1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
|
% Copyright 2005-2017 Cisco Systems, Inc.
%
% Licensed under the Apache License, Version 2.0 (the "License");
% you may not use this file except in compliance with the License.
% You may obtain a copy of the License at
%
% http://www.apache.org/licenses/LICENSE-2.0
%
% Unless required by applicable law or agreed to in writing, software
% distributed under the License is distributed on an "AS IS" BASIS,
% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
% See the License for the specific language governing permissions and
% limitations under the License.
\chapter{Syntactic Extension and Modules\label{CHPTSYNTAX}}
This chapter describes the {\ChezScheme} extensions to the
syntax-case syntactic abstraction mechanism now standardized in
the Revised$^6$ Report.
These extensions include
the module system (Section~\ref{SECTSYNTAXMODULES}),
meta definitions (Section~\ref{SECTSYNTAXMETA}),
conditional expansion (Section~\ref{SECTSYNTAXMETACOND})
\scheme{syntax-rules} fenders,
\scheme{fluid-let-syntax},
and \scheme{include}.
\section{Fluid Keyword Bindings\label{SECTSYNTAXDEFINITIONS}}
Keyword bindings established via the Revised$^6$ Report
\scheme{define-syntax}, \scheme{let-syntax}, or \scheme{letrec-syntax}
forms may be rebound temporarily with \scheme{fluid-let-syntax}.
%----------------------------------------------------------------------------
\entryheader
\formdef{fluid-let-syntax}{\categorysyntax}{(fluid-let-syntax ((\var{keyword} \var{expr}) \dots) \var{form_1} \var{form_2} \dots)}
\returns see explanation
\listlibraries
\endentryheader
\noindent
Each \var{expr} must evaluate to a transformer.
\scheme{fluid-let-syntax} is similar to the standard \scheme{let-syntax}, except
that instead of introducing new bindings for the keywords
\scheme{\var{keyword} \dots},
\scheme{fluid-let-syntax} temporarily alters the existing bindings
for the keywords during the expansion of its body.
That is, during the expansion of \scheme{\var{form_1} \var{form_2} \dots},
the visible lexical (or top-level) binding
for each \scheme{keyword} is temporarily replaced by a new association
between the keyword and the corresponding transformer.
This affects any references to the keyword that resolve
to the same lexical (or top-level) binding whether the references occur
in the text of the body or are introduced during its expansion.
In contrast, \scheme{let-syntax} captures only those references that
occur within the text of its body.
The following example shows how \scheme{fluid-let-syntax}
differs from \scheme{let-syntax}.
\schemedisplay
(let ([f (lambda (x) (+ x 1))])
(let-syntax ([g (syntax-rules ()
[(_ x) (f x)])])
(let-syntax ([f (syntax-rules ()
[(_ x) x])])
(g 1)))) ;=> 2
(let ([f (lambda (x) (+ x 1))])
(let-syntax ([g (syntax-rules ()
[(_ x) (f x)])])
(fluid-let-syntax ([f (syntax-rules ()
[(_ x) x])])
(g 1)))) ;=> 1
\endschemedisplay
\noindent
The two expressions are identical except that the inner
\scheme{let-syntax} form
in the first expression is a \scheme{fluid-let-syntax} form in the second.
In the first expression, the \scheme{f} occurring in the expansion of
\scheme{(g 1)} refers to
the \scheme{let}-bound variable \scheme{f}, whereas in the second it refers
to the keyword \scheme{f} by virtue of the fluid syntax binding for
\scheme{f}.
\index{integrable procedures}\index{\scheme{define-integrable}}%
The following code employs \scheme{fluid-let-syntax} in the definition
of a \scheme{define-integrable} form that is similar
to \scheme{define} for procedure definitions except that it causes the
code for the procedure to be \emph{integrated}, or inserted, wherever
a direct call to the procedure is found.
No semantic difference is visible between procedures defined with
\scheme{define-integrable} and those defined with \scheme{define}, except that
a top-level \scheme{define-integrable} form must appear before the first
reference to the defined identifier.
Lexical scoping is preserved, the actual parameters
in an integrated call are evaluated once and at the proper time,
integrable procedures may be used as first-class values, and
recursive procedures do not cause indefinite recursive expansion.
\schemedisplay
(define-syntax define-integrable
(syntax-rules (lambda)
[(_ name (lambda formals form1 form2 ...))
(begin
(define xname
(fluid-let-syntax ([name (identifier-syntax xname)])
(lambda formals form1 form2 ...)))
(define-syntax name
(lambda (x)
(syntax-case x ()
[_ (identifier? x) #'xname]
[(_ arg (... ...))
#'((fluid-let-syntax ([name (identifier-syntax xname)])
(lambda formals form1 form2 ...))
arg
(... ...))]))))]))
\endschemedisplay
\noindent
A \scheme{define-integrable} has the following form.
\schemedisplay
(define-integrable \var{name} \var{lambda-expression})
\endschemedisplay
\noindent
A \scheme{define-integrable} form expands into a pair of definitions: a syntax
definition of \var{name} and a variable definition of \scheme{xname}.
The transformer for \var{name} converts apparent calls to
\var{name} into direct calls to \var{lambda-expression}.
Since the resulting forms are merely direct \scheme{lambda} applications
(the equivalent of \scheme{let} expressions),
the actual parameters are evaluated exactly once and before evaluation
of the procedure's body, as required.
All other references to \var{name} are replaced with references to
\scheme{xname}.
The definition of \scheme{xname} binds it to the value of
\var{lambda-expression}.
This allows the procedure to be used as a first-class value.
Because \scheme{xname} is introduced by the transformer, the binding for
\scheme{xname} is not visible anywhere except where references to it
are introduced by the transformer for \var{name}.
Within \var{lambda-expression}, wherever it appears, \var{name}
is rebound to a transformer that expands all references into references
to \scheme{xname}.
The use of \index{\scheme{fluid-let-syntax}}\scheme{fluid-let-syntax}
for this purpose prevents indefinite
expansion from indirect recursion among integrable procedures.
This allows the procedure to be recursive without causing indefinite
expansion.
Nothing special is done by \scheme{define-integrable} to maintain lexical
scoping, since lexical scoping is maintained automatically by the
expander.
{\ChezScheme} integrates locally defined procedures automatically when it is
appropriate to do so.
It cannot integrate procedures defined at top-level,
however, since code that assigns top-level variables can be introduced
into the system (via \scheme{eval} or \scheme{load}) at any time.
\scheme{define-integrable} can be used to force the integration of
procedures bound at top-level, even if the integration of locally bound
procedures is left to the compiler.
It can also be used to force the integration of large procedures that
the compiler would not normally integrate.
(The \scheme{expand/optimize} procedure is useful for determining when
integration does or does not take place.)
\section{Syntax-Rules Transformers\label{SECTSYNTAXRULES}}
{\ChezScheme} extends \scheme{syntax-rules} to permit clause to include
fenders just like those allowed within \scheme{syntax-case} clauses.
%----------------------------------------------------------------------------
\entryheader
\formdef{syntax-rules}{\categorysyntax}{(syntax-rules (\var{literal} \dots) \var{clause} \dots)}
\returns a transformer
\listlibraries
\endentryheader
\noindent
Each \index{literals}\var{literal} must be an identifier other than
an underscore (~\scheme{_}~) or ellipsis (~\scheme{...}~).
Each clause must take the form below.
\schemedisplay
(\var{pattern} \var{template})
(\var{pattern} \var{fender} \var{template})
\endschemedisplay
\noindent
The first form is the only form supported by the Revised$^6$ Report.
\section{Syntax-Case Transformers\label{SECTSYNTAXCASE}}
{\ChezScheme} provides several procedures and syntactic forms that may
be used to simplify the coding of certain syntactic abstractions.
%----------------------------------------------------------------------------
\entryheader
\formdef{syntax->list}{\categoryprocedure}{(syntax->list \var{syntax-object})}
\returns a list of syntax objects
\listlibraries
\endentryheader
\noindent
This procedure takes a syntax object representing
a list-structured form and returns a list of syntax objects, each representing
the corresponding subform of the input form.
%Programmers are encouraged to use this procedure even when the current
%{\ChezScheme} implementation of \scheme{syntax-case} guarantees that
%the output of a \scheme{syntax} form is a list, since future versions of
%{\ChezScheme} may remove these guarantees in the interest of maintaining
%better source information.
\scheme{syntax->list} may be defined as follows.
\schemedisplay
(define syntax->list
(lambda (ls)
(syntax-case ls ()
[() '()]
[(x . r) (cons #'x (syntax->list #'r))])))
#'(a b c) ;=> #<syntax (a b c)>
(syntax->list #'(a b c)) ;=> (#<syntax a> #<syntax b> #<syntax c>)
\endschemedisplay
\scheme{syntax->list} is not required for list structures constructed
from individual pattern variable values or sequences of pattern-variable
values, since such structures are already lists.
For example:
\schemedisplay
(list? (with-syntax ([x #'a] [y #'b] [z #'c]) #'(x y z)))) ;=> #t
(list? (with-syntax ([(x ...) #'(a b c)]) #'(x ...))) ;=> #t
\endschemedisplay
%----------------------------------------------------------------------------
\entryheader
\formdef{syntax->vector}{\categoryprocedure}{(syntax->vector \var{syntax-object})}
\returns a vector of syntax objects
\listlibraries
\endentryheader
\noindent
This procedure takes a syntax object representing
a vector-structured form and returns a vector of syntax objects, each representing
the corresponding subform of the input form.
