scheme{mvlet}}\scheme{mvlet}.

\schemedisplay
(define nodups?
  (lambda (ids)
    (define bound-id-member?
      (lambda (id ids)
        (and (not (null? ids))
             (or (bound-identifier=? id (car ids))
                 (bound-id-member? id (cdr ids))))))
    (or (null? ids)
        (and (not (bound-id-member? (car ids) (cdr ids)))
             (nodups? (cdr ids))))))

(define-syntax mvlet
  (lambda (x)
    (syntax-case x ()
      [(_ ((x ...) expr) b1 b2 ...)
       (and (andmap identifier? #'(x ...))
            (nodups? #'(x ...)))
       #'(call-with-values
           (lambda () expr)
           (lambda (x ...) b1 b2 ...))])))

(mvlet ((a b c) (values 1 2 3))
  (list (* a a) (* b b) (* c c)))
\endschemedisplay

\noindent
When loaded directly, this results in the definition of
\scheme{nodups?} as a procedure and \scheme{mvlet} as a syntactic
abstraction before evaluation of the \scheme{mvlet} expression.
Because \scheme{nodups?} is defined before the \scheme{mvlet}
expression is expanded, the call to \scheme{nodups?} during the
expansion of \scheme{mvlet} causes no difficulty.
If instead this file were compiled, using \scheme{compile-file}, the
compiler would arrange to define \scheme{mvlet} before continuing
with the expansion and evaluation of the \scheme{mvlet} expression,
but it would not arrange to define \scheme{nodups?}.
Thus the expansion of the \scheme{mvlet} expression would fail.

In this case it does not help to evaluate the syntactic extension alone.
A solution in this case would be to move the definition of
\scheme{nodups?} inside the definition for \scheme{mvlet}, just as
the definition for \scheme{bound-id-member?} is placed within
\scheme{nodups?}, but this does not work for help routines shared
among several syntactic definitions.
Another solution is to label the \scheme{nodups?} definition a
``meta'' definition (see Section~\ref{SECTSYNTAXMETA}) but this
does not work for helpers that are used both by syntactic
abstractions and by run-time code.

A somewhat simpler problem occurs when setting parameters that affect
compilation, such as \scheme{optimize-level} and
\scheme{case-sensitive?}.
If not set prior to compilation, their settings usually will not have
the desired effect.

\scheme{eval-when} offers a solution to these problems by allowing the
programmer to explicitly control what forms should or should not
be evaluated during compilation.
\scheme{eval-when} is a syntactic form and is handled directly by the
expander.
The action of \scheme{eval-when} depends upon the \var{situations} argument
and whether or not the forms \scheme{\var{form_1} \var{form_2} \dots}
are being compiled via \scheme{compile-file} or are being evaluated
directly.
Let's consider each of the possible situation specifiers
\scheme{eval}, \scheme{compile}, \scheme{load}, \scheme{visit}, and
\scheme{revisit} in turn.

\begin{description}
\item[\scheme{eval}:]
The \scheme{eval} specifier is relevant only when the \scheme{eval-when}
form is being
evaluated directly, i.e., if it is typed at the keyboard or loaded from a
source file.
Its presence causes \scheme{\var{form_1} \var{form_2} \dots} to be
expanded and this expansion to be included in the expansion of the
\scheme{eval-when} form.
Thus, the forms will be evaluated directly as if not contained within an
\scheme{eval-when} form.

\item[\scheme{compile}:]
The \scheme{compile} specifier is relevant only when the \scheme{eval-when}
form appears in a file currently being compiled.
(Its presence is simply ignored otherwise.)
Its presence forces \scheme{\var{form_1} \var{form_2} \dots} to be
expanded and evaluated immediately.

\item[\scheme{load}:]
The \scheme{load} specifier is also relevant only when the \scheme{eval-when}
form appears
in a file currently being compiled.
Its presence causes \scheme{\var{form_1} \var{form_2} \dots} to be
expanded and this expansion to be included in the expansion of the
\scheme{eval-when} form.
Any code necessary to record binding information and evaluate syntax
transformers for definitions contained in the forms is marked for
execution when the file is ``visited,'' and any code necessary to
compute the values of variable definitions and the expressions contained
within the forms is marked for execution when the file is ``revisited.''

\item[\scheme{visit}:]
The \scheme{visit} specifier is also relevant only when the \scheme{eval-when}
form appears
in a file currently being compiled.
Its presence causes \scheme{\var{form_1} \var{form_2} \dots} to be
expanded and this expansion to be included in the expansion of the
\scheme{eval-when} form, with an annotation that the forms are to be
executed when the file is ``visited.''

\item[\scheme{revisit}:]
The \scheme{revisit} specifier is also relevant only when the \scheme{eval-when}
form appears
in a file currently being compiled.
Its presence causes \scheme{\var{form_1} \var{form_2} \dots} to be
expanded and this expansion to be included in the expansion of the
\scheme{eval-when} form, with an annotation that the forms are to be
executed when the file is ``revisited.''
\end{description}

\noindent
A file is considered ``visited'' when it is brought in by either
\scheme{load} or \scheme{visit} and ``revisited'' when it is brought in
by either \scheme{load} or \scheme{revisit}.

Top-level expressions are treated as if they are wrapped in an
\scheme{eval-when} with situations \scheme{load} and \scheme{eval}.
This means that, by default, forms typed at the keyboard or
loaded from a source file are evaluated, and forms appearing in a
file to be compiled are not evaluated directly but are compiled for
execution when the resulting object file is subsequently loaded.

The treatment of top-level definitions is slightly more involved.
All definitions result in changes to the compile-time environment.
For example, an identifier defined by \scheme{define} is recorded
as a variable, and an identifier defined by \scheme{define-syntax}
is recorded as a keyword and associated with the value of its
right-hand-side (transformer) expression.
These changes are made at eval, compile, and load
time as if the definitions were wrapped in an \scheme{eval-when} with
situations \scheme{eval}, \scheme{load}, and \scheme{compile}.
(This behavior can be altered by changing the value of the
parameter \scheme{eval-syntax-expanders-when}.)
Some definitions also result in changes to the run-time environment.
For example, a variable is associated with the value of its
right-hand-side expression.
These changes are made just at evaluation and load time as if the
definitions were wrapped in an \scheme{eval-when} with situations
\scheme{eval} and \scheme{load}.

The treatment of local expressions or definitions (those not at top level)
that are wrapped in an \scheme{eval-when} depends only upon whether the
situation \scheme{eval} is present in the list of situations.
If the situation \scheme{eval} is present, the definitions and expressions
are evaluated as if they were not wrapped in an \scheme{eval-when} form,
i.e., the \scheme{eval-when} form is treated as a \scheme{begin} form.
If the situation \scheme{eval} is not present, the forms are ignored;
in a definition context, the \scheme{eval-when} form is treated as an
empty \scheme{begin}, and in an expression context, the \scheme{eval-when}
form is treated as a constant with an unspecified value.

Since top-level syntax bindings are established, by default, at compile
time as well as eval and load time, top-level variable bindings needed
by syntax transformers should be wrapped in an \scheme{eval-when} form
with situations \scheme{compile}, \scheme{load}, and \scheme{eval}.
We can thus \scheme{nodups?} problem above by enclosing the definition
of \scheme{nodups?} in an \scheme{eval-when} as follows.

\schemedisplay
(eval-when (compile load eval)
  (define nodups?
    (lambda (ids)
      (define bound-id-member?
        (lambda (id ids)
          (and (not (null? ids))
               (or (bound-identifier=? id (car ids))
                   (bound-id-member? id (cdr ids))))))
      (or (null? ids)
          (and (not (bound-id-member? (car ids) (cdr ids)))
               (nodups? (cdr ids)))))))
\endschemedisplay

\noindent
This forces it to be evaluated before it is needed during the expansion
of the \scheme{mvlet} expression.

Just as it is useful to add \scheme{compile} to the default
\scheme{load} and \scheme{eval} situations, omitting options is also
useful.
Omitting one or more of \scheme{compile}, \scheme{load}, and
\scheme{eval} has the effect of preventing the evaluation at the given
time.
Omitting all of the options has the effect of inhibiting evaluation
altogether.

One common combination of situations is \scheme{(compile eval)}, which by the
inclusion of \scheme{compile} causes the expression to be evaluated at
compile time, and by the omission of \scheme{load} inhibits the generation
of code by the compiler for execution when the file is subsequently loaded.
This is typically used for the definition of syntactic extensions used only
within the file in which they appear; in this case their presence in the
object file is not necessary.
It is also used to set compilation parameters that are intended to be in
effect whether the file is loaded from source or compiled via
\scheme{compile-file}

\schemedisplay
(eval-when (compile eval) (case-sensitive #t))
\endschemedisplay

Another common situations list is \scheme{(compile)}, which might be
used to set compilation options to be used only when the file is
compiled via \scheme{compile-file}.

\schemedisplay
(eval-when (compile) (optimize-level 3))
\endschemedisplay

Finally, one other common combination is \scheme{(load eval)}, which might
be useful for inhibiting the double evaluation (during the compilation of
a file and again when the resulting object file is loaded) of syntax
definitions when the syntactic extensions are not needed within
the file in which their definitions appear.

The behavior of \scheme{eval-when} is usually intuitive but can be
understood precisely as follows.
The \scheme{syntax-case} expander, which handles \scheme{eval-when}
forms, maintains two state sets, one for compile-time forms and
one for run-time forms.
The set of possible states in each set are ``L'' for \scheme{load},
``C'' for \scheme{compile}, ``V'' for \scheme{visit}, ``R'' for
\scheme{revisit}, and ``E'' for \scheme{eval}.

When compiling a file, the compile-time set initially contains ``L''
and ``C'' and the run-time set initially contains only ``L.''
When not compiling a file (as when a form is evaluated by the
read-eval-print loop or loaded from a source file), both sets
initially contain only ``E.''
The subforms of an \scheme{eval-when} form at top level are expanded with
new compile- and run-time sets determined by the current sets and
the situations listed in the \scheme{eval-when} form.
Each element of the current set contributes zero or more elements to the
new set depending upon the given situations according to the following
table.

\begin{tabular}{cccccc}
  & \scheme{load}~ & ~\scheme{compile}~ & ~\scheme{visit}~ & ~\scheme{revisit}~ & ~\scheme{eval}\\
L &  L  &  C  &  V  &  R  & --- \\
C & --- & --- & --- & --- &  C  \\
V &  V  &  C  &  V  & --- & --- \\
R &  R  &  C  & --- &  R  & --- \\
E & --- & --- & --- & --- &  E  \\
\end{tabular}

For example, if the current compile-time state set is \{L\}
and the situations are \scheme{load} and \scheme{compile}, the new compile-time
state set is \{L,~C\}, since L/\scheme{load}
contributes ``L'' and L/\scheme{compile} contributes ``C.''

The state sets determine how forms are treated by the expander.
Compile-time forms such as syntax definitions are evaluated at a time
or times determined by the compile-time state set, and run-time forms
are evaluated at a time or times determined by the run-time state set.
A form is evaluated immediately if ``C'' is in the state set.
Code is generated to evaluate the form at visit or revisit
time if ``V'' or ``R'' is present.
If ``L'' is present in the compile-time set, it is treated as ``V;''
likewise, if ``L'' is present in the run-time set, it is treated as
``R.''
If more than one of states is present in the state set, the
form is evaluated at each specified time.

``E'' can appear in the state set only when not compiling a file, i.e.,
when the expander is invoked from an evaluator such as \scheme{compile}
or \scheme{interpret}.
When it does appear, the expanded form is returned from the expander to be
processed by the evaluator, e.g., \scheme{compile} or \scheme{interpret},
that invoked the expander.

The value of the parameter \scheme{eval-syntax-expanders-when} actually determines
the initial compile-time state set.
The parameter is bound to a list of situations, which defaults to
\scheme{(compile load eval)}.
When compiling a file, \scheme{compile} contributes ``C'' to the
state set, \scheme{load} contributes ``L,'' \scheme{visit} contributes
``V,'' \scheme{revisit} contributes ``R,'' and \scheme{eval}
contributes nothing.
When not compiling a file, \scheme{eval} contributes ``E'' to the
state set, and the other situations contribute nothing.
There is no corresponding parameter for controlling the initial value
of the run-time state set.

\label{eval-when-tlp}%
For RNRS top-level programs, \scheme{eval-when} is essentially ineffective.
The entire program is treated as a single expression, so \scheme{eval-when}
becomes a local \scheme{eval-when} for which only the \scheme{eval}
situation has any relevance.
As for any local \scheme{eval-when} form, the subforms are ignored if
the \scheme{eval} situation is not present; otherwise, they are treated as
if the \scheme{eval-when} wrapper were absent.

%----------------------------------------------------------------------------
\entryheader
\formdef{eval-syntax-expanders-when}{\categorythreadparameter}{eval-syntax-expanders-when}
\listlibraries
\endentryheader

\noindent
This parameter must be set to a list representing a set of
\scheme{eval-when} situations, e.g., a list containing at most one
occurrence of each of the symbols \scheme{eval}, \scheme{compile},
\scheme{load}, \scheme{visit}, and \scheme{revisit}.
It is used to determine the evaluation time of syntax
definitions, module forms, and import forms are expanded.
(See the discussion of \scheme{eval-when} above.)
The default value is \scheme{(compile load eval)}, which causes
compile-time information in a file to be established when the file is
loaded from source, when it is compiled via \scheme{compile-file},
and when a compiled version of the file is loaded via \scheme{load}
or \scheme{visit}.

\section{Source Directories and Files\label{SECTSYSTEMSOURCE}}

%----------------------------------------------------------------------------
\entryheader
\formdef{source-directories}{\categoryglobalparameter}{source-directories}
\listlibraries
\endentryheader

\noindent
The value of \scheme{source-directories} must be a list of strings, each
of which names a directory path.
\scheme{source-directories} determines the set of directories searched
for source or object files when a file is loaded via \scheme{load}, \scheme{load-library},
\scheme{load-program}, \scheme{include},
\scheme{visit}, or \scheme{revisit},
when a syntax error occurs, or when a source
file is opened in the interactive inspector.

The default value is the list \scheme{(".")}, which means source files
will be found only in or relative to the current directory, unless named
with an absolute path.

This parameter is never altered by the system, with one exception.
The expander temporarily adds (via \scheme{parameterize}) the directory
in which a library file resides to the front of the \scheme{source-directories}
list when it compiles (when \scheme{compile-imported-libraries} is true) or loads the library from source, which it does
only if the library is not already defined.

%----------------------------------------------------------------------------
\entryheader
\formdef{with-source-path}{\categoryprocedure}{(with-source-path \var{who} \var{name} \var{procedure})}
\listlibraries
\endentryheader

\noindent
The procedure \scheme{with-source-path} searches through the current
source-directories path, in order, for a file with the specified
\var{name} and invokes \var{procedure} on the result.
If no such file is found, an exception is raised with condition types
\scheme{&assertion} and \scheme{&who} with \var{who} as
who value.

If \var{name} is an absolute pathname or one beginning with \scheme{./}
(or \scheme{.\} under Windows) or \scheme{../} (or \scheme{..\} under
Windows), or if the list of source directories
contains only \scheme{"."}, the default, or \scheme{""}, which is
equivalent to \scheme{"."}, no searching is performed and \var{name} is
returned.

\var{who} must be a symbol, \var{name} must be a string, and
\var{procedure} should accept one argument.

The following examples assumes that the file ``pie'' exists
in the directory ``../spam'' but not in ``../ham'' or the current
directory.