%Programmers are encouraged to use this procedure even when the current
%{\ChezScheme} implementation of \scheme{syntax-case} guarantees that
%the output of a \scheme{syntax} form is a vector, since future versions of
%{\ChezScheme} may remove these guarantees in the interest of maintaining
%better source information.
\scheme{syntax->vector} may be defined as follows.
\schemedisplay
(define syntax->vector
(lambda (v)
(syntax-case v ()
[#(x ...) (apply vector (syntax->list #'(x ...)))])))
#'#(a b c) ;=> #<syntax #(a b c)>
(syntax->vector #'#(a b c)) ;=> #(#<syntax a> #<syntax b> #<syntax c>)
\endschemedisplay
\scheme{syntax->vector} is not required for vector structures constructed
from individual pattern variable values or sequences of pattern-variable
values, since such structures are already vectors.
For example:
\schemedisplay
(vector? (with-syntax ([x #'a] [y #'b] [z #'c]) #'#(x y z)))) ;=> #t
(vector? (with-syntax ([(x ...) #'(a b c)]) #'#(x ...))) ;=> #t
\endschemedisplay
%----------------------------------------------------------------------------
\entryheader
\formdef{syntax-object->datum}{\categoryprocedure}{(syntax-object->datum \var{obj})}
\returns \var{obj} stripped of syntactic information
\listlibraries
\endentryheader
\noindent
\scheme{syntax-object->datum} is identical to the Revised$^6$ Report
\scheme{syntax->datum}.
%----------------------------------------------------------------------------
\entryheader
\formdef{datum}{\categorysyntax}{(datum \var{template})}
\returns see below
\listlibraries
\endentryheader
\scheme{(datum \var{template})} is a convenient shorthand syntax for
\schemedisplay
(syntax->datum (syntax \var{template}))
\endschemedisplay
\var{datum} may be defined simply as follows.
\schemedisplay
(define-syntax datum
(syntax-rules ()
[(_ t) (syntax->datum #'t)]))
(with-syntax ((a #'(a b c))) (datum a)) ;=> (a b c)
\endschemedisplay
%----------------------------------------------------------------------------
\entryheader
\formdef{datum->syntax-object}{\categoryprocedure}{(datum->syntax-object \var{template-identifier} \var{obj})}
\returns a syntax object
\listlibraries
\endentryheader
\scheme{datum->syntax-object} is identical to the Revised$^6$ Report
\scheme{datum->syntax}.
%----------------------------------------------------------------------------
\entryheader
\formdef{with-implicit}{\categorysyntax}{(with-implicit (\var{id_0} \var{id_1} \dots) \var{body_1} \var{body_2} \dots)}
\returns see below
\listlibraries
\endentryheader
This form abstracts over the common usage of \scheme{datum->syntax}
for creating implicit identifiers (see above).
The form
\schemedisplay
(with-implicit (\var{id_0} \var{id_1} \dots)
\var{body_1} \var{body_2} \dots)
\endschemedisplay
is equivalent to
\schemedisplay
(with-syntax ([\var{id_1} (datum->syntax #'\var{id_0} '\var{id_1})] \dots)
\var{body_1} \var{body_2} \dots)
\endschemedisplay
\scheme{with-implicit} can be defined simply as follows.
\schemedisplay
(define-syntax with-implicit
(syntax-rules ()
[(_ (tid id ...) b1 b2 ...)
(with-syntax ([id (datum->syntax #'tid 'id)] ...)
b1 b2 ...)]))
\endschemedisplay
We can use \scheme{with-implicit} to simplify the (correct version of)
\scheme{loop} above.
\schemedisplay
(define-syntax loop
(lambda (x)
(syntax-case x ()
[(k e ...)
(with-implicit (k break)
#'(call-with-current-continuation
(lambda (break)
(let f () e ... (f)))))])))
\endschemedisplay
%----------------------------------------------------------------------------
\entryheader
\formdef{include}{\categorysyntax}{(include \var{path})}
\returns unspecified
\listlibraries
\endentryheader
\noindent
\var{path} must be a string.
\scheme{include} expands into a \scheme{begin} expression containing
the forms found in the file named by \var{path}.
For example, if the file \scheme{f-def.ss} contains
% the expression
\scheme{(define f (lambda () x))}, the expression
\schemedisplay
(let ([x "okay"])
(include "f-def.ss")
(f))
\endschemedisplay
\noindent
evaluates to \scheme{"okay"}.
An include form is treated as a definition if it appears within a
sequence of definitions and the forms on the file named by
\var{path} are all definitions, as in the above example.
If the file contains expressions instead, the \scheme{include} form is
treated as an expression.
\scheme{include} may be defined portably as follows, although
{\ChezScheme} uses an implementation-dependent definition that allows
it to capture and maintain source information for included code.
\schemedisplay
(define-syntax include
(lambda (x)
(define read-file
(lambda (fn k)
(let ([p (open-input-file fn)])
(let f ([x (read p)])
(if (eof-object? x)
(begin (close-input-port p) '())
(cons (datum->syntax k x)
(f (read p))))))))
(syntax-case x ()
[(k filename)
(let ([fn (datum filename)])
(with-syntax ([(exp ...) (read-file fn #'k)])
#'(begin exp ...)))])))
\endschemedisplay
\noindent
The definition of \scheme{include} uses \scheme{datum->syntax} to convert
the objects read from the file into syntax objects in the proper
lexical context, so that identifier references and definitions within
those expressions are scoped where the \scheme{include} form appears.
In {\ChezScheme}'s implementation of \scheme{include},
the parameter \scheme{source-directories} (Section~\ref{SECTSYSTEMSOURCE})
determines the set of directories searched for source files not identified
by absolute path names.
%----------------------------------------------------------------------------
\entryheader\label{desc:syntax-error}
\formdef{syntax-error}{\categoryprocedure}{(syntax-error \var{obj} \var{string} \dots)}
\returns does not return
\listlibraries
\endentryheader
Syntax errors may be reported with \scheme{syntax-error}, which produces
a message by concatenating \scheme{\var{string} \dots} and a printed
representation of \var{obj}.
If no string arguments are provided, the string \scheme{"invalid syntax"}
is used instead.
When \var{obj} is a syntax object, the syntax-object wrapper is
stripped (as with \scheme{syntax->datum}) before the printed representation
is created.
If source file information is present in the syntax-object wrapper,
\scheme{syntax-error} incorporates this information into the error
message.
\scheme{syntax-case} and \scheme{syntax-rules} call \scheme{syntax-error}
automatically if the input fails to match one of the clauses.
We can use \scheme{syntax-error} to precisely report the cause
of the errors detected in the following definition of
(unnamed) \scheme{let}.
\schemedisplay
(define-syntax let
(lambda (x)
(define check-ids!
(lambda (ls)
(unless (null? ls)
(unless (identifier? (car ls))
(syntax-error (car ls) "let cannot bind non-identifier"))
(check-ids! (cdr ls)))))
(define check-unique!
(lambda (ls)
(unless (null? ls)
(let ([x (car ls)])
(when (let mem? ([ls (cdr ls)])
(and (not (null? ls))
(or (bound-identifier=? x (car ls))
(mem? (cdr ls)))))
(syntax-error x "let cannot bind two occurrences of")))
(check-unique! (cdr ls)))))
(syntax-case x ()
[(_ ((i e) ...) b1 b2 ...)
(begin
(check-ids! #'(i ...))
(check-unique! #'(i ...))
#'((lambda (i ...) b1 b2 ...) e ...))])))
\endschemedisplay
With this change, the expression
\schemedisplay
(let ([a 3] [a 4]) (+ a a))
\endschemedisplay
produces the error message ``let cannot bind two occurrences of \scheme{a}.''
%----------------------------------------------------------------------------
\entryheader
\formdef{literal-identifier=?}{\categoryprocedure}{(literal-identifier=? \var{identifier_1} \var{identifier_2})}
\returns see below
\listlibraries
\endentryheader
This procedure is identical to the Revised$^6$ Report
\scheme{free-identifier=?}, and is provided for backward
compatibility only.
\section{Compile-time Values and Properties\label{SECTSYNTAXCTVS}}
When defining sets of dependent macros, it is often convenient to attach
information to identifiers in the same \emph{compile time environment}
that the expander uses to record information about variables, keywords,
module names, etc.
For example, a record-type definition macro, like
\scheme{define-record-type}, might need to attach information to the
record-type name in the compile-time environment for use in handling child
record-type definitions.
{\ChezScheme} provides two mechanisms for attaching information to
identifiers in the compile-time environment: compile-time values and
compile-time properties.
A compile-time value is a kind of transformer that can be
associated with an identifier via \scheme{define-syntax},
\scheme{let-syntax}, \scheme{letrec-syntax}, and \scheme{fluid-let-syntax}.
When an identifier is associated with a compile-time value, it cannot
also have any other meaning, and an attempt to reference it as an
ordinary identifier results in a syntax error.
A compile-time property, on the other hand, is maintained alongside
an existing binding, providing additional information about the
binding.
Properties are ignored when ordinary references to an identifier
occur.
The mechanisms used by a macro to obtain compile-time values and
properties are similar.
In both cases, the macro's transformer returns a procedure \var{p}
rather than a syntax object.
The expander invokes \var{p} with one argument, an environment-lookup
procedure \var{lookup}, which \var{p} can then use to obtain compile-time
values and properties for one or more identifiers before it constructs the
macro's final output.
\var{lookup} accepts one or two identifier arguments.
With one argument, \var{id}, \var{lookup} returns the compile-time
value of \var{id}, or \scheme{#f} if \var{id} has no compile-time value.
With two arguments, \var{id} and \var{key}, \var{lookup} returns the
value of \var{id}'s \var{key} property, or \scheme{#f} if \var{id}
has no \var{key} property.
%----------------------------------------------------------------------------
\entryheader
\formdef{make-compile-time-value}{\categoryprocedure}{(make-compile-time-value \var{obj})}
\returns a compile-time value
\listlibraries
\endentryheader
A compile time value is a kind of transformer with which a keyword may
be associated by any of the keyword binding constructs, e.g., \scheme{define-syntax}
or \scheme{let-syntax}.
The transformer encapsulates the supplied \var{obj}.
The encapsulated object may be retrieved as described above.
The following example illustrates how this feature might be used to define
a simple syntactic record-definition mechanism where the record type descriptor
is generated at expansion time.
\schemedisplay
(define-syntax drt
(lambda (x)
(define construct-name
(lambda (template-identifier . args)
(datum->syntax template-identifier
(string->symbol
(apply string-append
(map (lambda (x)
(if (string? x)
x
(symbol->string (syntax->datum x))))
args))))))
(define do-drt
(lambda (rname fname* prtd)
(with-syntax ([rname rname]
[rtd (make-record-type-descriptor
(syntax->datum rname) prtd #f #f #f
(list->vector
(map (lambda (fname)
`(immutable ,(syntax->datum fname)))
fname*)))]
[make-rname (construct-name rname "make-" rname)]
[rname? (construct-name rname rname "?")]
[(rname-fname ...)
(map (lambda (fname)
(construct-name fname rname "-" fname))
fname*)]
[(i ...) (enumerate fname*)])
#'(begin
(define-syntax rname (make-compile-time-value 'rtd))
(define rcd (make-record-constructor-descriptor 'rtd #f #f))
(define make-rname (record-constructor rcd))
(define rname? (record-predicate 'rtd))
(define rname-fname (record-accessor 'rtd i))
...))))
(syntax-case x (parent)
[(_ rname (fname ...))
(for-all identifier? #'(rname fname ...))
(do-drt #'rname #'(fname ...) #f)]
[(_ rname pname (fname ...))
(for-all identifier? #'(rname pname fname ...))
(lambda (lookup)
(let ([prtd (lookup #'pname)])
(unless (record-type-descriptor? prtd)
(syntax-error #'pname "unrecognized parent record type"))
(do-drt #'rname #'(fname ...) prtd)))])))
\endschemedisplay
\schemedisplay
(drt prec (x y))
(drt crec prec (z))
(define r (make-crec 1 2 3))
(prec? r) ;=> #t
(prec-x r) ;=> 1
(crec-z r) ;=> 3
prec ;=> \var{exception: invalid syntax prec}
\endschemedisplay
%----------------------------------------------------------------------------
\entryheader
\formdef{compile-time-value?}{\categoryprocedure}{(compile-time-value? \var{obj})}
\returns \scheme{#t} if \var{obj} is a compile-time value; \scheme{#f} otherwise
\listlibraries
\endentryheader
\schemedisplay
(define-syntax x (make-compile-time-value "eggs"))
(compile-time-value? (top-level-syntax 'x)) ;=> #t
\endschemedisplay
%----------------------------------------------------------------------------
\entryheader
\formdef{compile-time-value-value}{\categoryprocedure}{(compile-time-value-value \var{ctv})}
\returns the value of a compile-time value
\listlibraries
\endentryheader
\schemedisplay
(define-syntax x (make-compile-time-value "eggs"))
(compile-time-value-value (top-level-syntax 'x)) ;=> "eggs"
\endschemedisplay
%----------------------------------------------------------------------------
\entryheader
\formdef{define-property}{\categorysyntax}{(define-property \var{id} \var{key} \var{expr})}
\returns unspecified
\listlibraries
\endentryheader
A \scheme{define-property} form attaches a property to an
existing identifier binding without disturbing the existing meaning
of the identifier in the scope of that binding.
It is typically used by one macro to record information about a binding
for use by another macro.
Both \var{id} and \var{key} must be identifiers.
The expression \var{expr} is evaluated when the \scheme{define-property}
form is expanded, and a new property associating \var{key} with the
value of \var{expr} is attached to the existing binding of
\var{id}, which must have a visible local or top-level binding.
\scheme{define-property} is a definition and can appear anywhere
other definitions can appear.
The scope of a property introduced by \scheme{define-property} is the
entire body in which the \scheme{define-property} form appears or global
if it appears at top level, except
where it is replaced by a property for the same \var{id} and
\var{key} or where the binding to which it is attached is shadowed.
Any number of properties can be attached to the same binding with
different keys.
Attaching a new property with the same name as an property already
attached to a binding shadows the existing property with the new
property.
The following example defines a macro, \scheme{get-info}, that retrieves
the \scheme{info} property of a binding, defines the variable \scheme{x},
attaches an \scheme{info} property to the binding of \scheme{x}, retrieves
the property via \scheme{get-info}, references \scheme{x} to show that
its normal binding is still intact, and uses \scheme{get-info} again
within the scope of a different binding of \scheme{x} to show that the
properties are shadowed as well as the outer binding of \scheme{x}.
\schemedisplay
(define info)
(define-syntax get-info
(lambda (x)
(lambda (lookup)
(syntax-case x ()
[(_ q)
(let ([info-value (lookup #'q #'info)])
#`'#,(datum->syntax #'* info-value))]))))
(define x "x-value")
(define-property x info "x-info")
(get-info x) ;=> "x-info"
x ;=> "x-value"
(let ([x "inner-x-value"]) (get-info x)) ;=> #f
\endschemedisplay
For debugging, it is often useful to have a form that retrieves
an arbitrary property, given an identifier and a key.
The \index{\scheme{get-property}}\scheme{get-property} macro below does
just that.
\schemedisplay
(define-syntax get-property
(lambda (x)
(lambda (r)
(syntax-case x ()
[(_ id key)
#`'#,(datum->syntax #'* (r #'id #'key))]))))
(get-property x info) ;=> "x-info"
\endschemedisplay
The bindings for both identifiers must be visible where
\scheme{get-property} is used.
The version of \scheme{drt} defined below is like the one defined using
\scheme{make-compile-time-value} above, except that it defines the
record name as a macro that raises an exception with a more descriptive
message, while attaching the record type descriptor to the binding as a
separate property.
The variable \scheme{drt-key} defined along with \scheme{drt} is used
only as the key for the property that \scheme{drt} attaches to a record
name.
Both \scheme{drt-key} and \scheme{drt} are defined within a module that
exports only the latter, ensuring that the properties used by \scheme{drt}
cannot be accessed or forged.
\schemedisplay
(library (drt) (export drt) (import (chezscheme))
(define drt-key)
(define-syntax drt
(lambda (x)
(define construct-name
(lambda (template-identifier . args)
(datum->syntax template-identifier
(string->symbol
(apply string-append
(map (lambda (x)
(if (string? x)
x
(symbol->string (syntax->datum x))))
args))))))
(define do-drt
(lambda (rname fname* prtd)
(with-syntax ([rname rname]
[rtd (make-record-type-descriptor
(syntax->datum rname) prtd #f #f #f
(list->vector
(map (lambda (fname)
`(immutable ,(syntax->datum fname)))
fname*)))]
[make-rname (construct-name rname "make-" rname)]
[rname? (construct-name rname rname "?")]
[(rname-fname ...)
(map (lambda (fname)
(construct-name fname rname "-" fname))
fname*)]
[(i ...) (enumerate fname*)])
#'(begin
(define-syntax rname
(lambda (x)
(syntax-error x "invalid use of record name")))
(define rcd (make-record-constructor-descriptor 'rtd #f #f))
(define-property rname drt-key 'rtd)
(define make-rname (record-constructor rcd))
(define rname? (record-predicate 'rtd))
(define rname-fname (record-accessor 'rtd i))
...))))
(syntax-case x (parent)
[(_ rname (fname ...))
(for-all identifier? #'(rname fname ...))
(do-drt #'rname #'(fname ...) #f)]
[(_ rname pname (fname ...))
(for-all identifier? #'(rname pname fname ...))
(lambda (lookup)
(let ([prtd (lookup #'pname #'drt-key)])
(unless prtd
(syntax-error #'pname "unrecognized parent record type"))
(do-drt #'rname #'(fname ...) prtd)))]))))
\endschemedisplay
\schemedisplay
(import (drt))
(drt prec (x y))
(drt crec prec (z))
(define r (make-crec 1 2 3))
(prec? r) ;=> #t
(prec-x r) ;=> 1
(crec-z r) ;=> 3
prec ;=> \var{exception: invalid use of record name prec}
\endschemedisplay
\section{Modules\label{SECTSYNTAXMODULES}}
\index{modules}Modules are used to help organize programs into separate
parts that interact cleanly via declared interfaces.
Although modular programming is typically used to facilitate the development
of large programs possibly written by many individuals, it may also be
used in {\ChezScheme} at a ``micro-modular'' level, since {\ChezScheme}
module and import forms are definitions and may appear anywhere any other
kind of definition may appear, including within a \scheme{lambda} body
or other local scope.