\schemedisplay
(define find-file
  (lambda (fn)
    (with-source-path 'find-file fn values)))

(find-file "pie") ;=> "pie"

(source-directories '("." "../ham"))
(find-file "pie") ;=> \var{exception in find-file: pie not found}

(source-directories '("." "../spam"))
(find-file "pie") ;=> "../spam/pie"

(source-directories '("." "../ham"))
(find-file "/pie") ;=> "/pie"

(source-directories '("." "../ham"))
(find-file "./pie") ;=> "./pie"

(source-directories '("." "../spam"))
(find-file "../pie") ;=> "../ham/pie"
\endschemedisplay

\section{Compiler Controls\label{SECTMISCOPTIMIZE}}

%----------------------------------------------------------------------------
\noskipentryheader
\formdef{optimize-level}{\categorythreadparameter}{optimize-level}
\listlibraries
\endnoskipentryheader

\noindent
This parameter can take on one of the four values 0, 1, 2, and 3.

In theory, this parameter controls the amount of optimization
performed by the compiler.
In practice, it does so only indirectly, and the only difference
is between optimize level 3, at which the compiler generates
``unsafe'' code, and optimize levels 0--2, at which the compiler
generates ``safe'' code.
Safe code performs full type and bounds checking so that, for example,
an attempt to apply a non-procedure, an attempt to take the car of a
non-pair, or an attempt to reference beyond the end of a vector each
result in an exception being raised.
With unsafe code, the same situations may result in invalid memory
references, corruption of the Scheme heap (which may cause
seemingly unrelated problems later), system crashes, or other undesirable
behaviors.
Unsafe code is typically faster, but optimize-level 3 should be used with
caution and only on sections of well-tested code that must run as quickly
as possible.

While the compiler produces the same code for optimize levels 0--2,
user-defined macro transformers can differentiate among the different
levels if desired.

One way to use optimize levels is on a per-file
basis, using \index{\scheme{eval-when}}\scheme{eval-when} to force the use of a particular
optimize level at compile time.
For example, placing:

\schemedisplay
(eval-when (compile) (optimize-level 3))
\endschemedisplay

\noindent
at the front of a file will cause all of the forms in the file to be
compiled at optimize level 3 when the file is compiled (using
\index{\scheme{compile-file}}\scheme{compile-file}) but does not affect the optimize level used
when the file is loaded from source.
Since \scheme{compile-file} parameterizes \scheme{optimize-level} (see \scheme{parameterize}),
the above
expression does not permanently alter the optimize level in the
system in which the \scheme{compile-file} is performed.

The optimize level can also be set via the
\index{\scheme{--optimize-level} command-line option}\scheme{--optimize-level}
command-line option (Section~\ref{SECTUSECOMMANDLINE}).
This option is particularly useful for running RNRS top-level programs
at optimize-level~3 via the
\index{\scheme{--program} command-line option}\scheme{--program} command-line option,
since \scheme{eval-when} is ineffective for RNRS top-level programs as described
on page~\pageref{eval-when-tlp}.


%----------------------------------------------------------------------------
\entryheader\label{desc:hash-primitive}
\xformdef{$primitive (~#%~)}{$primitive (~#%~)@\scheme{$primitive} (~\scheme{#%}~)}{\categorysyntax}{($primitive \var{variable})}
\xformdef{!L#% ($primitive)}{#% ($primitive)@\scheme{#%} (\scheme{$primitive})}{\categorysyntax}{#%\var{variable}}
\xformdef{$primitive (~#2%~)}{$primitive (~#2%~)@\scheme{$primitive} (~\scheme{#2%}~)}{\categorysyntax}{($primitive 2 \var{variable})}
\xformdef{!M#2% ($primitive)}{#% ($primitive)@\scheme{#2%} (\scheme{$primitive})}{\categorysyntax}{#2%\var{variable}}
\xformdef{$primitive (~#3%~)}{$primitive (~#3%~)@\scheme{$primitive} (~\scheme{#3%}~)}{\categorysyntax}{($primitive 3 \var{variable})}
\xformdef{!N#3% ($primitive)}{#% ($primitive)@\scheme{#3%} (\scheme{$primitive})}{\categorysyntax}{#3%\var{variable}}
\returns the primitive value for \var{variable}
\libraryexport{$primitive}\listlibraries
\endentryheader

\noindent
\var{variable} must name a primitive procedure.
The \scheme{$primitive} syntactic form allows control over the
optimize level at the granularity of individual primitive references,
and it can be used to access the original value
of a primitive, regardless of the lexical context or the current
top-level binding for the variable originally bound to the primitive.

The expression \scheme{($primitive \var{variable})} may
be abbreviated as \scheme{#%\var{variable}}.
The reader expands \scheme{#%} followed by an object
into a \scheme{$primitive} expression, much as it expands \scheme{'\var{object}}
into a \scheme{quote} expression.

If a \scheme{2} or \scheme{3} appears in the form or between the
\scheme{#} and \scheme{%} in the abbreviated form, the compiler treats
an application of the primitive as if it were compiled
at the corresponding optimize level (see the \scheme{optimize-level}
parameter).
If no number appears in the form, an application of the primitive is
treated as an optimize-level 3 application if the current optimize
level is 3;
otherwise, it is treated as an optimize-level 2 application.

\schemedisplay
(#%car '(a b c)) ;=> a
(let ([car cdr]) (car '(a b c))) ;=> (b c)
(let ([car cdr]) (#%car '(a b c))) ;=> a
(begin (set! car cdr) (#%car '(a b c))) ;=> a
\endschemedisplay

%----------------------------------------------------------------------------
\noskipentryheader
\formdef{debug-level}{\categorythreadparameter}{debug-level}
\listlibraries
\endnoskipentryheader

\noindent
This parameter can take on one of the four values 0, 1, 2, and 3.
It is used to tell the compiler how important the preservation of
debugging information is, with 0 being least important and 3 being
most important.
The default value is 1.
As of Version~9.0, it is used solely to determine whether an
error-causing call encountered in nontail position is treated as
if it were in tail position (thus causing the caller's frame not
to appear in a stack backtrace); this occurs at debug levels below~2.

%----------------------------------------------------------------------------
\entryheader
\formdef{generate-interrupt-trap}{\categorythreadparameter}{generate-interrupt-trap}
\listlibraries
\endentryheader

\noindent
To support interrupts, including keyboard, timer, and collect request
interrupts, the compiler inserts a short sequence of instructions at the
entry to each nonleaf procedure (Section~\ref{SECTSYSTEMINTERRUPTS}).
This small overhead may be eliminated by setting
\scheme{generate-interrupt-trap} to \scheme{#f}.
The default value of this parameter is \scheme{#t}.

It is rarely a good idea to compile code without interrupt trap
generation, since a tight loop in the generated code may completely
prevent interrupts from being serviced, including the collect request
interrupt that causes garbage collections to occur automatically.
Disabling trap generation may be useful, however, for routines that act
simply as ``wrappers'' for other routines for which code is presumably
generated with interrupt trap generation enabled.
It may also be useful for short performance-critical routines with
embedded loops or recursions that are known to be short running and
that make no other calls.


%----------------------------------------------------------------------------
\entryheader
\formdef{compile-interpret-simple}{\categorythreadparameter}{compile-interpret-simple}
\listlibraries
\endentryheader

\noindent
At all optimize levels, when the value of
\scheme{compile-interpret-simple} is set to a true value (the default),
\index{\scheme{compile}}\scheme{compile} interprets simple
expressions.
A simple expression is one that creates no procedures.
This can save a significant amount of time over the course of many
calls to \scheme{compile} or \scheme{eval} (with \scheme{current-eval}
set to \scheme{compile}, its default value).
When set to false, \scheme{compile} compiles all expressions.


%----------------------------------------------------------------------------
\entryheader\label{desc:generate-inspector-information}
\formdef{generate-inspector-information}{\categorythreadparameter}{generate-inspector-information}
\listlibraries
\endentryheader

\noindent
When this parameter is set to a true value (the default), information
about the source and contents of procedures and continuations is
generated during compilation and retained in tables associated with
each code segment.
This information allows the inspector to provide more complete
information, at the expense of using more memory and producing
larger object files (via \scheme{compile-file}).
Although compilation and loading may be slower when inspector
information is generated, the speed of the compiled code is not
affected.
If this parameter is changed during the compilation of a file, the
original value will be restored.
For example, if:

\schemedisplay
(eval-when (compile) (generate-inspector-information #f))
\endschemedisplay

\noindent
is included in a file, generation of inspector information will be
disabled only for the remainder of that particular file.

%----------------------------------------------------------------------------
\entryheader\label{desc:generate-procedure-source-information}
\formdef{generate-procedure-source-information}{\categorythreadparameter}{generate-procedure-source-information}
\listlibraries
\endentryheader

\noindent
When \scheme{generate-inspector-information} is set to \scheme{#f} and
this parameter is set to \scheme{#t}, then a source location is preserved
for a procedure, even though other inspector information is not preserved.
Source information provides a small amount of debugging support at a
much lower cost in memory and object-file size than full inspector information.
If this parameter is changed during the compilation of a file, the
original value will be restored.

%----------------------------------------------------------------------------
\entryheader
\formdef{enable-cross-library-optimization}{\categorythreadparameter}{enable-cross-library-optimization}
\listlibraries
\endentryheader

This parameter controls whether information is included with the
object code for a compiled library to enable propagation of constants
and inlining of procedures defined in the library into dependent
libraries.
When set to \scheme{#t} (the default), this information is included;
when set to \scheme{#f}, the information is not included.
Setting the parameter to \scheme{#f} potentially reduces the sizes
of the resulting object files and the exposure of near-source
information via the object file.

%----------------------------------------------------------------------------
\entryheader
\formdef{generate-wpo-files}{\categorythreadparameter}{generate-wpo-files}
\listlibraries
\endentryheader

\index{\scheme{compile-whole-program}}%
When this parameter is set to \scheme{#t} (the default is \scheme{#f}),
\scheme{compile-file}, \scheme{compile-library}, \scheme{compile-program},
and \scheme{compile-script} produce whole-program optimization (wpo)
files for use by \scheme{compile-whole-program}.
The name of the \scheme{wpo} file is derived from the output-file
name by replacing the object-file extension (normally \scheme{.so})
with \scheme{.wpo}, or adding the extension \scheme{.wpo} if the
object filename has no extension or has the extension \scheme{.wpo}.

%----------------------------------------------------------------------------
\entryheader
\formdef{compile-file-message}{\categorythreadparameter}{compile-file-message}
\listlibraries
\endentryheader

\noindent
When this parameter is set to true, the default, \scheme{compile-file},
\scheme{compile-library}, \scheme{compile-program}, and
\scheme{compile-script} print a message of the form:

\schemedisplay
compiling \var{input-path} with output to \var{output-path}
\endschemedisplay

When the parameter is set to \scheme{#f}, the message is not printed.

%----------------------------------------------------------------------------
\entryheader\label{desc:run-cp0}
\formdef{run-cp0}{\categorythreadparameter}{run-cp0}
\formdef{cp0-effort-limit}{\categorythreadparameter}{cp0-effort-limit}
\formdef{cp0-score-limit}{\categorythreadparameter}{cp0-score-limit}
\formdef{cp0-outer-unroll-limit}{\categorythreadparameter}{cp0-outer-unroll-limit}
\listlibraries
\endentryheader

\noindent
These parameters control the operation of \scheme{cp0}, a source
optimization pass that runs after macro expansion and prior
to most other compiler passes.
\scheme{cp0} performs procedure inlining, in which the code of one
procedure is inlined at points where it is called by other procedures,
as well as copy propagation, constant folding, useless code
elimination, and several related optimizations.
The algorithm used by the optimizer is described in detail in the paper
``Fast and effective procedure inlining''~\cite{waddell:sas97}.

When \scheme{cp0} is enabled, the programmer can count on the compiler
to fold constants, eliminate unnecessary \scheme{let} bindings, and
eliminate unnecessary and inaccessible code.
This is particularly useful when writing macros, since the programmer
can usually handle only the general case and let the compiler simplify
the code when possible.
For example, the programmer can define \scheme{case} as follows:

\schemedisplay
(define-syntax case
  (syntax-rules ()
    [(_ e [(k ...) a1 a2 ...] ... [else b1 b2 ...])
     (let ([t e])
       (cond
         [(memv t '(k ...)) a1 a2 ...]
         ...
         [else b1 b2 ...]))]
    [(_ e [(k ...) a1 a2 ...] ...)
     (let ([t e])
       (cond
         [(memv t '(k ...)) a1 a2 ...]
         ...))]))
\endschemedisplay

and count on the introduce \scheme{let} expression to be eliminated
if \scheme{e} turns out to be an unassigned variable, and count on
the entire \scheme{case} expression to be folded if \scheme{e} turns
out to be a constant.

It is possible to see what \scheme{cp0} does with an expression
via the procedure \index{\scheme{expand/optimize}}\scheme{expand/optimize},
which expands its argument and passes the result through \scheme{cp0}, as
illustrated by the following transcript.

\schemedisplay
> (print-gensym #f)
> (expand/optimize
    '(lambda (x)
       (case x [(a) 1] [(b c) 2] [(d) 3] [else 4])))
(lambda (x)
  (if (#2%memv x '(a))
      1
      (if (#2%memv x '(b c)) 2 (if (#2%memv x '(d)) 3 4))))
> (expand/optimize
    '(+ (let ([f (lambda (x)
                (case x [(a) 1] [(b c) 2] [(d) 3] [else 4]))])
          (f 'b))
         15))
17
\endschemedisplay

In the first example, the \scheme{let} expression produced by \scheme{case}
is eliminated, and in the second, the entire expression is optimized down
to the constant \scheme{17}.
Although not shown by \scheme{expand/optimize}, the \scheme{memv} calls
in the output code for the first example will be replaced by calls to the
less expensive \scheme{eq?} by a later pass of the compiler.
Additional examples are given in the description
of \scheme{expand/optimize}.

The value of \scheme{run-cp0} must be a procedure.
Whenever the compiler is invoked on a Scheme form, the value \var{p}
of this parameter is called to determine whether and how
\scheme{cp0} is run.
\var{p} receives two arguments: \var{cp0}, the entry point into
\scheme{cp0}, and \var{x}, the form being compiled.
The default value of \scheme{run-cp0} simply invokes \var{cp0} on
\var{x}, then \var{cp0} again on the result.
The second run is useful in some cases because the first run
may not eliminate bindings for certain variables that appear to be
referenced but are not actually referenced after inlining.
The marginal benefit of the second run is usually minimal, but so is the
cost.

\noindent
Interesting variants include

\schemedisplay
(run-cp0 (lambda (cp0 x) x))
\endschemedisplay

\noindent
which bypasses (disables) \scheme{cp0}, and

\schemedisplay
(run-cp0 (lambda (cp0 x) (cp0 x)))
\endschemedisplay

\noindent
which runs \scheme{cp0} just once.

The value of \scheme{cp0-effort-limit} determines the maximum amount
of effort spent on each inlining attempt.
The time spent optimizing a program is a linear function of this limit and the
number of calls in the program's source, so small values for this parameter
enforce a tighter bound on compile time.
When set to zero, inlining is disabled except when the name of a procedure
is referenced only once.
The value of \scheme{cp0-score-limit} determines the maximum amount of
code produced per inlining attempt.
Small values for this parameter limit the amount of overall code expansion.
These parameters must be set to nonnegative fixnum values.