Modules control visibility of bindings and can be viewed as extending
lexical scoping to allow more precise control over where bindings are
or are not visible.
Modules export identifier bindings, i.e., variable bindings, keyword
bindings, or module name bindings.
Modules may be \emph{named} or \emph{anonymous}.
Bindings exported from a named module may be made visible via an import
form wherever the module's name is visible.
Bindings exported from an anonymous module are implicitly imported where
the module form appears.
Anonymous modules are useful for hiding some of a set of bindings while
allowing the remaining bindings in the set to be visible.
Some of the text and examples given in this section are
adapted from the paper
``Extending the scope of syntactic
abstraction''~\cite{waddell:modules}, which describes modules and their
implementation in more detail.
%----------------------------------------------------------------------------
\entryheader
\formdef{module}{\categorysyntax}{(module \var{name} \var{interface} \var{defn} \dots \var{init} \dots)}
\formdef{module}{\categorysyntax}{(module \var{interface} \var{defn} \dots \var{init} \dots)}
\returns unspecified
\listlibraries
\endentryheader
\noindent
\var{name} is an identifier, \scheme{\var{defn} \dots}
are definitions, and \scheme{\var{init} \dots} are expressions.
\var{interface} is a list of exports \scheme{(\var{export} \dots)},
where each \var{export} is either an identifier \var{identifier}
or of the form \scheme{(\var{identifier} \var{export} \dots)}.
The first syntax for \scheme{module} establishes a named scope that
encapsulates a set of identifier bindings.
The exported bindings may be made visible via \scheme{import} or
\scheme{import-only} (Section~\ref{SECTLIBRARYIMPORTEXPORTFORMS})
anywhere the module name is visible.
The second syntax for \scheme{module} introduces an anonymous module
whose bindings are implicitly imported (as if by \scheme{import} of a
hidden module name) where the module form appears.
A module consists of a (possibly empty) set of
definitions and a (possibly empty) sequence of initialization expressions.
The identifiers defined within a module are visible within the body
of the module and, if exported, within the scope of an import for the
module.
Each identifier listed in a module's interface must be defined within
or imported into that module.
A \scheme{module} form is a definition and can appear anywhere other
definitions can appear, including
at the top level of a program, nested within the bodies of
\scheme{lambda} expressions, nested within \scheme{library} and
top-level program forms, and nested within other modules.
Also, because module names are scoped like other identifiers,
modules and libraries may export module names as well as variables and keywords.
When an interface contains an export of the form
\scheme{(\var{identifier} \var{export} \dots)}, only \var{identifier} is
visible in the importing context.
The identifiers within \scheme{\var{export} \dots} are
\emph{indirect imports}, as if declared via an
\scheme{indirect-export} form (Section~\ref{SECTLIBRARYIMPORTEXPORTFORMS}).
Module names occupy the same namespace as other identifiers and follow
the same scoping rules.
Unless exported, identifiers defined within a module are visible only
within that module.
Expressions within a module can reference identifiers bound outside of
the module.
\schemedisplay
(let ([x 3])
(module m (plusx)
(define plusx (lambda (y) (+ x y))))
(import m)
(let ([x 4])
(plusx 5))) ;=> 8
\endschemedisplay
\noindent
Similarly, \scheme{import} does not prevent access to identifiers that
are visible where the import form appears, except for those variables
shadowed by the imported identifiers.
\schemedisplay
(module m (y) (define y 'm-y))
(let ([x 'local-x] [y 'local-y])
(import m)
(list x y)) ;=> (local-x m-y)
\endschemedisplay
On the other hand, use of \scheme{import-only} within a module
establishes an isolated scope in
which the only visible identifiers are those exported by the
imported module.
\schemedisplay
(module m (y) (define y 'm-y))
(let ([x 'local-x] [y 'local-y])
(import-only m)
x) ;=> Error: x is not visible
\endschemedisplay
\noindent
This is sometimes desirable for static verification that no
identifiers are used except those explicitly imported into a
module or local scope.
Unless a module imported via \scheme{import-only} exports
\scheme{import} or
\scheme{import-only} and the name of at least one module, subsequent
imports within the scope of the \scheme{import-only} form are not
possible.
To create an isolated scope containing the exports of more than one
module without making \scheme{import} or \scheme{import-only}
visible, all of the modules to be imported must be listed in the
same \scheme{import-only} form.
Another solution is to create a single module that contains
the exports of each of the other modules.
\schemedisplay
(module m2 (y) (define y 'y))
(module m1 (x) (define x 'x))
(module mega-module (cons x y)
(import m1)
(import m2)
(import scheme))
(let ([y 3])
(import-only mega-module)
(cons x y)) ;=> (x . y)
\endschemedisplay
\bigskip
Before it is compiled, a source program is translated into
a core language program containing no syntactic abstractions, syntactic
definitions, library definitions, module definitions, or import forms.
Translation is performed by a \emph{syntax expander} that
processes the forms in the source program via recursive descent.
A \scheme{define-syntax} form associates a keyword
with a transformer in a translation-time environment.
When the expander encounters a keyword, it invokes the
associated transformer and reprocesses the resulting form.
A \scheme{module} form associates a module name with an interface.
When the expander encounters an \scheme{import} form, it extracts the
corresponding module interface from the translation-time environment and makes
the exported bindings visible in the scope where the \scheme{import} form
appears.
Internal definitions and definitions within a \scheme{module}
body are processed from left to right so that a module's definition
and import may appear within the same sequence of definitions.
Expressions appearing within a body and the right-hand sides of variable
definitions, however, are translated
only after the entire set of definitions has been processed, allowing
full mutual recursion among variable and syntactic definitions.
Module and import forms affect only the visibility of identifiers in
the source program, not their meanings.
In particular, variables are bound to locations whether defined within or
outside of a module, and \scheme{import} does not introduce new locations.
Local variables are renamed as necessary to preserve the scoping
relationships established by both modules and syntactic abstractions.
Thus, the expression:
\schemedisplay
(let ([x 1])
(module m (x setter)
(define-syntax x (identifier-syntax z))
(define setter (lambda (x) (set! z x)))
(define z 5))
(let ([y x] [z 0])
(import m)
(setter 3)
(+ x y z))) ;=> 4
\endschemedisplay
is equivalent to the following program
in which identifiers have been consistently renamed as indicated by
subscripts.
\schemedisplay
(let ([x\var{_0} 1])
(define-syntax x\var{_1} (identifier-syntax z\var{_1}))
(define setter\var{_1} (lambda (x\var{_2}) (set! z\var{_1} x\var{_2})))
(define z\var{_1} 5)
(let ([y\var{_3} x\var{_0}] [z\var{_3} 0])
(setter\var{_1} 3)
(+ x\var{_1} y\var{_3} z\var{_3})))
\endschemedisplay
Definitions within a top-level \scheme{begin}, \scheme{lambda}, top-level program,
\scheme{library}, or \scheme{module} body
are processed from left to right by the expander at expand time, and the
variable definitions are evaluated from left-to-right at run time.
Initialization expressions appearing within a \scheme{module} body
are evaluated in sequence after the evaluation of the variable
definitions.
Mutually recursive modules can be defined in several ways.
In the following program, \scheme{a} and \scheme{b} are mutually recursive
modules exported by an anonymous module whose local scope is used to
statically link the two.
For example,
the free variable \scheme{y} within module \scheme{a} refers to
the binding for \scheme{y}, provided by importing \scheme{b},
in the enclosing module.
\schemedisplay
(module (a b)
(module a (x) (define x (lambda () y)))
(module b (y) (define y (lambda () x)))
(import a)
(import b))
\endschemedisplay
\noindent
The following syntactic abstraction generalizes this pattern to
permit the definition of multiple mutually recursive modules.
\schemedisplay
(define-syntax rec-modules
(syntax-rules (module)
[(_ (module m (id ...) form ...) ...)
(module (m ...)
(module m (id ...) form ...) ...
(import m) ...)]))
\endschemedisplay
Because a module can re-export imported bindings,
it is quite easy to provide multiple views on a single
module, as \scheme{s} and \scheme{t} provide for \scheme{r}
below, or to combine several modules into a compound,
as \scheme{r} does.
\schemedisplay
(module p (x y)
(define x 1) (define y 2))
(module q (y z)
(define y 3) (define z 4))
(module r (a b c d)
(import* p (a x) (b y))
(import* q (c y) (d z)))
(module s (a c) (import r))
(module t (b d) (import r))
\endschemedisplay
To allow interfaces to be separated from implementations,
the following syntactic abstractions support the definition and use of
named interfaces.
\schemedisplay
(define-syntax define-interface
(syntax-rules ()
[(_ name (export ...))
(define-syntax name
(lambda (x)
(syntax-case x ()
[(_ n defs)
(with-implicit (n export ...)
#'(module n (export ...) .
defs))])))]))
(define-syntax define-module
(syntax-rules ()
[(_ name interface defn ...)
(interface name (defn ...))]))
\endschemedisplay
\noindent
\scheme{define-interface} creates an interface macro that, given a module
name and a list of definitions, expands into a module definition with
a concrete interface.
\scheme{with-implicit} is used to ensure that the introduced
\scheme{export} identifiers are visible in the same scope as the name of
the module in the \scheme{define-module} form.
\noindent
\scheme{define-interface} and \scheme{define-module} can be used as
follows.
\schemedisplay
(define-interface simple (a b))
(define-module m simple
(define-syntax a (identifier-syntax 1))
(define b (lambda () c))
(define c 2))
(let () (import m) (+ a (b))) ;=> 3
\endschemedisplay
The abstract module facility defined below allows a module interface to
be satisfied incrementally when module forms are evaluated.
This permits flexibility in the separation between the interface and
implementation, supports separate compilation of mutually recursive
modules, and permits redefinition of module implementations.
\schemedisplay
(define-syntax abstract-module
(syntax-rules ()
[(_ name (ex ...) (kwd ...) defn ...)
(module name (ex ... kwd ...)
(declare ex) ...
defn ...)]))
(define-syntax implement
(syntax-rules ()
[(_ name form ...)
(module () (import name) form ...)]))
\endschemedisplay
\noindent
Within an \scheme{abstract-module} form,
each of the exports in the list \scheme{\var{ex} \dots} must be
variables.
The values of these variables are supplied by one or more separate
\scheme{implement} forms.
Since keyword bindings must be present at compile time,
they cannot be satisfied incrementally and are instead listed as
separate exports and defined within the abstract module.
Within an \scheme{implement} form,
the sequence of forms \scheme{\var{form} \dots} is a sequence of
zero or more definitions followed by a sequence of zero or more
expressions.
Since the module used in the expansion of \scheme{implement} does
not export anything, the definitions are all local to the
\scheme{implement} form.
The expressions may be arbitrary expressions, but should include
one \scheme{satisfy} form for each variable whose definition is
supplied by the \scheme{implement} form.
A \scheme{satisfy} form has the syntax
\schemedisplay
(satisfy \var{variable} \var{expr})
\endschemedisplay
\noindent
\scheme{declare} and \scheme{satisfy} may simply be the equivalents of
\scheme{define} and \scheme{set!}.
\schemedisplay
(define-syntax declare (identifier-syntax define))
(define-syntax satisfy (identifier-syntax set!))
\endschemedisplay
\noindent
Alternatively, \scheme{declare} can initialize the declared variable to
the value of a flag known only to \scheme{declare} and \scheme{satisfy},
and \scheme{satisfy} can verify that this flag is still present to insure
that only one attempt to satisfy the value of a given identifier is
made.
\schemedisplay
(module ((declare cookie) (satisfy cookie))
(define cookie "chocolate chip")
(define-syntax declare
(syntax-rules () [(_ var) (define var cookie)]))
(define-syntax satisfy
(syntax-rules ()
[(_ var exp)
(if (eq? var cookie)
(set! var exp)
(assertion-violationf 'satisfy
"value of variable ~s has already been satisfied"
'var))])))
\endschemedisplay
Using \scheme{abstract-module} and \scheme{implement}, we can define
mutually recursive and separately compilable modules as follows.
\schemedisplay
(abstract-module e (even?) (pred)
(define-syntax pred
(syntax-rules () [(_ exp) (- exp 1)])))
(abstract-module o (odd?) ())
(implement e
(import o)
(satisfy even?
(lambda (x)
(or (zero? x) (odd? (pred x))))))
(implement o
(import e)
(satisfy odd?
(lambda (x) (not (even? x)))))
(let () (import-only e) (even? 38)) ;=> #t
\endschemedisplay
%----------------------------------------------------------------------------
\entryheader
\formdef{only}{\categorysyntax}{only}
\formdef{except}{\categorysyntax}{except}
\formdef{add-prefix}{\categorysyntax}{add-prefix}
\formdef{drop-prefix}{\categorysyntax}{drop-prefix}
\formdef{rename}{\categorysyntax}{rename}
\formdef{alias}{\categorysyntax}{alias}
\listlibraries
\endentryheader
\noindent
These identifiers are auxiliary keywords for \scheme{import}
and \scheme{import-only}.
It is a syntax violation to reference these identifiers except in
contexts where they are recognized as auxiliary keywords.
\section{Standalone import and export forms\label{SECTSYNTAXIMPORTEXPORTFORMS}}
The local import and export forms described in
Section~\ref{SECTLIBRARYIMPORTEXPORTFORMS} can be used
equally well for and within modules.
\section{Built-in Modules\label{SECTSYNTAXBUILTINMODULES}}
Five modules are built-in to {\ChezScheme}: \index{\scheme{scheme} module}\scheme{scheme},
\index{\scheme{r5rs} module}\scheme{r5rs}, \index{\scheme{r5rs-syntax} module}\scheme{r5rs-syntax}, \index{\scheme{ieee} module}\scheme{ieee}, and
\index{\scheme{$system} module}\scheme{$system}.
Each module is immutable, i.e., the exported bindings cannot be
altered.
%----------------------------------------------------------------------------
\entryheader
\formdef{scheme}{\categorymodule}{scheme}
\listlibraries
\endentryheader
\noindent
\scheme{scheme} contains all user-visible top-level bindings
(variables, keywords, and module names) built into {\ChezScheme}.
%----------------------------------------------------------------------------
\entryheader
\formdef{r5rs}{\categorymodule}{r5rs}
\listlibraries
\endentryheader
\noindent
\scheme{r5rs} contains all top-level bindings
(variables and keywords) defined in the
Revised$^5$ Report on Scheme.
The bindings exported from \scheme{r5rs} are precisely those that are
available within an expression evaluated via \scheme{eval} with the
environment specifier returned by
\index{\scheme{scheme-report-environment}}\scheme{scheme-report-environment}.
%----------------------------------------------------------------------------
\entryheader
\formdef{r5rs-syntax}{\categorymodule}{r5rs-syntax}
\listlibraries
\endentryheader
\noindent
\scheme{r5rs-syntax} contains all top-level keyword bindings
defined in the Revised$^5$ Report on Scheme.
The bindings exported from \scheme{r5rs-syntax} are precisely those that are
available within an expression evaluated via \scheme{eval} with the
environment specifier returned by
\index{\scheme{null-environment}}\scheme{null-environment}.
%----------------------------------------------------------------------------
\entryheader
\formdef{ieee}{\categorymodule}{ieee}
\listlibraries
\endentryheader
\noindent
\scheme{ieee} contains all top-level bindings
(variables and keywords) defined in the
ANSI/IEEE standard for Scheme.
The bindings exported from \scheme{ieee} are precisely those that are
available within an expression evaluated via \scheme{eval} with the
environment specifier returned by
\index{\scheme{ieee-environment}}\scheme{ieee-environment}.
%----------------------------------------------------------------------------
\entryheader
\formdef{$system}{\categorymodule}{$system}
\listlibraries
\endentryheader
\noindent
\scheme{$system} contains all user-visible top-level bindings built
into {\ChezScheme} along with various undocumented system bindings.
\section{Meta Definitions\label{SECTSYNTAXMETA}}
%----------------------------------------------------------------------------
\noskipentryheader
\formdef{meta}{\categorysyntax}{(meta . \var{definition})}
\returns unspecified
\listlibraries
\endentryheader
The \scheme{meta} keyword is actually a prefix that can be placed in
front of any definition keyword, e.g.,
\schemedisplay
(meta define x 3)
\endschemedisplay
It tells the expander that any variable definition resulting
from the definition is to be an expand-time definition available only
to the right-hand sides of other meta definitions and, most importantly,
transformer expressions.
It is used to define expand-time helpers and other information for use
by one or more \scheme{syntax-case} transformers.
% (module count-let (count let)
% (meta define counter 0)
% (define-syntax count (lambda (x) counter))
% (define-syntax let
% (lambda (x)
% (import scheme)
% (set! counter (+ counter 1))
% (syntax-case x () [(_ . stuff) #'(let . stuff)]))))
\schemedisplay
(module M (helper1 a b)
(meta define helper1
(lambda (---)
---))
(meta define helper2
(lambda (---)
--- (helper2 ---) ---))
(define-syntax a
(lambda (x)
--- (helper1 ---) ---))
(define-syntax b
(lambda (x)
--- (helper1 ---) ---
--- (helper2 ---) ---)))
\endschemedisplay
The right-hand-side expressions of a syntax definition or meta definition
can refer only to identifiers whose values are already available in the
compile-time environment.
Because of the left-to-right expansion order for \scheme{library},
\scheme{module}, \scheme{lambda}, and similar bodies, this implies a
semantics similar to \scheme{let*} for a sequence of meta definitions,
in which each right-hand side can refer only to the variables defined
earlier in the sequence.
An exception is that the right-hand side of a meta definition can refer
to its own name as long as the reference is not evaluated until after
the value of the expression has been computed.
This permits meta definitions to be self-recursive but not mutually
recursive.
The right-hand side of a meta definition can, however, build syntax
objects containing occurrences of any identifiers defined in the body
in which the meta definition appears.
Meta definitions propagate through macro expansion, so one can write,
for example:
\schemedisplay
(module (a)
(meta define-record foo (x))
(define-syntax a
(let ([q (make-foo #''q)])
(lambda (x) (foo-x q)))))
a ;=> q
\endschemedisplay
where define-record is a macro that expands into a set of defines.
It is also sometimes convenient to write
\schemedisplay
(meta begin defn \dots)
\endschemedisplay
or
\schemedisplay
(meta module {exports} defn \dots)
\endschemedisplay
or
\schemedisplay
(meta include "\var{path}")
\endschemedisplay
to create groups of meta bindings.