The parameter \scheme{cp0-outer-unroll-limit}
controls the amount of inlining performed by the optimizer for
recursive procedures.
With the parameter's value set to the default value of \scheme{0}, recursive
procedures are not inlined.
A nonzero value for the outer unroll limit allows calls external to
a recursive procedure to be inlined.
For example, the expression

\schemedisplay
(letrec ([fact (lambda (x) (if (zero? x) 1 (* x (fact (- x 1)))))])
  (fact 10))
\endschemedisplay

\noindent
would be left unchanged with the outer unroll limit set to zero, but would
be converted into

\schemedisplay
(letrec ([fact (lambda (x) (if (zero? x) 1 (* x (fact (- x 1)))))])
  (* 10 (fact 9)))
\endschemedisplay

\noindent
with the outer unroll limit set to one.

Interesting effects can be had by varying several of these parameters at
once.
For example, setting the
effort and outer unroll limits to large values and the score limit
to \scheme{1} has the effect of inlining even complex recursive procedures
whose values turn out to be constant at compile time without risking
any code expansion.
For example,

\schemedisplay
(letrec ([fact (lambda (x) (if (zero? x) 1 (* x (fact (- x 1)))))])
  (fact 10))
\endschemedisplay

\noindent
would be reduced to \scheme{3628800}, but

\schemedisplay
(letrec ([fact (lambda (x) (if (zero? x) 1 (* x (fact (- x 1)))))])
  (fact z))
\endschemedisplay

\noindent
would be left unchanged, although the optimizer may take a while to
reach this decision if the effort and outer unroll limits are large.

%----------------------------------------------------------------------------
\entryheader
\formdef{commonization-level}{\categorythreadparameter}{commonization-level}
\listlibraries
\endentryheader

After running the main source optimization pass (cp0) for the last time, the
compiler optionally runs a \emph{commonization} pass.
The pass commonizes the code for lambda expressions that have
identical structure by abstracting differences at certain leaves
of the program, namely constants, references to unassigned variables,
and references to primitives.
The parameter \scheme{commonization-level} controls whether commonization
is run and, if so, how aggressive it is.
Its value must be a nonnegative exact integer ranging from 0 through 9.
When the parameter is set to 0, the default, commonization is not run.
Otherwise, higher values result in more commonization.

Commonization can undo some of the effects of cp0's inlining, can
add run-time overhead, and can complicate debugging, particularly
at higher commonization levels, which is why it is disabled by
default.
On the other hand, for macros or other meta programs that can
generate large, mostly similar lambda expressions, enabling
commonization can result in significant savings in object-code size
and even reduce run-time overhead by making more efficient use of
instruction caches.

%----------------------------------------------------------------------------
\entryheader
\formdef{undefined-variable-warnings}{\categorythreadparameter}{undefined-variable-warnings}
\listlibraries
\endentryheader

When \scheme{undefined-variable-warnings} is set to \scheme{#t}, the
compiler issues a warning message whenever it cannot determine that
a variable bound by \scheme{letrec}, \scheme{letrec*}, or an internal
definition will not be referenced before it is defined.
The default value is \scheme{#f}.

Regardless of the setting of this parameter, the compiler inserts code
to check for the error, except at optimize level 3.
The check is fairly inexpensive and does not typically inhibit inlining
or other optimizations.
In code that must be carefully tuned, however, it is sometimes useful
to reorder bindings or make other changes to eliminate the checks.
Enabling undefined-variable warnings can facilitate this process.

The checks are also visible in the output of \scheme{expand/optimize}.

%----------------------------------------------------------------------------
\entryheader\label{desc:expand-output}\label{desc:expand/optimize-output}
\formdef{expand-output}{\categorythreadparameter}{expand-output}
\formdef{expand/optimize-output}{\categorythreadparameter}{expand/optimize-output}
\listlibraries
\endentryheader

The parameters \scheme{expand-output} and \scheme{expand/optimize-output}
can be used to request that the compiler and interpreter print
expander and source-optimizer output produced during the compilation or
interpretation process.
Each parameter must be set to either \scheme{#f} (the default) or a
textual output port.

When \scheme{expand-output} is set to a textual output port, the output
of the expander is printed to the port as a side effect of running
\scheme{compile}, \scheme{interpret}, or any of the file compiling
primitives, e.g., \scheme{compile-file} or \scheme{compile-library}.
Similarly, when \scheme{expand/optimize-output} is set to a textual
output port, the output of the source optimizer is printed.

\index{\scheme{expand}}\index{\scheme{expand/optimize}}%
See also \scheme{expand} (page~\pageref{desc:expand}) and
\scheme{expand-optimize} (page~\pageref{desc:expand/optimize}), which
can be used to run the expander or the expander and source optimizer
directly on an individual form.

%----------------------------------------------------------------------------
\entryheader
\formdef{pariah}{\categorysyntax}{(pariah \var{expr_1} \var{expr_2} \dots)}
\returns the values of the last subexpression
\listlibraries
\endentryheader

A \scheme{pariah} expression is just like a \scheme{begin} expression
except that it informs the compiler that the code is expected to
be executed infrequently.
The compiler uses this information to optimize code layout, register
assignments, and other aspects of the generated code.
The \scheme{pariah} form can be used in performance-critical code
to mark the branches of a conditional (e.g., \scheme{if}, \scheme{cond},
or \scheme{case}) that are less likely to be executed than the
others.


\section{Profiling\label{SECTMISCPROFILE}}

\index{profiling}\index{block profiling}\index{source profiling}%
{ChezScheme} supports two forms of profiling: source profiling and
block profiling.
With source profiling enabled, the compiler instruments the code
it produces to count the number of times each source-code expression
is executed.
This information can be
displayed in HTML format, or it can be packaged in a list or
source table for arbitrary user-defined processing.
It can also be dumped to a file to be loaded subsequently into the
compiler's database of profile information for use in source-level
optimizations, such as reordering the clauses of a \scheme{case}
or \scheme{exclusive-cond} form.
In connection with coverage-information (covin) files generated by the
compiler when
\index{\scheme{generate-covin-files}}\scheme{generate-covin-files}
is \scheme{#t}, profile information can also be used to gauge coverage
of a source-code base by a set of tests.

The association between source-code expressions and profile counts
is usually established via annotations produced by the reader and
present in the input to the expander (Section~\ref{SECTSYNTAXANNOTATIONS}).
It is also possible to explicitly identify source positions
to be assigned profile counts via \scheme{profile} expressions.
A \scheme{profile} expression has one subform, a source object, and
returns an unspecified value.
Its only effect is to cause the number of times the expression is
executed to be accounted to the source object.

In cases where source positions explicitly identified by \scheme{profile}
forms are the only ones whose execution counts should be tracked,
the parameter \scheme{generate-profile-forms} can be set to \scheme{#f}
to inhibit the expander's implicit generation of \scheme{profile} forms
for all annotated source expressions.
It is also possible to obtain finer control over implicit generation of
\scheme{profile} forms by marking which annotations that should and
should not be used for profiling (Section~\ref{SECTSYNTAXANNOTATIONS}).

With block profiling enabled, the compiler similarly instruments the
code it produces to count the number of times each ``basic block''
in the code it produces is executed.
Basic blocks are the building blocks of the code produced by many
compilers, including {\ChezScheme}'s compiler, and are sequences
of straight-line code entered only at the top and exited only at
the bottom.
Counting the number of times each basic block is executed is
equivalent to counting the number of times each instruction is
executed, but more efficient.
Block-profile information cannot be viewed, but it can be dumped
to a file to be loaded subsequently into the compiler's database of
profile information for use in block- and instruction-level
optimizations.
These optimizations include reordering blocks to push less frequently
used sequences of code out-of-line, so they will not occupy space
in the instruction cache, and giving registers to variables that are
used in more frequently executed instructions.

Source profiling involves at least the following steps:

\begin{itemize}
\item compile the code with source profiling enabled,
\item run the compiled code to generate source-profile information, and
\item dump the profile information.
\end{itemize}

\index{\scheme{compile-profile}}%
Source profiling is enabled by setting the parameter
\scheme{compile-profile} to the symbol \scheme{source}
or to the boolean value \scheme{#t}.
The profile information can be dumped via:

\begin{description}
\item[\scheme{profile-dump-html}]\index{\scheme{profile-dump-html}}
in HTML format to allow the programmer to visualize how
often each expression is executed using a color-coding system that
makes it easy to spot ``hot spots,''
\item[\scheme{profile-dump-list}]\index{\scheme{profile-dump-list}}
in a form suitable for user-defined post-processing,
\item[\scheme{profile-dump}]\index{\scheme{profile-dump}}
in a form suitable for off-line processing by one of the methods
above or by some custom means, or
\item[\scheme{profile-dump-data}]\index{\scheme{profile-dump-data}}
in a form suitable for loading into the compiler's database.
\end{description}

If the information is intended to be fed back into the compiler for
optimization, the following additional steps are required, either
in the same or a different Scheme process:

\begin{itemize}
\item load the profile information into the compiler's profile
database, and
\item recompile the code.
\end{itemize}

\index{\scheme{profile-load-data}}%
Profile information dumped by \scheme{profile-dump-data} is loaded
into the compiler's profile database via \scheme{profile-load-data}.
Profiling information is \emph{not} available to the compiler unless
it is explicitly dumped via \scheme{profile-dump-data} and loaded
via \scheme{profile-load-data}.

When block-profile information is to be used for optimization,
the steps are similar:

\begin{itemize}
\item compile the code with block profiling enabled,
\item run the code to generate block-profile information,
\item dump the profile information,
\item load the profile information, and
\item recompile the code.
\end{itemize}

\index{\scheme{profile-dump-data}}%
\index{\scheme{profile-load-data}}%
Block profiling is enabled by setting the parameter
\scheme{compile-profile} to the symbol \scheme{block}
or to the boolean value \scheme{#t}.
The profile information must be dumped via \scheme{profile-dump-data}
and loaded via \scheme{profile-load-data}.
As with source profile information, block profile information can be
loaded in the same or in a different Scheme process as the one that
dumped the information.

For block optimization, the code to be recompiled must be identical.
In general, this means the files involved must not have been modified,
and nothing else can change that indirectly affects the code produced
by the compiler, e.g., settings for compiler parameters such as
\scheme{optimize-level} or the contents of configuration files read
by macros at compile time.
Otherwise, the set of blocks or the instructions within them might
be different, in which case the block profile information will not
line up properly and the compiler will raise an exception.

For the same reason, when both source profiling and block profiling
information is to be used for optimization, the source information
must be gathered first and loaded before both the first and second
compilation runs involved in block profiling.
That is, the following steps must be used:

\begin{itemize}
\item[1] compile the code with source profiling enabled,
\item[2] run the code to generate source-profile information,
\item[2] dump the source-profile information,
\item[3] load the source-profile information,
\item[3] recompile the code with block profiling enabled,
\item[4] run the code to generate block-profile information,
\item[4] dump the block-profile information,
\item[5] load the source- and block-profile information, and
\item[5] recompile the code.
\end{itemize}

The numbers labeling each step indicate both the order of the steps
and those that must be performed in the same Scheme process.
(All of the steps can be performed in the same Scheme process, if
desired.)

Both source and block profiling are disabled when \scheme{compile-profile}
is set to \scheme{#f}, its default value.

The following example highlights the use of source profiling for
identifying hot spots in the code.
Let's assume that the file /tmp/fatfib/fatfib.ss contains the
following source code.

\schemedisplay
(define fat+
  (lambda (x y)
    (if (zero? y)
        x
        (fat+ (1+ x) (1- y)))))

(define fatfib
  (lambda (x)
    (if (< x 2)
        1
        (fat+ (fatfib (1- x)) (fatfib (1- (1- x)))))))
\endschemedisplay

We can load fatfib.ss with profiling enabled as follows.

\schemedisplay
(parameterize ([compile-profile 'source])
  (load "/tmp/fatfib/fatfib.ss"))
\endschemedisplay

We then run the application as usual.

\schemedisplay
(fatfib 20) ;=> 10946
\endschemedisplay

After the run (or multiple runs), we
dump the profile information as a set of html files using
\scheme{profile-dump-html}.

\schemedisplay
(profile-dump-html)
\endschemedisplay

This creates a file named profile.html containing a summary of the profile
information gathered during the run.
If we view this file in a browser, we should see something like the
following.

\iflatex
\begin{center}
\includegraphics[width=.9\textwidth]{canned/profilehtml}
\end{center}
\fi
\ifhtml
\raw{\raw{<img src="canned/profilehtml.png" alt="profile.html listing">}}
\fi

The most frequently executed code is highlighted in colors closer to
red in the visible spectrum, while
the least frequently executed code is highlighted in colors closer to
violet.
Each of the entries in the lists of files and hot spots are links into
additional generated files, one per source file (provided
\scheme{profile-dump-html} was able to locate an unmodified copy of
the source file).
In this case, there is only one, fatfib.ss.html.
If we move to that file, we should see something like this:

\iflatex
\begin{center}
\includegraphics[width=.9\textwidth]{canned/fatfibhtml}
\end{center}
\fi
\ifhtml
\raw{\raw{<img src="canned/fatfibhtml.png" alt="fatfib.html listing">}}
\fi

As in the summary, the code is color-coded according to frequency
of execution.
Hovering over a color-coded section of code should cause a pop-up
box to appear with the starting position and count of the source
expression.
If a portion of source code is not color-coded or is identified
via the starting position as having inherited its color from some
enclosing expression, it may have been recognized as dead code by
the compiler or garbage collector and discarded, or the expander
might not have been able to track it through the macro-expansion
process.

\scheme{profile-dump} and \scheme{profile-dump-list} may be used to
generate a list of profile entries, which may then be analyzed manually
or via a custom profile-viewing application.

%----------------------------------------------------------------------------
\entryheader
\formdef{compile-profile}{\categorythreadparameter}{compile-profile}
\listlibraries
\endentryheader

When this parameter is set to the symbol \scheme{source} or the
boolean value \scheme{#t}, the compiler instruments the code it
generates with instructions that count the number of times each
section of source code is executed.
When set to the symbol \scheme{block}, the compiler similarly
instruments the code it generates with instructions that count the
number of times each block of code is executed.
When set to \scheme{#f} (the default), the compiler does not insert
these instructions.

The general description of profiling above describes how the source
and block profile information can be viewed or used for optimization.

The code generated when \scheme{compile-profile} is non-false is
larger and less efficient, so this parameter should be set only
when profile information is needed.

The profile counters for code compiled when profile instrumentation
is enabled are retained indefinitely, even if the code with which
they are associated is reclaimed by the garbage collector.
This results in more complete and accurate profile data but can lead
to space leaks in programs that dynamically generate or load code.
Such programs can avoid the potential space leak by releasing the
counters explicitly via the procedure
\index{\scheme{profile-release-counters}}\scheme{profile-release-counters}.


%----------------------------------------------------------------------------
\entryheader
\formdef{generate-covin-files}{\categorythreadparameter}{generate-covin-files}
\listlibraries
\endentryheader

When this parameter is set to \scheme{#t}, the compiler generates
``coverage-information'' (covin) files that can be used in connection with
profile information to measure coverage of a source-code base by a
set of tests.
One covin file is created for each object file, with the object-file
extension replaced by the extension \scheme{.covin}.
Each covin file contains the printed representation of a source table
(Section~\ref{SECTSYNTAXSOURCETABLES}), compressed using the compression
format and level specified by \scheme{compress-format} and
\scheme{compress-level}.
This information can be read via
\index{\scheme{get-source-table!}}\scheme{get-source-table!} and used
as a universe of source expressions to identify source expressions
that are not evaluated during the running of a set of tests.