\section{Conditional expansion\label{SECTSYNTAXMETACOND}}
Expansion-time decisions can be made via \scheme{meta-cond}, which is
similar to \scheme{cond} but evaluates the test expressions at
expansion time and can be used in contexts where definitions are
expected as well as in expression contexts.
%----------------------------------------------------------------------------
\entryheader
\formdef{meta-cond}{\categorysyntax}{(meta-cond \var{clause_1} \var{clause_2} \dots)}
\returns see below
\listlibraries
\endentryheader
Each \var{clause} but the last must take the form:
\schemedisplay
(\var{test} \var{expr_1} \var{expr_2} \dots)
\endschemedisplay
The last may take the same form or be an \scheme{else} clause of the form:
\schemedisplay
(\var{else} \var{expr_1} \var{expr_2} \dots)
\endschemedisplay
During expansion, the \var{test} expressions are evaluated in order until
one evaluates to a true value or until all of the tests have been
evaluated.
If a \var{test} evaluates to a true value, the \scheme{meta-cond} form
expands to a \scheme{begin} form containing the corresponding
expressions \scheme{\var{expr_1} \var{expr_2} \dots}.
If no \var{test} evaluates to a true value and an \scheme{else} clause
is present, the \scheme{meta-cond} form expands to a \scheme{begin} form
containing the expressions \scheme{\var{expr_1} \var{expr_2} \dots} from
the \scheme{else} clause.
Otherwise the \scheme{meta-cond} expression expands into a call to
the \scheme{void} procedure.
\scheme{meta-cond} might be defined as follows.
\schemedisplay
(define-syntax meta-cond
(syntax-rules ()
[(_ [a0 a1 a2 ...] [b0 b1 b2 ...] ...)
(let-syntax ([expr (cond
[a0 (identifier-syntax (begin a1 a2 ...))]
[b0 (identifier-syntax (begin b1 b2 ...))]
...)])
expr)]))
\endschemedisplay
\scheme{meta-cond} is used to choose, at expansion time, from among a
set of possible forms.
For example, one might have safe (error-checking) and unsafe
(non-error-checking) versions of a procedure and decide which to
call based on the compile-time optimization level, as shown
below.
\schemedisplay
(meta-cond
[(= (optimize-level) 3) (unsafe-frob x)]
[else (safe-frob x)])
\endschemedisplay
\section{Aliases\label{SECTSYNTAXALIAS}}
%----------------------------------------------------------------------------
\noskipentryheader
\formdef{alias}{\categorysyntax}{(alias \var{id_1} \var{id_2})}
\returns unspecified
\listlibraries
\endentryheader
\scheme{alias} is a definition and can appear anywhere
other definitions can appear.
It is used to transfer the binding from one identifier to
another.
\schemedisplay
(let ([x 3]) (alias y x) (set! y 4) (list x y)) ;=> (4 4)
(module lisp (if)
(module (scheme:if)
(import scheme)
(alias scheme:if if))
(define-syntax if
(syntax-rules ()
[(_ e_1 e_2 e_3)
(scheme:if (not (memq e_1 '(#f ()))) e_2 e_3)])))
(define (length ls)
(import lisp)
(if ls (+ (length (cdr ls)) 1) 0))
(length '(a b c)) ;=> 3
\endschemedisplay
Because of left-to-right expansion order, aliases should appear after
the definition of the right-hand-side identifier, e.g.:
\schemedisplay
(let ()
(import-only (chezscheme))
(define y 3)
(alias x y)
x) ;=> 3
\endschemedisplay
rather than:
\schemedisplay
(let ()
(import-only (chezscheme))
(alias x y)
(define y 3)
x) ;=> \var{exception: unbound identifier}
\endschemedisplay
\section{Annotations\label{SECTSYNTAXANNOTATIONS}}
\index{annotations}%
When source code is read from a file by \scheme{load},
\scheme{compile-file}, or variants of these, such as
\scheme{load-library}, the reader attaches \emph{annotations} to each
object read from the file.
These annotations identify the file and the position of the object within
the file.
Annotations are tracked through the compilation process and associated
with compiled code at run time.
The expander and compiler use the annotations to produce syntax errors
and compiler warnings that identify the location of the offending form,
and the inspector uses them to identify the locations of calls and
procedure definitions.
The compiler and run time also use annotations to associate source
positions with profile counts.
While these annotations are usually maintained ``behind the scenes,''
the programmer can manipulate them directly via a set
of routines for creating and accessing annotations.
Annotations are values of a type distinct from other types and have
four components: an expression, possibly with annotated subexpressions,
a \emph{source object}, a stripped version of the expression, and
usage options.
Annotations can be created via
\index{\scheme{make-annotation}}\scheme{make-annotation}, which has
three required arguments corresponding to the first three components
and an optional fourth argument corresponding to the fourth component.
The second argument must be a source object, and the third argument should be a
stripped version of the first argument, i.e., equivalent to the first
argument with each annotation replaced by its expression component.
An annotation is essentially equivalent to its stripped component as a
representation of source code, with the source information attached and
available to the expander or evaluator.
The optional fourth argument, if present, must be an enumeration set over
the symbols \scheme{debug} and \scheme{profile} and defaults to an
enumeration set containing both \scheme{debug} and \scheme{profile}.
Annotations marked \scheme{debug} are used for compile-time error
reporting and run-time error reporting and inspection; annotations
marked \scheme{profile} are used for profiling.
Annotations created by the Scheme reader are always marked both
\scheme{debug} and \scheme{profile}, but other readers and parsers
might choose to mark some annotations only \scheme{debug} or only
\scheme{profile}.
In particular, it might be useful to annotate multiple
expressions in the output of a parser with the same source object
for debugging purposes and mark only one of them \scheme{profile}
to avoid duplicate counts.
It might also be useful to mark no expressions \scheme{profile} and
instead introduce explicit \scheme{profile} forms
(Section~\ref{SECTMISCPROFILE}) to identify the set of source
locations to be profiled.
\index{source objects}%
Source objects are also values of a type distinct from other types and
also have three or five components: a \emph{source-file descriptor} (sfd),
a beginning file position (bfp), an ending file position (efp),
an optional beginning line, and an optional beginning
column. The sfd identifies the file from which an expression is read and the
bfp and efp identify the range of character positions occupied by the object
in the file, with the bfp being inclusive and the efp being exclusive.
The line and column are either both numbers or both not present.
A source object can be created via
\index{\scheme{make-source-object}}\scheme{make-source-object}, which
takes either three or five arguments corresponding to these components.
The first argument must be a source-file descriptor, the second and
third must be nonnegative exact integers, the second must not be
greater than the third, and the fourth and fifth (if provided) must
be positive exact integers.
\index{source-file descriptors}%
Source-file descriptors are also values of a type distinct
from all other types and have two components: the file's path,
represented by a string, and a checksum, represented by a number.
The path might or might not be an absolute path depending on how
the file's path was specified when the source-file descriptor was
created.
The checksum is computed based on the file's length and contents
when the file is created and checked by tools that look for the
source file to make sure that the proper file has been found and
has not been modified.
Source-file descriptors can be created with
\index{\scheme{make-source-file-descriptor}}\scheme{make-source-file-descriptor},
which accepts two arguments: a string naming the path and a binary
input port, along with an optional third boolean argument, \var{reset?},
which defaults to false.
\scheme{make-source-file-descriptor} computes a checksum based on
the contents of the port, starting at its current position.
It resets the port, using \scheme{set-port-position!}, after computing
the checksum if \var{reset?} is true; otherwise, it leaves the
port at end-of-file.
The procedures that create, check for, and access annotations,
source objects, and source-file descriptors are summarized below
and described in more detail later in this section.
\schemedisplay
(make-annotation \var{obj} \var{source-object} \var{obj}) ;-> \var{annotation}
(annotation? \var{obj}) ;-> \var{boolean}
(annotation-expression \var{annotation}) ;-> \var{obj}
(annotation-source \var{annotation}) ;-> \var{source-object}
(annotation-stripped \var{annotation}) ;-> \var{obj}
(make-source-object \var{sfd} \var{uint} \var{uint}) ;-> \var{source-object}
(make-source-object \var{sfd} \var{uint} \var{uint} \var{uint} \var{uint}) ;-> \var{source-object}
(source-object? \var{obj}) ;-> \var{boolean}
(source-object-sfd \var{source-object}) ;-> \var{sfd}
(source-object-bfp \var{source-object}) ;-> \var{uint}
(source-object-efp \var{source-object}) ;-> \var{uint}
(source-object-line \var{source-object}) ;-> \var{uint} or #f
(source-object-column \var{source-object}) ;-> \var{uint} or #f
(make-source-file-descriptor \var{string} \var{binary-input-port}) ;-> \var{sfd}
(make-source-file-descriptor \var{string} \var{binary-input-port} \var{reset?}) ;-> \var{sfd}
(source-file-descriptor? \var{obj}) ;-> \var{boolean}
(source-file-descriptor-checksum \var{sfd}) ;-> \var{obj}
(source-file-descriptor-path \var{sfd}) ;-> \var{obj}
\endschemedisplay
A program might open a source file with
\scheme{open-file-input-port}, create an sfd using
\index{\scheme{make-source-file-descriptor}}\scheme{make-source-file-descriptor},
create a textual port from the binary port using transcoded-port, and
create source objects and annotations for each of the objects it reads
from the file.
If a custom reader is not required, the Scheme
reader can be used to read annotations via the
\index{\scheme{get-datum/annotations}}\scheme{get-datum/annotations}
procedure:
\schemedisplay
(get-datum/annotations \var{textual-input-port} \var{sfd} \var{uint}) ;-> \var{obj}, \var{uint}
\endschemedisplay
\scheme{get-datum/annotations} is like \scheme{get-datum} but instead of returning
a plain datum, it returns an annotation encapsulating a datum (possibly with nested
annotations), a source object, and the plain (stripped) datum.
It also returns a second value, the position of the first character beyond the
object in the file.
Character positions are accepted and returned by
\scheme{get-datum/annotations} so that the textual port need not support
\scheme{port-position} and need not report positions in characters
if it does support \scheme{port-position}.
(Positions are usually reported in bytes.)
The bfp and efp positions recorded in the annotations returned by
\scheme{get-datum/annotations} are correct only if the positions supplied
to it are correct.
Once read, an annotation can be passed to the expander, interpreter, or
compiler.
The procedures \scheme{eval}, \scheme{expand}, \scheme{interpret},
and \scheme{compile} all accept annotated or unannotated input.
Two additional procedures complete the set of annotation-related primitives:
\schemedisplay
(open-source-file \var{sfd}) ;-> #f or \var{port}
(syntax->annotation \var{obj}) ;-> #f or \var{annotation}
\endschemedisplay
\index{\scheme{open-source-file}}\scheme{open-source-file} attempts to
locate and open the source file identified by \var{sfd}.
It returns a textual input port, positioned at the beginning of the file,
if successful, and \scheme{#f} otherwise.
\index{\scheme{syntax->annotation}}\scheme{syntax->annotation} accepts
a syntax object.
If the syntax object's expression is annotated, it returns the
annotation; otherwise, it returns \scheme{#f}.
It can be used by a macro to extract source information, when
available, from an input form.
The procedure \scheme{datum->syntax} accepts either an
annotated or unannotated input datum.
%----------------------------------------------------------------------------
\entryheader
\formdef{make-annotation}{\categoryprocedure}{(make-annotation \var{obj} \var{source-object} \var{stripped-obj})}
\formdef{make-annotation}{\categoryprocedure}{(make-annotation \var{obj} \var{source-object} \var{stripped-obj} \var{options})}
\returns an annotation
\listlibraries
\endentryheader
The annotation is formed with \var{obj} as its expression component,
\var{source-object} as its source-object component, and \var{stripped-obj}
as its stripped component.
\var{obj} should represent an expression, possibly with embedded
annotations.
\var{stripped-obj} should be a stripped version of \var{obj}, i.e.,
equivalent to \var{obj} with each annotation replaced by its
expression component.
\var{options}, if present must be an enumeration set over
the symbols \scheme{debug} and \scheme{profile}, and defaults to an
enumeration set containing both \scheme{debug} and \scheme{profile}.
Annotations marked \scheme{debug} are used for compile-time error
reporting and run-time error reporting and inspection; annotations
marked \scheme{profile} are used for profiling.
%----------------------------------------------------------------------------
\entryheader
\formdef{annotation?}{\categoryprocedure}{(annotation? \var{obj})}
\returns \scheme{#t} if \var{obj} is an annotation, otherwise \scheme{#f}
\listlibraries
\endentryheader
%----------------------------------------------------------------------------
\entryheader
\formdef{annotation-expression}{\categoryprocedure}{(annotation-expression \var{annotation})}
\returns the expression component of \var{annotation}
\listlibraries
\endentryheader
%----------------------------------------------------------------------------
\entryheader
\formdef{annotation-source}{\categoryprocedure}{(annotation-source \var{annotation})}
\returns the source-object component of \var{annotation}
\listlibraries
\endentryheader
%----------------------------------------------------------------------------
\entryheader
\formdef{annotation-stripped}{\categoryprocedure}{(annotation-stripped \var{annotation})}
\returns the stripped component of \var{annotation}
\listlibraries
\endentryheader
%----------------------------------------------------------------------------
\entryheader
\formdef{annotation-options}{\categoryprocedure}{(annotation-options \var{annotation})}
\returns the options enumeration set of \var{annotation}
\listlibraries
\endentryheader
%----------------------------------------------------------------------------
\entryheader
\formdef{make-source-object}{\categoryprocedure}{(make-source-object \var{sfd} \var{bfp} \var{efp})}
\formdef{make-source-object}{\categoryprocedure}{(make-source-object \var{sfd} \var{bfp} \var{efp} \var{line} \var{column})}
\returns a source object
\listlibraries
\endentryheader
\var{sfd} must be a source-file descriptor.
\var{bfp} and \var{efp} must be exact nonnegative integers, and \var{bfp}
should not be greater than \var{efp}.
\var{line} and \var{column} must be exact positive integers.
%----------------------------------------------------------------------------
\entryheader
\formdef{source-object?}{\categoryprocedure}{(source-object? \var{obj})}
\returns \scheme{#t} if \var{obj} is a source object, otherwise \scheme{#f}
\listlibraries
\endentryheader
%----------------------------------------------------------------------------
\entryheader
\formdef{source-object-sfd}{\categoryprocedure}{(source-object-sfd \var{source-object})}
\returns the sfd component of \var{source-object}
\listlibraries
\endentryheader
%----------------------------------------------------------------------------
\entryheader
\formdef{source-object-bfp}{\categoryprocedure}{(source-object-bfp \var{source-object})}
\returns the bfp component of \var{source-object}
\listlibraries
\endentryheader
%----------------------------------------------------------------------------
\entryheader
\formdef{source-object-efp}{\categoryprocedure}{(source-object-efp \var{source-object})}
\returns the efp component of \var{source-object}
\listlibraries
\endentryheader
%----------------------------------------------------------------------------
\entryheader
\formdef{source-object-line}{\categoryprocedure}{(source-object-line \var{source-object})}
\returns the line component of \var{source-object} if present, otherwise \scheme{#f}
\listlibraries
\endentryheader
%----------------------------------------------------------------------------
\entryheader
\formdef{source-object-column}{\categoryprocedure}{(source-object-column \var{source-object})}
\returns the column component of \var{source-object} if present, otherwise \scheme{#f}
\listlibraries
\endentryheader
%----------------------------------------------------------------------------
\entryheader
\formdef{current-make-source-object}{\categorythreadparameter}{current-make-source-object}
\listlibraries
\endentryheader
\noindent
\scheme{current-make-source-object} is used by the reader to construct
a source object for an annotation. \scheme{current-make-source-object}
is initially bound to \scheme{make-source-object}, and the reader always
calls the function bound to the paramater with three arguments.
Adjust this parameter to, for example, eagerly convert a position integer
to a file-position object, instead of delaying the conversion to
\scheme{locate-source}.
%----------------------------------------------------------------------------
\entryheader
\formdef{make-source-file-descriptor}{\categoryprocedure}{(make-source-file-descriptor \var{string} \var{binary-input-port})}
\formdef{make-source-file-descriptor}{\categoryprocedure}{(make-source-file-descriptor \var{string} \var{binary-input-port} \var{reset?})}
\returns a source-file descriptor
\listlibraries
\endentryheader
To compute the checksum encapsulated in the source-file descriptor,
this procedure must read all of the data from
\var{binary-input-port}.
If \var{reset?} is present and \scheme{#t}, the port is reset to its
original position, as if via \scheme{port-position}.
Otherwise, it is left pointing at end-of-file.
%----------------------------------------------------------------------------
\entryheader
\formdef{source-file-descriptor?}{\categoryprocedure}{(source-file-descriptor? \var{obj})}
\returns \scheme{#t} if \var{obj} is a source-file descriptor, otherwise \scheme{#f}
\listlibraries
\endentryheader
%----------------------------------------------------------------------------
\entryheader
\formdef{source-file-descriptor-checksum}{\categoryprocedure}{(source-file-descriptor-checksum \var{sfd})}
\returns the checksum component of \var{sfd}
\listlibraries
\endentryheader
%----------------------------------------------------------------------------
\entryheader
\formdef{source-file-descriptor-path}{\categoryprocedure}{(source-file-descriptor-path \var{sfd})}
\returns the path component of \var{sfd}
\listlibraries
\endentryheader
\var{sfd} must be a source-file descriptor.
%----------------------------------------------------------------------------
\entryheader
\formdef{source-file-descriptor}{\categoryprocedure}{(source-file-descriptor \var{path} \var{checksum})}
\returns a new source-file-descriptor
\listlibraries
\endentryheader
\var{path} must be a string, and \var{checksum} must be an exact nonnegative integer.
This procedure can be used to construct custom source-file descriptors or to reconstitute
source-file descriptors from the \var{path} and \var{checksum} components.
%----------------------------------------------------------------------------
\entryheader
\formdef{annotation-option-set}{\categorysyntax}{(annotation-option-set \var{symbol} \dots)}
\returns an annotation-options enumeration set
\listlibraries
\endentryheader
\noindent
Annotation-options enumeration sets may be passed to \scheme{make-annotation} to
control whether the annotation is used for debugging, profiling, both, or neither.
Accordingly, each \var{symbol} must be either \var{debug} or \scheme{profile}.
%----------------------------------------------------------------------------
\entryheader
\formdef{syntax->annotation}{\categoryprocedure}{(syntax->annotation \var{obj})}
\returns an annotation or \scheme{#f}
\listlibraries
\endentryheader
If \var{obj} is an annotation or syntax-object encapsulating an annotation,
the annotation is returned.