\entryheader
\formdef{profile}{\categorysyntax}{(profile \var{source-object})}
\returns unspecified
\listlibraries
\endentryheader

A \scheme{profile} form has the effect of accounting to the source
position identified by \var{source-object} the number of times the
\scheme{profile} form is executed.
Profile forms are generated implicitly by the expander for source
expressions in annotated input, e.g., input read by the compiler or
interpreter from a Scheme source file, so this form is typically
useful only when unannotated source code is produced by the front
end for some language that targets Scheme.

\entryheader
\formdef{generate-profile-forms}{\categorythreadparameter}{(generate-profile-forms)}
\listlibraries
\endentryheader

When this parameter is set to \scheme{#t}, the default, the expander
implicitly introduces \scheme{profile} forms for each annotated input
expression, unless the annotation has not been marked for use in
profiling  (Section~\ref{SECTSYNTAXANNOTATIONS}).
It can be set to \scheme{#f} to inhibit the expander's implicit
generation of \scheme{profile} forms, typically when explicit
\scheme{profile} forms are already present for all source positions
that should be profiled.

%----------------------------------------------------------------------------
\entryheader
\formdef{profile-clear}{\categoryprocedure}{(profile-clear)}
\returns unspecified
\listlibraries
\endentryheader

\noindent
Calling this procedure causes profile information to be cleared, i.e.,
the counts associated with each section of code are set to zero.

%----------------------------------------------------------------------------
\entryheader
\formdef{profile-release-counters}{\categoryprocedure}{(profile-release-counters)}
\returns unspecified
\listlibraries
\endentryheader

\noindent
Calling this procedure causes profile information associated with reclaimed
code objects to be dropped.

%----------------------------------------------------------------------------
\entryheader
\formdef{profile-dump}{\categoryprocedure}{(profile-dump)}
\returns a list of pairs of source-object and count
\listlibraries
\endentryheader

This procedure produces a dump of all
profile information gathered since startup or the last call to
\scheme{profile-clear}.
It returns a list of pairs, where the car of each pair
is a source object (Section~\ref{SECTSYNTAXANNOTATIONS}) and the
cdr is an exact nonnegative integer count.

The list might contain more than one entry per source object due
to macro expansion and procedure inlining, and it might contain
more than one (non-eq) source object per file and source position
due to separate compilation.
In such cases, the counts are not overlapping and can be summed
together to obtain the full count.

The advantage of \scheme{profile-dump} over \scheme{profile-dump-list}
is that \scheme{profile-dump} performs only minimal processing and
preserves complete source objects, including their embedded source-file
descriptors.
It might be used, for example, to dump profile information to a
fasl file on one machine for subsequent processing on another.

\index{\scheme{with-profile-tracker}}\scheme{with-profile-tracker}
can be used to obtain the same set of counts as a source table.


%----------------------------------------------------------------------------
\entryheader
\formdef{with-profile-tracker}{\categoryprocedure}{(with-profile-tracker \var{thunk})}
\formdef{with-profile-tracker}{\categoryprocedure}{(with-profile-tracker \var{preserve-existing?} \var{thunk})}
\returns a source table and the values returned by \var{thunk}
\listlibraries
\endentryheader

\var{thunk} must be a procedure and should accept zero arguments.
It may return any number of values.

\scheme{with-profile-tracker} invokes \var{thunk} without arguments.
If \var{thunk} returns $n$ values \scheme{\var{x_1}, \var{x_2}, \dots, \var{x_n}}, \scheme{with-profile-tracker}
returns $n+1$ values \scheme{\var{st}, \var{x_1}, \var{x_2}, \dots, \var{x_n}}, where \var{st} is a
source table associating source objects with profile counts.
If \var{preserve-existing?} is absent or \scheme{#f}, each count
represents the number of times the source expression represented
by the associated source object is evaluated during the invocation
of \var{thunk}.
Otherwise, each count represents the number of times the source
expression represented by the associated source object is evaluated
before or during the invocation of \var{thunk}.

Profile data otherwise cleared by a call to
\index{\scheme{profile-clear}}\scheme{profile-clear} or
\index{\scheme{profile-release-counters}}\scheme{profile-release-counters}
during the invocation of \var{thunk} is included in the
resulting table.
That is, invoking these procedures while \var{thunk} is running has
no effect on the resulting counts.
On the other hand, profile data cleared before \scheme{with-profile-tracker}
is invoked is not included in the resulting table.

The idiom \scheme{(with-profile-tracker #t values)} can be used to obtain
the current set of profile counts as a source table.


%----------------------------------------------------------------------------
\entryheader
\formdef{source-table-dump}{\categoryprocedure}{(source-table-dump \var{source-table})}
\returns a list of pairs of source objects and their associated values in \var{source-table}
\listlibraries
\endentryheader

This procedure can be used to convert a source-table produced by
\index{\scheme{with-profile-tracker}}\scheme{with-profile-tracker} or some other mechanism into the form returned
by \index{\scheme{profile-dump}}\scheme{profile-dump} for use as an argument to
\index{\scheme{profile-dump-html}}\scheme{profile-dump-html},
\index{\scheme{profile-dump-list}}\scheme{profile-dump-list},
or
\index{\scheme{profile-dump-data}}\scheme{profile-dump-data}.

%----------------------------------------------------------------------------
\entryheader
\formdef{profile-dump-html}{\categoryprocedure}{(profile-dump-html)}
\formdef{profile-dump-html}{\categoryprocedure}{(profile-dump-html \var{prefix})}
\formdef{profile-dump-html}{\categoryprocedure}{(profile-dump-html \var{prefix} \var{dump})}
\returns unspecified
\listlibraries
\endentryheader

This procedure produces one or more HTML files, including
profile.html, which contains color-coded summary information,
and one file \var{source}.html for each source
file \var{source} containing a color-coded copy of the
source code, as described in the lead-in to this section.
If \var{prefix} is specified, it must be a string and is prepended
to the names of the generated HTML files.
For example, if \var{prefix} is \scheme{"/tmp/"}, the generated
files are placed in the directory /tmp.
The raw profile information is obtained from \var{dump}, which
defaults to the value returned by \scheme{profile-dump}.

%----------------------------------------------------------------------------
\entryheader
\formdef{profile-palette}{\categorythreadparameter}{(profile-palette)}
\listlibraries
\endentryheader

This value of this parameter must be a nonempty vector of at least
three pairs.
The car of each pair is a background color and the cdr is a foreground
(text) color.
Each color must be a string, and each string should contain an HTML
cascading style sheet (CSS) color specifier.
The first pair is used for unprofiled code, and the second is used
for unexecuted profiled code.
The third is used for code that is executed least frequently, the fourth
for code executed next-least frequently, and so on, with the last
being used for code that is executed most frequently.
Programmers may wish to supply their own palette to enhance visibility
or to change the number of colors used.

By default, a black background is used for unprofiled code, and a gray
background is used for unexecuted profiled code.
Background colors ranging from purple to red are used for executed
profiled code, depending on frequency of execution, with red for the most
frequently executed code.

\schemedisplay
(profile-palette) ;=>
  #(("#111111" . "white") ("#607D8B" . "white")
    ("#9C27B0" . "black") ("#673AB7" . "white")
    ("#3F51B5" . "white") ("#2196F3" . "black")
    ("#00BCD4" . "black") ("#4CAF50" . "black")
    ("#CDDC39" . "black") ("#FFEB3B" . "black")
    ("#FFC107" . "black") ("#FF9800" . "black")
    ("#F44336" . "white"))
(profile-palette
 ; set palette with rainbow colors and black text
 ; for all but unprofiled or unexecuted code
  '#(("#000000" . "white")    ; black
     ("#666666" . "white")    ; gray
     ("#8B00FF" . "black")    ; violet
     ("#6600FF" . "black")    ; indigo
     ("#0000FF" . "black")    ; blue
     ("#00FF00" . "black")    ; green
     ("#FFFF00" . "black")    ; yellow
     ("#FF7F00" . "black")    ; orange
     ("#FF0000" . "black")))  ; red
\endschemedisplay

%----------------------------------------------------------------------------
\entryheader
\formdef{profile-line-number-color}{\categorythreadparameter}{(profile-line-number-color)}
\listlibraries
\endentryheader

This value of this parameter must be a string or \scheme{#f}.
If it is a string, the string should contain an HTML cascading style sheet (CSS)
color specifier.
If the parameter is set to a string, \scheme{profile-dump-html} includes line numbers
in its html rendering of each source file, using the specified color.
If the parameter is set to \scheme{#f}, no line numbers are included.

%----------------------------------------------------------------------------
\entryheader
\formdef{profile-dump-list}{\categoryprocedure}{(profile-dump-list)}
\formdef{profile-dump-list}{\categoryprocedure}{(profile-dump-list \var{warn?})}
\formdef{profile-dump-list}{\categoryprocedure}{(profile-dump-list \var{warn?} \var{dump})}
\returns a list of profile entries (see below)
\listlibraries
\endentryheader

This procedure produces a dump of all
profile information present in \var{dump}, which defaults to
the value returned by \scheme{profile-dump}.
It returns a list of entries, each of which is itself a list containing the
following elements identifying one block of code and how many times it
has been executed.

\begin{itemize}
 \item execution count
 \item pathname
 \item beginning file position in characters (inclusive)
 \item ending file position in characters (exclusive)
 \item line number of beginning file position
 \item character position of beginning file position
\end{itemize}

\scheme{profile-dump-list} may be unable to locate an unmodified copy
of the file in the current source directories
or at the absolute address, if an absolute address was used when
the file was compiled or loaded.
If this happens, the line number and character position of the beginning
file position are \scheme{#f} and the pathname is the pathname originally
used.
A warning is also issued (an exception with condition type
\scheme{&warning} is raised) unless the \scheme{warn?} argument is provided
and is false.

Otherwise, the pathname is the path to an unmodified copy of the source
and the line and character positions are set to exact nonnegative integers.

In either case, the execution count, beginning file position, and ending
file position are all exact nonnegative integers, and the pathname is a string.

For source positions in files that cannot be found, the list might
contain more than one entry per position due to macro expansion,
procedure inlining, and separate compilation.
In such cases, the counts are not overlapping and can be summed
together to obtain the full count.

The information returned by \scheme{profile-dump-list} can be used to
implement a custom viewer or used as input for offline analysis of
profile information.

The advantage of \scheme{profile-dump-list} over \scheme{profile-dump}
is that it attempts to determine the line number and character
position for each source point and, if successful, aggregates
multiple counts for the source point into a single entry.

%----------------------------------------------------------------------------
\entryheader
\formdef{profile-dump-data}{\categoryprocedure}{(profile-dump-data \var{path})}
\formdef{profile-dump-data}{\categoryprocedure}{(profile-dump-data \var{path} \var{dump})}
\returns unspecified
\listlibraries
\endentryheader

\var{path} must be a string.

This procedure writes, in a machine-readable form consumable by
\scheme{profile-load-data}, profile counts represented by \var{dump}
to the file named by \var{path}, replacing the file if it already exists.
\var{dump} defaults to the value returned by \scheme{profile-dump}.

%----------------------------------------------------------------------------
\entryheader
\formdef{profile-load-data}{\categoryprocedure}{(profile-load-data \var{path} \dots)}
\returns unspecified
\listlibraries
\endentryheader

Each \var{path} must be a string.

This procedure reads profile information from the files named by
\scheme{\var{path} \dots} and stores it in the compiler's internal
database of profile information.
The contents of the files must have been created originally by
\scheme{profile-dump-data} using the same version of {\ChezScheme}.

The database stores a weight for each source expression or block
rather than the actual count.
When a single file is loaded into the database, the weight is the
proportion of the actual count over the maximum count for all
expressions or blocks represented in the file.
When more than one file is loaded, either by one or multiple calls
to \scheme{profile-load-data}, the weights are averaged.

%----------------------------------------------------------------------------
\entryheader
\formdef{profile-query-weight}{\categoryprocedure}{(profile-query-weight \var{obj})}
\returns \var{obj}'s profile weight, or \scheme{#f} if \var{obj} is not in the database
\listlibraries
\endentryheader

The compiler's profile database maps source objects
(Section~\ref{SECTSYNTAXANNOTATIONS}) to weights.
If \var{obj} is a source object, the \scheme{profile-query-weight} returns
the weight associated with the source object or \scheme{#f} if the database
does not have a weight recorded for the source object.
\var{obj} can also be an annotation or syntax object, in which case
\scheme{profile-query-weight} first extracts the source object, if any,
using \scheme{syntax->annotation} and \scheme{annotation-source},
returning \scheme{#f} if no source-object is found.

A weight is a flonum in the range 0.0 to 1.0, inclusive, and denotes the
ratio of the actual count to the maximum count as described in the
description of \scheme{profile-load-data}.

\scheme{profile-query-weight} can be used by a macro to determine
the relative frequency with which its subexpressions were executed
in the run or runs that generated the information in the database.
This information can be used to guide the generation of code that
is likely to be more efficient.
For example, the \scheme{case} macro uses profile information, when
available, to order the clauses so that those whose keys matched
more frequently are tested before those whose keys matched less
frequently.

%----------------------------------------------------------------------------
\entryheader
\formdef{profile-clear-database}{\categoryprocedure}{(profile-clear-database)}
\returns unspecified
\listlibraries
\endentryheader

This procedure clears the compiler's profile database.
It has no impact on the counts associated with individual sections
of instrumented code; \scheme{profile-clear} can be used to reset
those counts.

\section{Waiter Customization\label{SECTMISCWAITERS}}

%----------------------------------------------------------------------------
\noskipentryheader
\formdef{new-cafe}{\categoryprocedure}{(new-cafe)}
\formdef{new-cafe}{\categoryprocedure}{(new-cafe \var{eval-proc})}
\returns see below
\listlibraries
\endnoskipentryheader

\noindent
\index{waiter}\index{cafe@caf\'e}{\ChezScheme} interacts with the user
through a \emph{waiter}, or read-eval-print loop (REPL).
The waiter operates within a context called a \emph{caf\'e}.
When the system starts up, the user is placed in a caf\'e and
given a waiter.
\scheme{new-cafe} opens a new Scheme caf\'e, stacked on top of the old one.
In addition to starting the waiter, \scheme{new-cafe} sets up the caf\'e's
reset and exit handlers (see \scheme{reset-handler} and \scheme{exit-handler}).
Exiting a caf\'e resumes the continuation of the call
to \scheme{new-cafe} that created the caf\'e.
Exiting from the initial caf\'e leaves Scheme altogether.
A caf\'e may be exited from either by an explicit call to \scheme{exit} or
by receipt of end-of-file (``control-D'' on Unix systems) in response
to the waiter's prompt.
In the former case, any values passed to \scheme{exit} are returned from
\scheme{new-cafe}.

If the optional \var{eval-proc} argument is specified, \var{eval-proc}
is used to evaluate forms entered from the console.
Otherwise, the value of the parameter \scheme{current-eval} is used.
\var{eval-proc} must accept one argument, the expression to evaluate.

Interesting values for \var{eval-proc} include \index{\scheme{expand}}\scheme{expand},
which causes the macro expanded value of each expression entered to
be printed and \scheme{(lambda (x) x)}, which simply causes each expression
entered to be printed.
An arbitrary procedure of one argument may be used to facilitate
testing of a program on a series of input values.

\schemedisplay
> (new-cafe (lambda (x) x))
>> 3
3
>> (a . (b . (c . ())))
(a b c)
\endschemedisplay

\schemedisplay
(define sum
  (lambda (ls)
    (if (null? ls)
        0
        (+ (car ls) (sum (cdr ls))))))
> (new-cafe sum)
>> (1 2 3)
6
\endschemedisplay

The default waiter reader (see \scheme{waiter-prompt-and-read}) displays
the current waiter prompt (see \scheme{waiter-prompt-string})
to the current value of \index{\scheme{console-output-port}}\scheme{console-output-port} and
reads
from the current value of \index{\scheme{console-input-port}}\scheme{console-input-port}.
The default waiter printer (see \scheme{waiter-write}) sends output
to the current value of \index{\scheme{console-output-port}}\scheme{console-output-port}.
These parameters, along with \scheme{current-eval},
can be modified to change the behavior of the waiter.

%----------------------------------------------------------------------------
\entryheader
\formdef{waiter-prompt-string}{\categorythreadparameter}{waiter-prompt-string}
\listlibraries
\endentryheader

\noindent
The value of \scheme{waiter-prompt-string} must be a string.
It is used by the default waiter prompter (see the parameter
\scheme{waiter-prompt-and-read}) to print a prompt.
Nested caf\'es
are marked by repeating the prompt string once for each nesting level.

\schemedisplay
> (waiter-prompt-string)
">"
> (waiter-prompt-string "%")
% (waiter-prompt-string)
"%"
% (new-cafe)
%% (waiter-prompt-string)
"%"
\endschemedisplay

%----------------------------------------------------------------------------
\entryheader
\formdef{waiter-prompt-and-read}{\categorythreadparameter}{waiter-prompt-and-read}
\listlibraries
\endentryheader

\noindent
\scheme{waiter-prompt-and-read} must be set to a procedure.
It is used by the waiter to
print a prompt and read an expression.
The value of \scheme{waiter-prompt-and-read} is called by the waiter with a
positive integer that indicates the caf\'e nesting level.
It should return an expression to be evaluated by the current
evaluator (see \scheme{new-cafe} and \scheme{current-eval}).

%----------------------------------------------------------------------------
\entryheader
\formdef{default-prompt-and-read}{\categoryprocedure}{(default-prompt-and-read \var{level})}
\listlibraries
\endentryheader

\var{level} must be a positive integer indicating the cafe\'e nesting
level as described above.

This procedure is the default value of the \scheme{waiter-prompt-and-read}
parameter whenever the expression editor
(Section~\ref{SECTUSEEXPEDITOR}, Chapter~\ref{CHPTEXPEDITOR}) is
\emph{not} enabled.
It might be defined as follows.

\schemedisplay
(define default-prompt-and-read
  (lambda (n)
    (unless (and (integer? n) (>= n 0))
       (assertion-violationf 'default-prompt-and-read
         "~s is not a nonnegative integer"
         n))
    (let ([prompt (waiter-prompt-string)])
      (unless (string=? prompt "")
        (do ([n n (- n 1)])
            ((= n 0)
             (write-char #\space (console-output-port))
             (flush-output-port (console-output-port)))
            (display prompt (console-output-port))))
      (let ([x (read (console-input-port))])
         (when (and (eof-object? x) (not (string=? prompt "")))
            (newline (console-output-port))
            (flush-output-port (console-output-port)))
         x))))
\endschemedisplay


%----------------------------------------------------------------------------
\entryheader
\formdef{waiter-write}{\categorythreadparameter}{waiter-write}
\listlibraries
\endentryheader

\noindent
The value of \scheme{waiter-write} must be a procedure.
The waiter uses the value of \scheme{waiter-write} to print the results
of each expression read and evaluated by the waiter.
The following example installs a procedure equivalent to the default
\scheme{waiter-write}:

\schemedisplay
(waiter-write
  (lambda (x)
    (unless (eq? x (void))
      (pretty-print x (console-output-port)))
    (flush-output-port (console-output-port))))
\endschemedisplay


%----------------------------------------------------------------------------
\entryheader
\formdef{reset}{\categoryprocedure}{(reset)}
\returns does not return
\listlibraries
\endentryheader

\noindent
\scheme{reset} invokes the current reset handler (see \scheme{reset-handler})
without arguments.


%----------------------------------------------------------------------------
\entryheader
\formdef{reset-handler}{\categorythreadparameter}{reset-handler}
\listlibraries
\endentryheader

\noindent
The value of this parameter must be a procedure and should accept zero
arguments.
The current reset handler is called by \scheme{reset}.
The default reset handler resets to the current caf\'e.


%----------------------------------------------------------------------------
\entryheader
\formdef{exit}{\categoryprocedure}{(exit \var{obj} \dots)}
\returns does not return
\listlibraries
\endentryheader

\noindent
\scheme{exit} invokes the current exit handler (see
\scheme{exit-handler}), passing along its arguments, if any.


%----------------------------------------------------------------------------
\entryheader
\formdef{exit-handler}{\categorythreadparameter}{exit-handler}
\listlibraries
\endentryheader

\noindent
The value of this parameter must be a procedure and should accept any
number of arguments.
The current exit handler is called by \scheme{exit}.

The default exit handler exits from the current caf\'e,
returning its arguments as the values of the call to
\scheme{new-cafe} that created the current caf\'e.
If the current caf\'e is the original caf\'e, or if \scheme{exit}
is called from a script, \scheme{exit} exits from Scheme.
In this case, the exit code for the Scheme process is 0 if
no arguments were supplied or if the first argument is void,
the value of the first argument cast to a C int if
it is an exact integer of the host machine's bit width, and 1 otherwise.

%----------------------------------------------------------------------------
\entryheader
\formdef{abort}{\categoryprocedure}{(abort)}
\formdef{abort}{\categoryprocedure}{(abort \var{obj})}
\returns does not return
\listlibraries
\endentryheader

\noindent
\scheme{abort} invokes the current abort handler (see \scheme{abort-handler}),
passing along its argument, if any.


%----------------------------------------------------------------------------
\entryheader
\formdef{abort-handler}{\categorythreadparameter}{abort-handler}
\listlibraries
\endentryheader

\noindent
The value of this parameter must be a procedure and should accept either
zero arguments or one argument.
The current abort handler is called by \scheme{abort}.

The default abort handler exits the Scheme process.
The exit code for the Scheme process is -1 if no arguments were supplied,
0 if the first argument is void, the value of the first argument if it is
a 32-bit exact integer, and -1 otherwise.


%----------------------------------------------------------------------------
\entryheader
\formdef{scheme-start}{\categoryglobalparameter}{scheme-start}
\listlibraries
\endentryheader

\noindent
The value of \scheme{scheme-start} is a procedure that determines the
system's action upon start-up.
The procedure receives zero or more arguments, which are strings
representing the file names (or command-line arguments not recognized
by the Scheme executable) after given on the command line.
The default value first loads the files named by the arguments, then
starts up the initial caf\'e:

\schemedisplay
(lambda fns
  (for-each load fns)
  (new-cafe))
\endschemedisplay

\noindent
\scheme{scheme-start} may be altered to start up an application or to
perform customization prior to normal system start-up.

To have any effect, this parameter must be set within a boot file.
(See Chapter~\ref{CHPTUSE}.)

%----------------------------------------------------------------------------
\entryheader
\formdef{scheme-script}{\categoryglobalparameter}{scheme-script}
\listlibraries
\endentryheader

\noindent
\index{\scheme{--script} command-line option}%
\index{\scheme{command-line}}%
\index{\scheme{command-line-arguments}}%
The value of \scheme{scheme-script} is a procedure that determines the
system's action upon start-up,
when the \scheme{--script} option is used.
The procedure receives one or more arguments.
The first is a string identifying the script filename and the remainder
are strings representing the remaining file names (or command-line
arguments not recognized by the Scheme executable) given on the command
line.
The default value of this parameter is a procedure that sets the
\scheme{command-line} and \scheme{command-line-arguments} parameters,
loads the script using \scheme{load}, and returns void, which is
translated into a 0 exit status for the script process.

\schemedisplay
(lambda (fn . fns)
  (command-line (cons fn fns))
  (command-line-arguments fns)
  (load fn))
\endschemedisplay

\noindent
\scheme{scheme-script} may be altered to start up an application or to
perform customization prior to normal system start-up.

To have any effect, this parameter must be set within a boot file.
(See Chapter~\ref{CHPTUSE}.)


%----------------------------------------------------------------------------
\entryheader
\formdef{scheme-program}{\categoryglobalparameter}{scheme-program}
\listlibraries
\endentryheader

\noindent
\index{\scheme{--program} command-line option}%
\index{\scheme{command-line}}%
\index{\scheme{command-line-arguments}}%
The value of \scheme{scheme-program} is a procedure that determines the
system's action upon start-up
when the \scheme{--program} (RNRS top-level program) option is used.
The procedure receives one or more arguments.
The first is a string identifying the program filename and the remainder
are strings representing the remaining file names (or command-line
arguments not recognized by the Scheme executable) given on the command
line.
The default value of this parameter is a procedure that sets the
\scheme{command-line} and \scheme{command-line-arguments} parameters,
loads the program using \scheme{load-program}, and returns void, which is
translated into a 0 exit status for the script process.

\schemedisplay
(lambda (fn . fns)
  (command-line (cons fn fns))
  (command-line-arguments fns)
  (load-program fn))
\endschemedisplay

\noindent
\scheme{scheme-program} may be altered to start up an application or to
perform customization prior to normal system start-up.

To have any effect, this parameter must be set within a boot file.
(See Chapter~\ref{CHPTUSE}.)


%----------------------------------------------------------------------------
\entryheader
\formdef{command-line}{\categoryglobalparameter}{command-line}
\listlibraries
\endentryheader

\index{\scheme{--script} command-line option}%
This parameter is set by the default values of \scheme{scheme-script}
and \scheme{scheme-program}
to a list representing the command line, with the script name followed
by the command-line arguments, when the \scheme{--script} or
\scheme{--program} option is used on system startup.

%----------------------------------------------------------------------------
\entryheader
\formdef{command-line-arguments}{\categoryglobalparameter}{command-line-arguments}
\listlibraries
\endentryheader

\index{\scheme{--script} command-line option}%
This parameter is set by the default values of \scheme{scheme-script}
and \scheme{scheme-program}
to a list of the command-line arguments when the \scheme{--script}
or \scheme{--program} option is used on system startup.

%----------------------------------------------------------------------------
\entryheader
\formdef{suppress-greeting}{\categoryglobalparameter}{suppress-greeting}
\listlibraries
\endentryheader

\noindent
The value of \scheme{suppress-greeting} is a boolean value that determines
whether {\ChezScheme} prints an identifying banner and copyright notice.
The parameter defaults to \scheme{#f} but may be set to \scheme{#t} for
use in batch processing applications where the banner would be disruptive.

To have any effect, this parameter must be set within a boot file.
(See Chapter~\ref{CHPTUSE}.)


\section{Transcript Files\label{SECTMISCTRANSCRIPTS}}

A \index{transcript}transcript file is a record of an interactive session.
It is also useful as a ``quick-and-dirty'' alternative to opening an
output file and using explicit output operations.


%----------------------------------------------------------------------------
\entryheader\label{desc:transcript-on}
\formdef{transcript-on}{\categoryprocedure}{(transcript-on \var{path})}
\returns unspecified
\listlibraries
\endentryheader

\noindent
\var{path} must be a string.

\scheme{transcript-on} opens the file named by \var{path} for output,
and it copies to this file all input from the current input port and
all output to the current output port.
An exception is raised with condition-type \scheme{i/o-filename} if the
file cannot be opened for output.


%----------------------------------------------------------------------------
\entryheader
\formdef{transcript-off}{\categoryprocedure}{(transcript-off)}
\returns unspecified
\listlibraries
\endentryheader

\noindent
\scheme{transcript-off} ends transcription and closes the transcript file.


%----------------------------------------------------------------------------
\entryheader
\formdef{transcript-cafe}{\categoryprocedure}{(transcript-cafe \var{path})}
\listlibraries
\endentryheader

\noindent
\var{path} must be a string.
\scheme{transcript-cafe} opens a transcript file as with
\scheme{transcript-on} and
enters a new caf\'e; exiting
from this caf\'e (see \scheme{exit}) also ends transcription and closes the
transcript file.
Invoking \scheme{transcript-off} while in a transcript caf\'e ends transcription
and closes the transcript file but does not cause an exit from the
caf\'e.


\section{Times and Dates\label{SECTSYSTEMTIMESNDATES}}

This section documents procedures for handling times and dates.  Most of
the procedures described here are proposed in
\hyperlink{http://srfi.schemers.org/srfi-19/srfi-19.html}{SRFI~19}:
Time Data Types and Procedures, by Will Fitzgerald.

Times are represented by time objects.
Time objects record the nanosecond and second of a particular time
or duration, along with a \emph{time type} that identifies the nature
of the time object.
The time type is one of the following symbols:

\begin{description}
\item[\scheme{time-utc}:]
The time elapsed since the ``epoch:'' 00:00:00 UTC, January 1, 1970,
subject to adjustment, e.g., to correct for leap seconds.

\item[\scheme{time-monotonic}:]
The time elapsed since some arbitrary point in the past, ideally
not subject to adjustment.

\item[\scheme{time-duration}:]
The time elapsed between two times.
When used as an argument to \scheme{current-time}, it behaves like
\scheme{time-monotonic}, but may also used to represent the result
of subtracting two time objects.

\item[\scheme{time-process}:]
The amount of CPU time used by the current process.

\item[\scheme{time-thread}:]
The amount of CPU time used by the current thread.
It is the same as \scheme{time-process} if
not running threaded or if the system does not allow individual
thread times to be determined.

\item[\scheme{time-collector-cpu}:]
The portion of the current process's CPU time consumed by the
garbage collector.

\item[\scheme{time-collector-real}:]
The portion of the current process's real time consumed by the
garbage collector.
\end{description}

A time-object second is an exact integer (possibly negative),
and a nanosecond is an exact nonnegative integer less than $10^9$.
The second and nanosecond of a time object may be converted to
an aggregate nanosecond value by scaling the
seconds by $10^9$ and adding the nanoseconds.
Thus, if the second and nanosecond of a time object are 5 and 10,
the time object represents 5000000010 nanoseconds (5.000000010 seconds).
If the second and nanosecond are -5 and 10, the time object
represents -4999999990 nanoseconds (-4.999999990 seconds).

Dates are represented by date objects.
A date object records the nanosecond, second, minute, hour, day, month,
and year of a particular date, along with an offset that identifies the
time zone.

As for time objects, a nanosecond is an exact integer less than $10^9$.
A date-object second is, however, an exact nonnegative integer
less than 62.
(The values 61 and 62 allow for leap seconds.)
A minute is an exact nonnegative integer less than 60, and
an hour is an exact nonnegative integer less than 24.
A day is an exact nonnegative integer in ranging from 1 representing
the first day of the month to $n$, where $n$ is the number of
days in the date's month and year.
A month is an exact nonnegative integer ranging from 1 through 12,
where 1 represents January, 2 represents February, and so on.
A year must be an exact integer.
Years less than 1970 or greater than 2038 may not be supported
depending on limitations of the underlying implementation.
A time-zone offset represents the time-zone offset, in seconds, from UTC.
It is an exact integer in the range $-86400$ to $+86400$, inclusive.
For example, Eastern Standard Time (EST), which is 5 hours east, has
offset $5\times 3600 = -18000$.
The offset for Eastern Daylight Time (EDT) is $-14400$.
UTC is represented by offset zero.