%----------------------------------------------------------------------------
\entryheader
\formdef{get-datum/annotations}{\categoryprocedure}{(get-datum/annotations \var{textual-input-port} \var{sfd} \var{bfp})}
\returns see below
\listlibraries
\endentryheader
\var{sfd} must be a source-file descriptor.
\var{bfp} must be an exact nonnegative integer and should be the
character position of the next character to be read from
\var{textual-input-port}.
This procedure returns two values: an annotated object and an ending
file position.
In most cases, \var{bfp} should be 0 for the first call
to \scheme{get-datum/annotation} at the start of a file,
and it should be the second return value of the preceding
call to \scheme{get-datum/annotation} for each subsequent
call.
This protocol is necessary to handle files containing multiple-byte
characters, since file positions do not necessarily correspond
to character positions.
%----------------------------------------------------------------------------
\entryheader
\formdef{open-source-file}{\categoryprocedure}{(open-source-file \var{sfd})}
\returns a port or \scheme{#f}
\listlibraries
\endentryheader
\var{sfd} must be a source-file descriptor.
This procedure attempts to locate and open the source file identified
by \var{sfd}.
It returns a textual input port, positioned at the beginning of the file,
if successful, and \scheme{#f} otherwise.
It can fail even if a file with the correct name exists in one of
the source directories when the file's checksum does not match the
checksum recorded in \var{sfd}.
%----------------------------------------------------------------------------
\entryheader
\formdef{locate-source}{\categoryprocedure}{(locate-source \var{sfd} \var{pos})}
\formdef{locate-source}{\categoryprocedure}{(locate-source \var{sfd} \var{pos} \var{use-cache?})}
\returns see below
\listlibraries
\endentryheader
\var{sfd} must be a source-file descriptor, and \var{pos} must be an
exact nonnegative integer.
This procedure either uses cached information from a previous
request for \var{sfd} (only when \var{use-cache?} is provided as true)
or attempts to locate and open the source file identified
by \var{sfd}.
If successful, it returns three values: a string \var{path}, an exact
nonnegative integer \var{line}, and an exact nonnegative integer \var{char}
representing the absolute pathname, line, and character position within
the line represented by the specified source-file descriptor and file
position.
If unsuccessful, it returns zero values.
It can fail even if a file with the correct name exists in one of
the source directories when the file's checksum does not match the
checksum recorded in \var{sfd}.
%----------------------------------------------------------------------------
\entryheader
\formdef{locate-source-object-source}{\categoryprocedure}{(locate-source-object-source \var{source-object} \var{get-start?} \var{use-cache?})}
\returns see below
\listlibraries
\endentryheader
This procedure is similar to \scheme{locate-source}, but instead of
taking an sfd and a position, it takes a source object plus a request
for either the start or end location.
If \var{get-start?} is true and \var{source-object} has a line and column,
this procedure returns the path in
\var{source-objects}'s sfd, \var{source-object}'s line, and
\var{source-objects}'s column.
If \var{source-object} has no line and column, then
this procedure calls \scheme{locate-source} on
\var{source-object}'s sfd, either \var{source-object}'s bfp or efp
depending on \var{get-start?}, and \var{use-cache?}.
%----------------------------------------------------------------------------
\entryheader
\formdef{current-locate-source-object-source}{\categorythreadparameter}{current-locate-source-object-source}
\listlibraries
\endentryheader
\noindent
\scheme{current-locate-source-object-source} determines the
source-location lookup function that is used by the system to report
errors based on source objects. This parameter is initially bound to
\scheme{locate-source-object-object}.
Adjust this parameter to control the way that source locations are
extracted from source objects, possibly using recorded information,
caches, and the filesystem in a way different from
\scheme{locate-source-object-object}.
\section{Source Tables\label{SECTSYNTAXSOURCETABLES}}
Source tables provide an efficient way to associate information
with source objects both in memory and on disk, such as the coverage information
saved to \scheme{.covin} files when
\index{\scheme{generate-covin-files}}\scheme{generate-covin-files} is
set to \scheme{#t}
and the profile counts associated with source objects by
\index{\scheme{with-profile-tracker}}\scheme{with-profile-tracker}
(Section~\ref{SECTMISCPROFILE}).
Source tables are manipulated via hashtable-like accessors and setters
(Section~\ref{SECTMISCHASHTABLES}, {\TSPLFOUR} Section~\ref{TSPL:SECTHASHTABLES}), e.g.,
\index{\scheme{source-table-ref}}\scheme{source-table-ref} and \index{\scheme{source-table-set!}}\scheme{source-table-set!}.
They can be saved to files via
\index{\scheme{put-source-table}}\scheme{put-source-table}
and restored via
\index{\scheme{get-source-table!}}\scheme{get-source-table!}.
%----------------------------------------------------------------------------
\entryheader
\formdef{make-source-table}{\categoryprocedure}{(make-source-table)}
\returns a source table
\listlibraries
\endentryheader
A source table contains associations between source objects and arbitrary
values. For purposes of the source-table operations described below, two
source objects are the same if they have the same source-file descriptor,
equal beginning file positions and equal ending file positions.
Two source-file descriptors are the same if they have the same path and
checksum.
%----------------------------------------------------------------------------
\entryheader
\formdef{source-table?}{\categoryprocedure}{(source-table? \var{obj})}
\returns \scheme{#t} if \var{obj} is a source-table; \scheme{#f} otherwise
\listlibraries
\endentryheader
%----------------------------------------------------------------------------
\entryheader
\formdef{source-table-set!}{\categoryprocedure}{(source-table-set! \var{source-table} \var{source-object} \var{obj})}
\returns unspecified
\listlibraries
\endentryheader
\scheme{source-table-set!} associates \var{source-object}
with \var{obj} in \var{source-table}, replacing the
existing association, if any.
%----------------------------------------------------------------------------
\entryheader
\formdef{source-table-ref}{\categoryprocedure}{(source-table-ref \var{source-table} \var{source-object} \var{default})}
\returns see below
\listlibraries
\endentryheader
\noindent
\var{default} may be any Scheme value.
\scheme{source-table-ref} returns the value
associated with \var{source-object} in \var{source-table}.
If no value is associated with \var{source-object} in \var{source-table},
\scheme{source-table-ref} returns \var{default}.
%----------------------------------------------------------------------------
\entryheader
\formdef{source-table-contains?}{\categoryprocedure}{(source-table-contains? \var{source-table} \var{source-object})}
\returns \scheme{#t} if an association for \var{source-object} exists in \var{source-table}, \scheme{#f} otherwise
\listlibraries
\endentryheader
%----------------------------------------------------------------------------
\entryheader
\formdef{source-table-cell}{\categoryprocedure}{(source-table-cell \var{source-table} \var{source-object} \var{default})}
\returns a pair (see below)
\listlibraries
\endentryheader
\noindent
\var{default} may be any Scheme value.
If no value is associated with \var{source-object} in \var{source-table},
\scheme{source-table-cell} modifies \var{source-table} to associate \var{source-object} with
\var{default}.
Regardless, it returns a pair whose car is \var{source-object} and whose cdr is
the associated value.
Changing the cdr of this pair effectively updates the table to
associate \var{source-object} with a new value.
The car field of the pair should not be modified.
%----------------------------------------------------------------------------
\entryheader
\formdef{source-table-delete!}{\categoryprocedure}{(source-table-delete! \var{source-table} \var{source-object})}
\returns unspecified
\listlibraries
\endentryheader
\scheme{source-table-delete!} drops the association
for \var{source-object} from \var{source-table}, if
one exists.
%----------------------------------------------------------------------------
\entryheader
\formdef{source-table-size}{\categoryprocedure}{(source-table-size \var{source-table})}
\returns the number of entries in \var{source-table}
\listlibraries
\endentryheader
%----------------------------------------------------------------------------
\entryheader
\formdef{put-source-table}{\categoryprocedure}{(put-source-table \var{textual-output-port} \var{source-table})}
\returns unspecified
\listlibraries
\endentryheader
\noindent
This procedure writes a representation of the information stored in \var{source-table} to the port.
%----------------------------------------------------------------------------
\entryheader
\formdef{get-source-table!}{\categoryprocedure}{(get-source-table! \var{textual-input-port} \var{source-table})}
\formdef{get-source-table!}{\categoryprocedure}{(get-source-table! \var{textual-input-port} \var{source-table} \var{combine})}
\returns unspecified
\listlibraries
\endentryheader
The port must be positioned at a representation of source-table
information written by some previous call to \scheme{put-source-table},
which reads the information and merges it into \scheme{source-table}.
If present and non-false, \var{combine} must be a procedure and
should accept two arguments.
It is called whenever associations for the same source object are
present both in \var{source-table} and in the information read from
the port.
In this case, \var{combine} is passed two arguments: the associated
value from \var{source-table} and the associated value from the
port (in that order) and must return one value, which is recorded
as the new associated value for the source object in \var{source-table}.
If \var{combine} is not present, \var{combine} is \scheme{#f}, or
no association for a source object read from the port already exists
in \var{source-table}, the value read from the port is recorded as
the associated value of the source object in \var{source-table}.
\schemedisplay
(define st (make-source-table))
(call-with-port (open-input-file "profile.out1")
(lambda (ip) (get-source-table! ip st)))
(call-with-port (open-input-file "profile.out2")
(lambda (ip) (get-source-table! ip st +)))
\endschemedisplay
|