%----------------------------------------------------------------------------
\entryheader
\formdef{current-time}{\categoryprocedure}{(current-time)}
\formdef{current-time}{\categoryprocedure}{(current-time \var{time-type})}
\returns a time object representing the current time
\listlibraries
\endentryheader

\var{time-type} must be one of the time-type symbols listed above
and defaults to \scheme{time-utc}.

\schemedisplay
(current-time) ;=> #<time-utc 1198815722.473668000>
(current-time 'time-process) ;=> #<time-process 0.120534264>
\endschemedisplay


%----------------------------------------------------------------------------
\entryheader
\formdef{make-time}{\categoryprocedure}{(make-time \var{type} \var{nsec} \var{sec})}
\returns a time object
\listlibraries
\endentryheader

\var{type} must be one of the time-type symbols listed above.
\var{nsec} represents nanoseconds and must be an exact nonnegative
integer less than $10^9$.
\var{sec} represents seconds and must be an exact integer.

\schemedisplay
(make-time 'time-utc 787511000 1198783214)
(make-time 'time-duration 10 5)
(make-time 'time-duration 10 -5)
\endschemedisplay

%----------------------------------------------------------------------------
\entryheader
\formdef{time?}{\categoryprocedure}{(time? \var{obj})}
\returns \scheme{#t} if \var{obj} is a time object, \scheme{#f} otherwise
\listlibraries
\endentryheader

\noskip\schemedisplay
(time? (current-time)) ;=> #t
(time? (make-time 'time-utc 0 0)) ;=> #t
(time? "1400 hours") ;=> #f
\endschemedisplay

%----------------------------------------------------------------------------
\entryheader
\formdef{time-type}{\categoryprocedure}{(time-type \var{time})}
\returns the time type of \var{time}
\formdef{time-nanosecond}{\categoryprocedure}{(time-nanosecond \var{time})}
\returns the nanosecond of \var{time}
\formdef{time-second}{\categoryprocedure}{(time-second \var{time})}
\returns the second of \var{time}
\listlibraries
\endentryheader

\var{time} must be a time object.

\schemedisplay
(time-type (current-time)) ;=> time-utc
(time-type (current-time 'time-process)) ;=> time-process
(time-type (make-time 'time-duration 0 50)) ;=> time-duration
(time-second (current-time)) ;=> 1198816497
(time-nanosecond (current-time)) ;=> 2399000
(time-second (make-time 'time-duration 10 -5)) ;=> -5
(time-nanosecond (make-time 'time-duration 10 -5)) ;=> 10
\endschemedisplay

%----------------------------------------------------------------------------
\entryheader
\formdef{set-time-type!}{\categoryprocedure}{(set-time-type! \var{time} \var{type})}
\returns unspecified
\formdef{set-time-nanosecond!}{\categoryprocedure}{(set-time-nanosecond! \var{time} \var{nsec})}
\returns unspecified
\formdef{set-time-second!}{\categoryprocedure}{(set-time-second! \var{time} \var{sec})}
\returns unspecified
\listlibraries
\endentryheader

\var{time} must be a time object.
\var{type} must be one of the time-type symbols listed above.
\var{nsec} represents nanoseconds and must be an exact nonnegative
integer less than $10^9$.
\var{sec} represents seconds and must be an exact integer.

Each of these procedures modifies the time object, changing one aspect
while leaving the others unaffected.
For example, \scheme{set-time-nanosecond!} changes the nanosecond of
\var{time} without changing the second or type.
In particular, no conversion of values is performed when the type of a time
object is changed.

%----------------------------------------------------------------------------
\entryheader
\formdef{time=?}{\categoryprocedure}{(time=? \var{time_1} \var{time_2})}
\formdef{time<?}{\categoryprocedure}{(time<? \var{time_1} \var{time_2})}
\formdef{time<=?}{\categoryprocedure}{(time<=? \var{time_1} \var{time_2})}
\formdef{time>=?}{\categoryprocedure}{(time>=? \var{time_1} \var{time_2})}
\formdef{time>?}{\categoryprocedure}{(time>? \var{time_1} \var{time_2})}
\returns \scheme{#t} if the relation holds, \scheme{#f} otherwise
\listlibraries
\endentryheader

\var{time_1} and \var{time_2} must be time objects and must have
the same type.

\schemedisplay
(let ([t (current-time)])
  (time=? t t)) ;=> #t
(let ([t (current-time)])
  (let loop ()
    (when (time=? (current-time) t))
      (loop))
  (time>? (current-time) t)) ;=> #t
\endschemedisplay

%----------------------------------------------------------------------------
\entryheader
\formdef{copy-time}{\categoryprocedure}{(copy-time \var{time})}
\returns a copy of \var{time}
\listlibraries
\endentryheader

\schemedisplay
(define t1 (current-time))
(define t2 (copy-time t1))
(eq? t2 t1) ;=> #f
(eqv? (time-second t2) (time-second t1)) ;=> #t
(eqv? (time-nanosecond t2) (time-nanosecond t1)) ;=> #t
\endschemedisplay

%----------------------------------------------------------------------------
\entryheader
\formdef{time-difference}{\categoryprocedure}{(time-difference \var{time_1} \var{time_2})}
\returns the result of subtracting \var{time_2} from \var{time_1}
\formdef{time-difference!}{\categoryprocedure}{(time-difference! \var{time_1} \var{time_2})}
\returns the result of subtracting \var{time_2} from \var{time_1}
\formdef{add-duration}{\categoryprocedure}{(add-duration \var{time} \var{time_d})}
\returns the result of adding \var{time_d} to \scheme{time}
\formdef{add-duration!}{\categoryprocedure}{(add-duration! \var{time} \var{time_d})}
\returns the result of adding \var{time_d} to \scheme{time}
\formdef{subtract-duration}{\categoryprocedure}{(subtract-duration \var{time} \var{time_d})}
\returns the result of subtracting \var{time_d} from \scheme{time}
\formdef{subtract-duration!}{\categoryprocedure}{(subtract-duration! \var{time} \var{time_d})}
\returns the result of subtracting \var{time_d} from \scheme{time}
\listlibraries
\endentryheader

For \scheme{time-difference}, \var{time_1} and \var{time_2} must
have the same time type, and the result is a time object with
time type \scheme{time-duration}.
For \scheme{add-duration}, \scheme{add-duration!},
\scheme{subtract-duration}, and \scheme{subtract-duration!},
\var{time_d} must have time type \scheme{time-duration},
and the result is a time object with the same time type as
\var{time}.
\scheme{time-difference!}, \scheme{add-duration!}, and
\scheme{subtract-duration!} are potentially destructive, i.e., each
might modify and return its first argument, or it might allocate a
new time object.

\schemedisplay
(let ([delay (make-time 'time-duration 0 1)])
  (let ([t1 (current-time 'time-monotonic)])
    (sleep delay)
    (let ([t2 (current-time 'time-monotonic)])
      (let ([t3 (time-difference t2 t1)])
        (and
          (eq? (time-type t3) 'time-duration)
          (time>=? t3 delay)
          (time=? (add-duration t1 t3) t2)
          (time=? (subtract-duration t2 t3) t1)))))) ;=> #t
\endschemedisplay


%----------------------------------------------------------------------------
\entryheader
\formdef{current-date}{\categoryprocedure}{(current-date)}
\formdef{current-date}{\categoryprocedure}{(current-date \var{offset})}
\returns a date object representing the current date
\listlibraries
\endentryheader

\var{offset} represents the time-zone offset in seconds east of UTC,
as described above.
It must be an exact integer in the range $-86400$ to
$+86400$, inclusive and defaults to the local time-zone offset.
UTC may be obtained by passing an offset of zero.

If \var{offset} is not provided, then the current time zone's offset
is used, and \scheme{date-dst?} and \scheme{date-zone-name} report
information about the time zone. If \var{offset} is provided, then
\scheme{date-dst?} and \scheme{date-zone-name} on the resulting date
object produce \scheme{#f}.

The following examples assume the local time zone is EST.

\schemedisplay
(current-date) ;=> #<date Thu Dec 27 23:23:20 2007>
(current-date 0) ;=> #<date Fri Dec 28 04:23:20 2007>

(date-zone-name (current-date)) ;=> "EST" \var{or other system-provided string}
(date-zone-name (current-date 0)) ;=> #f
\endschemedisplay

%----------------------------------------------------------------------------
\entryheader
\formdef{make-date}{\categoryprocedure}{(make-date \var{nsec} \var{sec} \var{min} \var{hour} \var{day} \var{mon} \var{year})}
\formdef{make-date}{\categoryprocedure}{(make-date \var{nsec} \var{sec} \var{min} \var{hour} \var{day} \var{mon} \var{year} \var{offset})}
\returns a date object
\listlibraries
\endentryheader

\var{nsec} represents nanoseconds and must be an exact nonnegative integer
less than $10^9$.
\var{sec} represents seconds and must be an exact nonnegative integer
less than 62.
\var{min} represents minutes and must be an exact nonnegative integer
less than 60.
\var{hour} must be an exact nonnegative integer less than 24.
\var{day} must be an exact integer, $1\leq day\leq 31$.
(The actual upper limit may be less depending on the month and year.)
\var{mon} represents the month must be an exact integer, $1\leq mon\leq 12$.
\var{year} must be an exact integer.
It should be at least 1970.
\var{offset} represents the time-zone offset in seconds east of UTC,
as described above.
It must be an exact integer in the range $-86400$ to $+86400$, inclusive.
UTC may be specified by passing an offset of zero.

If \var{offset} is not provided, then the current time zone's offset
is used, and \scheme{date-dst?} and \scheme{date-zone-name} report
information about the time zone. If \var{offset} is provided, then
\scheme{date-dst?} and \scheme{date-zone-name} on the resulting date
object produce \scheme{#f}.

\schemedisplay
(make-date 0 0 0 0 1 1 1970 0) ;=> #<date Thu Jan  1 00:00:00 1970>
(make-date 0 30 7 9 23 9 2007 -14400) ;=> #<date Sun Sep 23 09:07:30 2007>

(date-zone-name (make-date 0 30 7 9 23 9 2007 -14400)) ;=> #f
(string? (date-zone-name (make-date 0 30 7 9 23 9 2007))) ;=> #t
\endschemedisplay

%----------------------------------------------------------------------------
\entryheader
\formdef{date?}{\categoryprocedure}{(date? \var{obj})}
\returns \scheme{#t} if \var{obj} is a date object, \scheme{#f} otherwise
\listlibraries
\endentryheader

\noskip\schemedisplay
(date? (current-date))
(date? (make-date 0 30 7 9 23 9 2007 -14400))
(date? "Sun Sep 23 09:07:30 2007") ;=> #f
\endschemedisplay

%----------------------------------------------------------------------------
\entryheader
\formdef{date-nanosecond}{\categoryprocedure}{(date-nanosecond \var{date})}
\returns the nanosecond of \var{date}
\formdef{date-second}{\categoryprocedure}{(date-second \var{date})}
\returns the second of \var{date}
\formdef{date-minute}{\categoryprocedure}{(date-minute \var{date})}
\returns the minute of \var{date}
\formdef{date-hour}{\categoryprocedure}{(date-hour \var{date})}
\returns the hour of \var{date}
\formdef{date-day}{\categoryprocedure}{(date-day \var{date})}
\returns the day of \var{date}
\formdef{date-month}{\categoryprocedure}{(date-month \var{date})}
\returns the month of \var{date}
\formdef{date-year}{\categoryprocedure}{(date-year \var{date})}
\returns the year of \var{date}
\formdef{date-zone-offset}{\categoryprocedure}{(date-zone-offset \var{date})}
\returns the time-zone offset of \var{date}
\listlibraries
\endentryheader

\var{date} must be a date object.

\schemedisplay
(define d (make-date 0 30 7 9 23 9 2007 -14400))
(date-nanosecond d) ;=> 0
(date-second d) ;=> 30
(date-minute d) ;=> 7
(date-hour d) ;=> 9
(date-day d) ;=> 23
(date-month d) ;=> 9
(date-year d) ;=> 2007
(date-zone-offset d) ;=> -14400
\endschemedisplay

%----------------------------------------------------------------------------
\entryheader
\formdef{date-week-day}{\categoryprocedure}{(date-week-day \var{date})}
\returns the week-day of \var{date}
\formdef{date-year-day}{\categoryprocedure}{(date-year-day \var{date})}
\returns the year-day of \var{date}
\listlibraries
\endentryheader

These procedures allow the day-of-week or day-of-year to be determined for
the date represented by \var{date}.
A week-day is an exact nonnegative integer less than 7, where
0 represents Sunday, 1 represents Monday, and so on.
A year-day is an exact nonnegative integer less than 367, where
0 represents the first day of the year (January 1), 1 the
second day, 2 the third, and so on.

\schemedisplay
(define d1 (make-date 0 0 0 0 1 1 1970 -18000))
d1 ;=> #<date Thu Jan  1 00:00:00 1970>
(date-week-day d1) ;=> 4
(date-year-day d1) ;=> 0

(define d2 (make-date 0 30 7 9 23 9 2007 -14400))
d2 ;=> #<date Sun Sep 23 09:07:30 2007>
(date-week-day d2) ;=> 0
(date-year-day d2) ;=> 265
\endschemedisplay

%----------------------------------------------------------------------------
\entryheader
\formdef{date-dst?}{\categoryprocedure}{(date-dst? \var{date})}
\returns whether \var{date} is in Daylight Saving Time
\formdef{date-zone-name}{\categoryprocedure}{(date-zone-name \var{date})}
\returns \scheme{#f} or a string naming the time zone of \var{date}
\listlibraries
\endentryheader

These procedures report time-zone information for
the date represented by \var{date} for a date object that
is constructed without an explicit time-zone offset. When
a date object is created instead with explicit time-zone offset,
these procedures produce \scheme{#f}.

Daylight Saving Time status for the current time zone and a name
string for the time zone are computed using platform-specific routines.
In particular, the format of the zone name is platform-specific.

\schemedisplay
(define d (make-date 0 30 7 9 23 9 2007))
(date-zone-offset d) ;=> -14400 \var{assuming Eastern U.S. time zone}
(date-dst? d) ;=> #t
(date-zone-name d) ;=> "EDT" \var{or some system-provided string}
\endschemedisplay

%----------------------------------------------------------------------------
\entryheader
\formdef{time-utc->date}{\categoryprocedure}{(time-utc->date \var{time})}
\formdef{time-utc->date}{\categoryprocedure}{(time-utc->date \var{time} \var{offset})}
\returns a date object corresponding to \var{time}
\formdef{date->time-utc}{\categoryprocedure}{(date->time-utc \var{date})}
\returns a time object corresponding to \var{date}
\listlibraries
\endnoskipentryheader

These procedures are used to convert between time and date objects.
The \var{time} argument to \scheme{time-utc->date} must have time-type
\scheme{utc}, and \scheme{date->time-utc} always returns a time
object with time-type \scheme{utc}.

For \scheme{time-utc->date},
\var{offset} represents the time-zone offset in seconds east of UTC,
as described at the beginning of this section.
It must be an exact integer in the range $-86400$ to
$+86400$, inclusive and defaults to the local time-zone offset.
UTC may be obtained by passing an offset of zero.

If \var{offset} is not provided to \scheme{time-utc->date}, then the current time zone's offset
is used, and \scheme{date-dst?} and \scheme{date-zone-name} report
information about the time zone. If \var{offset} is provided, then
\scheme{date-dst?} and \scheme{date-zone-name} on the resulting date
object produce \scheme{#f}.

\schemedisplay
(define d (make-date 0 30 7 9 23 9 2007 -14400))
(date->time-utc d) ;=> #<time-utc 1190552850.000000000>
(define t (make-time 'time-utc 0 1190552850))
(time-utc->date t) ;=> #<date Sun Sep 23 09:07:30 2007>
(time-utc->date t 0) ;=> #<date Sun Sep 23 13:07:30 2007>
\endschemedisplay

%----------------------------------------------------------------------------
\entryheader
\formdef{date-and-time}{\categoryprocedure}{(date-and-time)}
\formdef{date-and-time}{\categoryprocedure}{(date-and-time \var{date})}
\returns a string giving the current date and time
\listlibraries
\endnoskipentryheader

The string is always in the format illustrated by the examples below and
always has length 24.

\schemedisplay
(date-and-time) ;=> "Fri Jul 13 13:13:13 2001"
(define d (make-date 0 0 0 0 1 1 2007 0))
(date-and-time d) ;=> "Mon Jan 01 00:00:00 2007"
\endschemedisplay


%----------------------------------------------------------------------------
\entryheader
\formdef{sleep}{\categoryprocedure}{(sleep \var{time})}
\returns unspecified
\listlibraries
\endnoskipentryheader

\var{time} must be a time object with type \scheme{time-duration}.
\var{sleep} causes the invoking thread to suspend operation for
approximately the amount of time indicated by the time object, unless
the process receives a signal that interrupts the sleep operation.
The actual time slept depends on the granularity of the system clock
and how busy the system is running other threads and processes.


\section{Timing and Statistics\label{SECTMISCSTATISTICS}}

This section documents procedures for timing computations.
The \scheme{current-time} procedure described in
Section~\ref{SECTSYSTEMTIMESNDATES} may also be used to
time computations.

%----------------------------------------------------------------------------
\entryheader
\formdef{time}{\categorysyntax}{(time \var{expr})}
\returns the values of \var{expr}
\listlibraries
\endnoskipentryheader

\noindent
\scheme{time} evaluates \var{expr} and, as a side-effect, prints (to the
console-output port) the amount of cpu time, the amount of real time,
the number of bytes allocated, and the amount of collection overhead
associated with evaluating \var{expr}.

\schemedisplay
> (time (collect))
(time (collect))
    1 collection
    1 ms elapsed cpu time, including 1 ms collecting
    1 ms elapsed real time, including 1 ms collecting
    160 bytes allocated, including 8184 bytes reclaimed
\endschemedisplay


%----------------------------------------------------------------------------
\entryheader
\formdef{display-statistics}{\categoryprocedure}{(display-statistics)}
\formdef{display-statistics}{\categoryprocedure}{(display-statistics \var{textual-output-port})}
\returns unspecified
\listlibraries
\endentryheader

\noindent
This procedure displays a running total of the amount of
cpu time, real time, bytes allocated, and collection overhead.
If \var{textual-output-port} is not supplied, it defaults to the current output port.


%----------------------------------------------------------------------------
\entryheader
\formdef{cpu-time}{\categoryprocedure}{(cpu-time)}
\returns the amount of cpu time consumed since system start-up
\listlibraries
\endentryheader

\noindent
The amount is in milliseconds.
The amount includes ``system'' as well as ``user'' time, i.e., time
spent in the kernel on behalf of the process as well as time spent in
the process itself.

See also \scheme{current-time}, which returns more precise information.


%----------------------------------------------------------------------------
\entryheader
\formdef{real-time}{\categoryprocedure}{(real-time)}
\returns the amount of real time that has elapsed since system start-up
\listlibraries
\endentryheader

\noindent
The amount is in milliseconds.

See also \scheme{current-time}, which returns more precise information.


%----------------------------------------------------------------------------
\entryheader
\formdef{bytes-allocated}{\categoryprocedure}{(bytes-allocated)}
\formdef{bytes-allocated}{\categoryprocedure}{(bytes-allocated \var{g})}
\returns the number of bytes currently allocated
\listlibraries
\endentryheader

If \var{g} is supplied, \scheme{bytes-allocated} returns the number of
bytes currently allocated for Scheme objects in the specified generation.
\var{g} must be a nonnegative exact integer no greater than the
maximum nonstatic generation, i.e., the
value returned by \scheme{collect-maximum-generation}, or the symbol
\scheme{static}.
If \var{g} is not supplied, \scheme{bytes-allocated} returns the total
number of bytes allocated in all generations.


%----------------------------------------------------------------------------
\entryheader
\formdef{initial-bytes-allocated}{\categoryprocedure}{(initial-bytes-allocated)}
\returns the total number of bytes allocated after loading boot files
\listlibraries
\endentryheader


%----------------------------------------------------------------------------
\entryheader
\formdef{bytes-deallocated}{\categoryprocedure}{(bytes-deallocated)}
\returns the total number of bytes deallocated by the garbage collector
\listlibraries
\endentryheader

The total number of bytes allocated by the current process, whether
still in use or not, can be obtained by summing
\scheme{(bytes-deallocated)} and \scheme{(bytes-allocated)}
and possibly subtracting \scheme{(initial-bytes-allocated)}.

%----------------------------------------------------------------------------
\entryheader
\formdef{current-memory-bytes}{\categoryprocedure}{(current-memory-bytes)}
\returns the total number of bytes currently allocated, including overhead
\listlibraries
\endentryheader

\scheme{current-memory-bytes} returns the total size of the heap
in bytes, including not only the bytes occupied for Scheme objects
but also various forms of overhead, including fragmentation and
reserved but not currently occupied memory, and is thus an accurate
measure of the amount of heap memory currently reserved from the
operating system for the current process.

%----------------------------------------------------------------------------
\entryheader
\formdef{maximum-memory-bytes}{\categoryprocedure}{(maximum-memory-bytes)}
\returns the maximum number of bytes ever allocated, including overhead
\listlibraries
\endentryheader

\scheme{maximum-memory-bytes} returns the maximum size of the heap
in bytes, i.e., the maximum value that \scheme{current-memory-bytes}
returned or could have returned, since the last call to
\scheme{reset-maximum-memory-bytes!} or, if there has been no such
call, since the process started.

%----------------------------------------------------------------------------
\entryheader
\formdef{reset-maximum-memory-bytes!}{\categoryprocedure}{(reset-maximum-memory-bytes!)}
\returns unspecified
\listlibraries
\endentryheader

\scheme{reset-maximum-memory-bytes!} resets the maximum recorded size
of the heap to the current size of the heap.

%----------------------------------------------------------------------------
\entryheader
\formdef{collections}{\categoryprocedure}{(collections)}
\returns the number garbage collections so far
\listlibraries
\endentryheader

%----------------------------------------------------------------------------
\entryheader
\formdef{statistics}{\categoryprocedure}{(statistics)}
\returns a sstats record containing current statistics
\listlibraries
\endentryheader

\noindent
\scheme{statistics} packages together various timing and allocation
statistics into a single \scheme{sstats} record.
A \scheme{sstats} record has the following fields:

\begin{description}
\item[\scheme{cpu},] the cpu time consumed,
\item[\scheme{real},] the elapsed real time,
\item[\scheme{bytes},] the number of bytes allocated,
\item[\scheme{gc-count},] the number of collections,
\item[\scheme{gc-cpu},] the cpu time consumed during collections,
\item[\scheme{gc-real},] the elapsed real time during collections, and
\item[\scheme{gc-bytes},] the number of bytes reclaimed by the collector.
\end{description}

\noindent
All values are computed since system start-up.
The time values are time objects (Section~\ref{SECTSYSTEMTIMESNDATES}),
and the bytes and count values are exact integers.

\scheme{statistics} might be defined as follows:

\schemedisplay
(define statistics
  (lambda ()
    (make-sstats
      (current-time 'time-thread)
      (current-time 'time-monotonic)
      (- (+ (bytes-allocated) (bytes-deallocated))
         (initial-bytes-allocated))
      (collections)
      (current-time 'time-collector-cpu)
      (current-time 'time-collector-real)
      (bytes-deallocated))))
\endschemedisplay

%----------------------------------------------------------------------------
\entryheader
\formdef{make-sstats}{\categoryprocedure}{(make-sstats \var{cpu} \var{real} \var{bytes} \var{gc-count} \var{gc-cpu} \var{gc-real} \var{gc-bytes})}
\returns a sstats record
\listlibraries
\endentryheader

The time arguments (\var{cpu}, \var{real}, \var{gc-cpu}, and \var{gc-real}) must be time objects.
The other arguments must be exact integers.


%----------------------------------------------------------------------------
\entryheader
\formdef{sstats?}{\categoryprocedure}{(sstats? \var{obj})}
\returns \scheme{#t} if \var{obj} is a sstats record, otherwise \scheme{#f}
\listlibraries
\endentryheader


%----------------------------------------------------------------------------
\entryheader
\formdef{sstats-cpu}{\categoryprocedure}{(sstats-cpu \var{s})}
\formdef{sstats-real}{\categoryprocedure}{(sstats-real \var{s})}
\formdef{sstats-bytes}{\categoryprocedure}{(sstats-bytes \var{s})}
\formdef{sstats-gc-count}{\categoryprocedure}{(sstats-gc-count \var{s})}
\formdef{sstats-gc-cpu}{\categoryprocedure}{(sstats-gc-cpu \var{s})}
\formdef{sstats-gc-real}{\categoryprocedure}{(sstats-gc-real \var{s})}
\formdef{sstats-gc-bytes}{\categoryprocedure}{(sstats-gc-bytes \var{s})}
\returns the value of the corresponding field of \var{s}
\listlibraries
\endentryheader

\noindent
\var{s} must be a sstats record.

%----------------------------------------------------------------------------
\entryheader
\formdef{set-sstats-cpu!}{\categoryprocedure}{(set-sstats-cpu! \var{s} \var{new-value})}
\formdef{set-sstats-real!}{\categoryprocedure}{(set-sstats-real! \var{s} \var{new-value})}
\formdef{set-sstats-bytes!}{\categoryprocedure}{(set-sstats-bytes! \var{s} \var{new-value})}
\formdef{set-sstats-gc-count!}{\categoryprocedure}{(set-sstats-gc-count! \var{s} \var{new-value})}
\formdef{set-sstats-gc-cpu!}{\categoryprocedure}{(set-sstats-gc-cpu! \var{s} \var{new-value})}
\formdef{set-sstats-gc-real!}{\categoryprocedure}{(set-sstats-gc-real! \var{s} \var{new-value})}
\formdef{set-sstats-gc-bytes!}{\categoryprocedure}{(set-sstats-gc-bytes! \var{s} \var{new-value})}
\returns unspecified
\listlibraries
\endentryheader

\noindent
\var{s} must be a sstats record, the \var{new-value} arguments for the time fields
(\var{cpu}, \var{real}, \var{gc-cpu}, and \var{gc-real})
must be time objects, and
the other \var{new-value} arguments must be exact integers.
Each procedure sets the value of the corresponding field of \var{s} to
\var{new-value}.


%----------------------------------------------------------------------------
\entryheader
\formdef{sstats-difference}{\categoryprocedure}{(sstats-difference \var{s_1} \var{s_2})}
\returns a sstats record representing the difference between \var{s_1} and \var{s_2}
\listlibraries
\endentryheader

\noindent
\var{s_1} and \var{s_2} must be sstats records.
\scheme{sstats-difference} subtracts each field of \var{s_2} from the
corresponding field of \var{s_1} to produce the resulting \scheme{sstats}
record.

%----------------------------------------------------------------------------
\entryheader
\formdef{sstats-print}{\categoryprocedure}{(sstats-print \var{s})}
\formdef{sstats-print}{\categoryprocedure}{(sstats-print \var{s} \var{textual-output-port})}
\returns unspecified
\listlibraries
\endentryheader

\noindent
\var{s} must be a \scheme{sstats} record.
If \var{textual-output-port} is not supplied, it defaults to the current output port.
\scheme{sstats-print} displays the fields of \scheme{s} in a manner similar
to \scheme{display-statistics} and \scheme{time}.

%----------------------------------------------------------------------------

\entryheader
\formdef{enable-object-counts}{\categoryglobalparameter}{enable-object-counts}
\listlibraries
\endentryheader

The value of \scheme{enable-object-counts} is a boolean value that
determines whether the collector records object counts as it runs and
hence whether the object counts returned by the procedure
\scheme{object-counts} are accurate.
The parameter is set to \scheme{#f} by default, since enabling object
counts adds overhead to collection.

Counts for the static generation are always correct.
Counts for a nonstatic generation $n$ are correct immediately after a
collection of generation $m\ge n$ (regardless of whether the target
generation is $m$ or $m+1$) if \scheme{enable-object-counts}
was set to \scheme{#t} during the collection.

One strategy for collecting object counts with minimal overhead is
to enable object counts only while collecting the maximum nonstatic
generation and to obtain the object counts immediately after that
collection.

\entryheader
\formdef{object-counts}{\categoryprocedure}{(object-counts)}
\returns see below
\listlibraries
\endentryheader

The procedure \scheme{object-counts} returns a nested association list
representing object counts and bytes allocated for each heap-allocated
primitive type and record type with at least one live instance in one
or more generations.
(Heap-allocated primitive types include, e.g., pairs and vectors, but
not, e.g., fixnums or characters.)
Object counts are gathered by the collector only when
\scheme{enable-object-counts} is \scheme{#t}.
The description of \scheme{enable-object-counts} details the
circumstances under which the counts are accurate.

The association list returned by \scheme{object-counts} has the following
structure:

\schemedisplay
((\var{type} (\var{generation} \var{count} . \var{bytes}) \dots) \dots)
\endschemedisplay

\var{type} is either the name of a primitive type, represented as a
symbol, e.g., \scheme{pair}, or a record-type descriptor (rtd).
\var{generation} is a nonnegative fixnum between 0 and the value
of \scheme{(collect-maximum-generation)}, inclusive, or the symbol
\scheme{static} representing the static generation.
\var{count} and \var{bytes} are nonnegative fixnums.

\schemedisplay
(collect-request-handler void)
(enable-object-counts #t)
(define-record-type frob (fields x))
(define x (make-frob (make-frob #f)))
(collect 3 3)
(cdr (assoc 3
       (cdr (assoc (record-type-descriptor frob)
              (object-counts)))))                ;=> (2 . 16)
\endschemedisplay

\section{Cost Centers\label{SECTMISCCOSTCENTERS}}

Cost centers are used to track the bytes allocated, instructions executed,
and/or cpu time elapsed while evaluating selected sections of code.
Cost centers are created via the procedure \scheme{make-cost-center}, and
costs are tracked via the procedure \scheme{with-cost-center}.

Allocation and instruction counts are tracked only for code instrumented
for that purpose.
This instrumentation is controlled by two parameters: \scheme{generate-allocation-counts}
and \scheme{generate-instruction-counts}.
Instrumentation is disabled by default.
Built in procedures are not instrumented, nor is interpreted code or
non-Scheme code.
Elapsed time is tracked only when the optional \scheme{timed?} argument to
\scheme{with-cost-center} is provided and is not false.

The \scheme{with-cost-center} procedure accurately tracks costs, subject
to the caveats above, even when reentered with the same cost center, used
simultaneously in multiple threads, and exited or reentered one or more
times via continuation invocation.

%----------------------------------------------------------------------------
\entryheader
\formdef{generate-allocation-counts}{\categorythreadparameter}{generate-allocation-counts}
\listlibraries
\endnoskipentryheader

When this parameter has a true value, the compiler inserts a short sequence of
instructions at each allocation point in generated code to track the amount of
allocation that occurs.
This parameter is initially false.

%----------------------------------------------------------------------------
\entryheader
\formdef{generate-instruction-counts}{\categorythreadparameter}{generate-instruction-counts}
\listlibraries
\endnoskipentryheader

When this parameter has a true value, the compiler inserts a short
sequence of instructions in each block of generated code to track the
number of instructions executed by that block.
This parameter is initially false.

%----------------------------------------------------------------------------
\entryheader
\formdef{make-cost-center}{\categoryprocedure}{(make-cost-center)}
\returns a new cost center
\listlibraries
\endentryheader

The recorded costs of the new cost center are initialized to zero.

%----------------------------------------------------------------------------
\entryheader
\formdef{cost-center?}{\categoryprocedure}{(cost-center? \var{obj})}
\returns \scheme{#t} if \var{obj} is a cost center, otherwise \scheme{#f}
\listlibraries
\endentryheader

%----------------------------------------------------------------------------
\entryheader
\formdef{with-cost-center}{\categoryprocedure}{(with-cost-center \var{cost-center} \var{thunk})}
\formdef{with-cost-center}{\categoryprocedure}{(with-cost-center \var{timed?} \var{cost-center} \var{thunk})}
\returns see below
\listlibraries
\endentryheader

\var{thunk} must be a procedure that accepts zero arguments.
\scheme{with-cost-center} invokes \var{thunk} without arguments and
returns its values.
It also tracks, dynamically, the bytes allocated, instructions executed,
and cpu time elapsed while evaluating the invocation of \var{thunk} and
adds the tracked costs to the cost center's running record of these costs.

As described above, allocation counts are tracked only for code
compiled with the parameter \scheme{generate-allocation-counts} set
to true, and instruction counts are tracked only for code compiled
with \scheme{generate-instruction-counts} set to true.
Cpu time is tracked only if \var{timed?} is provided and not false and
includes cpu time spent in instrumented, uninstrumented, and non-Scheme
code.

%----------------------------------------------------------------------------
\entryheader
\formdef{cost-center-instruction-count}{\categoryprocedure}{(cost-center-instruction-count \var{cost-center})}
\returns the number of instructions tracked by \var{cost-center}
\listlibraries
\endentryheader

%----------------------------------------------------------------------------
\entryheader
\formdef{cost-center-allocation-count}{\categoryprocedure}{(cost-center-allocation-count \var{cost-center})}
\returns the number of allocated bytes tracked by \var{cost-center}
\listlibraries
\endentryheader

%----------------------------------------------------------------------------
\entryheader
\formdef{cost-center-time}{\categoryprocedure}{(cost-center-time \var{cost-center})}
\returns the cpu time tracked by \var{cost-center}
\listlibraries
\endentryheader

The cpu time is returned as a time object with time-type \scheme{time-duration}.

%----------------------------------------------------------------------------
\entryheader
\formdef{reset-cost-center!}{\categoryprocedure}{(reset-cost-center! \var{cost-center})}
\returns unspecified
\listlibraries
\endentryheader

This procedure resets the costs recorded by \var{cost-center} to zero.


\section{Parameters\label{SECTPARAMETERS}}

This section describes mechanisms for creating and manipulating parameters.
New parameters may be created conveniently with \scheme{make-parameter}.
Nothing distinguishes parameters from other
procedures, however, except for their behavior.
If more complicated actions must be taken when a parameter is invoked
than can be accommodated easily through the \scheme{make-parameter} mechanism,
the parameter may be defined directly with \scheme{case-lambda}.


%----------------------------------------------------------------------------
\entryheader
\formdef{make-parameter}{\categoryprocedure}{(make-parameter \var{object})}
\formdef{make-parameter}{\categoryprocedure}{(make-parameter \var{object} \var{procedure})}
\returns a parameter (procedure)
\listlibraries
\endentryheader

\noindent
\scheme{make-parameter} accepts one or two arguments.
The first argument is the initial value of the internal variable, and
the second, if present, is a \emph{filter} applied to the initial value
and all subsequent values.
The filter should accept one argument.
If the value is not appropriate, the filter should raise an exception or
convert the value into a more appropriate form.

For example, the default value of \scheme{print-length} is defined as
follows:

\schemedisplay
(define print-length
  (make-parameter
    #f
    (lambda (x)
      (unless (or (not x) (and (fixnum? x) (fx>= x 0)))
        (assertion-violationf 'print-length
          "~s is not a positive fixnum or #f"
          x))
      x)))
\endschemedisplay

\schemedisplay
(print-length)  ;=> #f
(print-length 3)
(print-length)  ;=> 3
(format "~s" '(1 2 3 4 5 6))  ;=> "(1 2 3 ...)"
(print-length #f)
(format "~s" '(1 2 3 4 5 6))  ;=> "(1 2 3 4 5 6)"
\endschemedisplay

The definition of \scheme{make-parameter} is straightforward using
\index{\scheme{case-lambda}}\scheme{case-lambda}:

\schemedisplay
(define make-parameter
  (case-lambda
    [(init guard)
     (let ([v (guard init)])
       (case-lambda
         [() v]
         [(u) (set! v (guard u))]))]
    [(init)
     (make-parameter init (lambda (x) x))]))
\endschemedisplay

In threaded versions of {\ChezScheme}, \scheme{make-parameter} creates
global parameters.
The procedure \scheme{make-thread-parameter}, described in
Section~\ref{SECTTHREADPARAMETERS}, may be used to make thread
parameters.


%----------------------------------------------------------------------------
\entryheader
\formdef{parameterize}{\categorysyntax}{(parameterize ((\var{param} \var{expr}) \dots) \var{body_1} \var{body_2} \dots)}
\returns the values of the body \scheme{\var{body_1} \var{body_2} \dots}
\listlibraries
\endentryheader

\noindent
Using the syntactic form \scheme{parameterize}, the values of parameters can
be changed in a manner analogous to \scheme{fluid-let} for ordinary variables.
Each \var{param} is set to the value of the corresponding
\var{expr} while the body is evaluated.
When control leaves the body by normal return or by the invocation of a
continuation created outside of the body, the parameters are restored to
their original values.
If control returns to the body via a continuation created during the
execution of the body, the parameters are again set to their temporary
values.

\schemedisplay
(define test
  (make-parameter 0))
(test)  ;=> 0
(test 1)
(test)  ;=> 1
(parameterize ([test 2])
  (test))  ;=> 2
(test)  ;=> 1
(parameterize ([test 2])
  (test 3)
  (test))  ;=> 3
(test)  ;=> 1
(define k (lambda (x) x))
(begin (set! k (call/cc k))
       'k)  ;=> k
(parameterize ([test 2])
  (test (call/cc k))
  (test))  ;=> k
(test)  ;=> 1
(k 3)  ;=> 3
(test)  ;=> 1
\endschemedisplay

The definition of \scheme{parameterize} is similar to the definition of
\scheme{fluid-let} (page~\pageref{defn:fluid-let}):

\schemedisplay
(define-syntax parameterize
  (lambda (x)
    (syntax-case x ()
      [(_ () b1 b2 ...) #'(begin b1 b2 ...)]
      [(_ ((x e) ...) b1 b2 ...)
       (with-syntax ([(p ...) (generate-temporaries #'(x ...))]
                     [(y ...) (generate-temporaries #'(x ...))])
         #'(let ([p x] ... [y e] ...)
             (let ([swap (lambda ()
                           (let ([t (p)]) (p y) (set! y t))
                           ...)])
               (dynamic-wind swap (lambda () b1 b2 ...) swap))))])))
\endschemedisplay

\section{Virtual registers\label{SECTVIRTUALREGISTERS}}

A limited set of \emph{virtual registers} is supported by the compiler
for use by programs that require high-speed, global, and mutable storage
locations.
Referencing or assigning a virtual register is potentially faster and
never slower than accessing an assignable local or global variable,
and the code sequences for doing so are generally smaller.
Assignment is potentially significantly faster because there is no need
to track pointers from the virtual registers to young objects, as there
is for variable locations that might reside in older generations.
On threaded versions of the system, virtual registers are ``per thread''
and thus serve as thread-local storage in a manner that is less expensive
than thread parameters.

The interface consists of three procedures: \scheme{virtual-register-count},
which returns the number of virtual registers, \scheme{set-virtual-register!},
which sets the value of a specified virtual register, and
\scheme{virtual-register}, which retrieves the value of a specified
virtual register.

A virtual register is specified by a nonnegative fixnum index less than
the number of virtual registers.
To get optimal performance for \scheme{set-virtual-register!}
and \scheme{virtual-register}, the index should be a constant
embedded right in the call (or propagatable via optimization to the
call).
To avoid putting these constants in the source code, programmers should
consider using identifier macros to give names to virtual registers, e.g.:

\schemedisplay
(define-syntax current-state
  (identifier-syntax
    [id (virtual-register 0)]
    [(set! id e) (set-virtual-register! 0 e)]))
(set! current-state 'start)
current-state ;=> start
\endschemedisplay

A more elaborate macro could dole out indices at compile time and complain
when no more indices are available.

Virtual-registers must be treated as an application-level resource, i.e.,
libraries intended to be used by multiple applications should generally
not use virtual registers to avoid conflicts with an application's use of
the registers.


%----------------------------------------------------------------------------
\entryheader
\formdef{virtual-register-count}{\categoryprocedure}{(virtual-register-count)}
\returns the number of virtual registers
\listlibraries
\endentryheader

As of Version~9.0, the number of virtual registers is set at 16.
It cannot be changed except by recompiling {\ChezScheme} from
source.

%----------------------------------------------------------------------------
\entryheader
\formdef{set-virtual-register!}{\categoryprocedure}{(set-virtual-register! \var{k} \var{x})}
\returns unspecified
\listlibraries
\endentryheader

\scheme{set-virtual-register!} stores \var{x} in virtual register \var{k}.
\var{k} must be a nonnegative fixnum less than the value of
\scheme{(virtual-register-count)}.

%----------------------------------------------------------------------------
\entryheader
\formdef{virtual-register}{\categoryprocedure}{(virtual-register \var{k})}
\returns see below
\listlibraries
\endentryheader

\scheme{virtual-register} returns the value most recently
stored in virtual register \var{k} (on the current thread, in
threaded versions of the system).


\section{Environmental Queries and Settings\label{SECTSYSTEMENV}}

%----------------------------------------------------------------------------
\noskipentryheader
\formdef{scheme-version}{\categoryprocedure}{(scheme-version)}
\returns a version string
\listlibraries
\endentryheader

The version string is in the form

\schemedisplay
"Chez Scheme Version \var{version}"
\endschemedisplay

for {\ChezScheme}, and

\schemedisplay
"Petite Chez Scheme Version \var{version}"
\endschemedisplay

for {\PetiteChezScheme}.

%----------------------------------------------------------------------------
\entryheader
\formdef{scheme-version-number}{\categoryprocedure}{(scheme-version-number)}
\returns three values: the major, minor, and sub-minor version numbers
\listlibraries
\endentryheader

Each of the three return values is a nonnegative fixnum.

In {\ChezScheme} Version 7.9.4:

\schemedisplay
(scheme-version-number) ;=> 7
                        ;== 9
                        ;== 4
\endschemedisplay


%----------------------------------------------------------------------------
\entryheader
\formdef{petite?}{\categoryprocedure}{(petite?)}
\returns \scheme{#t} if called in {\PetiteChezScheme}, \scheme{#f} otherwise
\listlibraries
\endentryheader

The only difference between {\PetiteChezScheme} and {\ChezScheme} is that
the compiler is not available in the former, so this predicate can serve as
a way to determine if the compiler is available.


%----------------------------------------------------------------------------
\entryheader
\formdef{threaded?}{\categoryprocedure}{(threaded?)}
\returns \scheme{#t} if called in a threaded version of the system, \scheme{#f} otherwise
\listlibraries
\endentryheader


%----------------------------------------------------------------------------
\entryheader
\formdef{interactive?}{\categoryprocedure}{(interactive?)}
\returns \scheme{#t} if system is run interactively, \scheme{#f} otherwise
\listlibraries
\endentryheader

This predicate returns \scheme{#t} if the Scheme process's
stdin and stdout are connected to a tty (Unix-based systems) or console
(Windows).
Otherwise, it returns \scheme{#f}.


%----------------------------------------------------------------------------
\entryheader
\formdef{get-process-id}{\categoryprocedure}{(get-process-id)}
\returns the operating system process id if the current process
\listlibraries
\endentryheader



%----------------------------------------------------------------------------
\noskipentryheader
\formdef{getenv}{\categoryprocedure}{(getenv \var{key})}
\returns environment value of \var{key} or \scheme{#f}
\listlibraries
\endnoskipentryheader

\noindent
\var{key} must be a string.
\scheme{getenv} returns the operating system shell's environment value
associated with \var{key}, or \scheme{#f} if no environment value
is associated with \var{key}.

\schemedisplay
(getenv "HOME") ;=> "/u/freddy"
\endschemedisplay

%----------------------------------------------------------------------------
\entryheader
\formdef{putenv}{\categoryprocedure}{(putenv \var{key} \var{value})}
\returns unspecified
\listlibraries
\endentryheader

\noindent
\var{key} and \var{value} must be strings.

\scheme{putenv} stores the \var{key}, \var{value} pair in the
environment of the process,
where it is available to the current process (e.g., via \var{getenv})
and any spawned processes.

\schemedisplay
(putenv "SCHEME" "rocks!")
(getenv "SCHEME") ;=> "rocks!"
\endschemedisplay


%----------------------------------------------------------------------------
\entryheader
\formdef{get-registry}{\categoryprocedure}{(get-registry \var{key})}
\returns registry value of \var{key} or \scheme{#f}
\formdef{put-registry!}{\categoryprocedure}{(put-registry! \var{key} \var{val})}
\formdef{remove-registry!}{\categoryprocedure}{(remove-registry! \var{key})}
\returns unspecified
\listlibraries
\endentryheader

\noindent
\var{key} and \var{val} must be strings.

\scheme{get-registry} returns a string containing the registry
value of \var{key} if the value exists.
If no registry value for \var{key} exists, \scheme{get-registry} returns
\scheme{#f}.

\scheme{put-registry!} sets the registry
value of \var{key} to \var{val}.
It raises an exception with condition type \scheme{&assertion} if the
value cannot be set, which may happen if
the user has insufficient access.

\scheme{remove-registry!} removes the registry
key or value named by \var{key}.
It raises an exception with condition type \scheme{&assertion} if the
value cannot be removed.
Reasons for failure include the key not being present, the user having
insufficient access, or \var{key} being a key with subkeys.

These routines are defined for Windows only.

\schemedisplay
(get-registry "hkey_local_machine\\Software\\North\\South") ;=> #f
(put-registry! "hkey_local_machine\\Software\\North\\South" "east")
(get-registry "hkey_local_machine\\Software\\North\\South") ;=> "east"
(remove-registry! "hkey_local_machine\\Software\\North")
(get-registry "hkey_local_machine\\Software\\North\\South") ;=> #f
\endschemedisplay


\section{Subset Modes\label{SECTMISCSUBSETMODE}}

\noskipentryheader
\formdef{subset-mode}{\categorythreadparameter}{subset-mode}
\listlibraries
\endnoskipentryheader

\noindent
The value of this parameter
must be \scheme{#f} (the default) or the symbol \scheme{system}.
Setting \scheme{subset-mode} to \scheme{system} allows the manipulation
of various undocumented system variables, data structures, and
settings.
It is typically used only for system debugging.