File: irregex-core.scm

package info (click to toggle)
chicken 5.3.0-2
  • links: PTS
  • area: main
  • in suites: forky, sid, trixie
  • size: 32,892 kB
  • sloc: ansic: 580,083; lisp: 71,987; tcl: 1,445; sh: 588; makefile: 60
file content (4070 lines) | stat: -rw-r--r-- 175,132 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
;;;; irregex.scm -- IrRegular Expressions
;;
;; Copyright (c) 2005-2021 Alex Shinn.  All rights reserved.
;; BSD-style license: http://synthcode.com/license.txt

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; At this moment there was a loud ring at the bell, and I could
;; hear Mrs. Hudson, our landlady, raising her voice in a wail of
;; expostulation and dismay.
;;
;; "By heaven, Holmes," I said, half rising, "I believe that
;; they are really after us."
;;
;; "No, it's not quite so bad as that.  It is the unofficial
;; force, -- the Baker Street irregulars."

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;; Notes
;;
;; This code should not require any porting - it should work out of
;; the box in any R[457]RS Scheme implementation.  Slight modifications
;; are needed for R6RS (a separate R6RS-compatible version is included
;; in the distribution as irregex-r6rs.scm).
;;
;; The goal of portability makes this code a little clumsy and
;; inefficient.  Future versions will include both cleanup and
;; performance tuning, but you can only go so far while staying
;; portable.  AND-LET*, SRFI-9 records and custom macros would've been
;; nice.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;; History
;; 0.9.10: 2021/07/06 - fixes for submatches under kleene star, empty seqs
;;                     in alternations, and bol in folds for backtracking
;;                     matcher (thanks John Clements and snan for reporting
;;                     and Peter Bex for fixing)
;; 0.9.9: 2021/05/14 - more comprehensive fix for repeated empty matches
;; 0.9.8: 2020/07/13 - fix irregex-replace/all with look-behind patterns
;; 0.9.7: 2019/12/31 - more intuitive handling of empty matches in -fold,
;;                     -replace and -split
;; 0.9.6: 2016/12/05 - fixed exponential memory use of + in compilation
;;                     of backtracking matcher (CVE-2016-9954).
;; 0.9.5: 2016/09/10 - fixed a bug in irregex-fold handling of bow
;; 0.9.4: 2015/12/14 - performance improvement for {n,m} matches
;; 0.9.3: 2014/07/01 - R7RS library
;; 0.9.2: 2012/11/29 - fixed a bug in -fold on conditional bos patterns
;; 0.9.1: 2012/11/27 - various accumulated bugfixes
;; 0.9.0: 2012/06/03 - Using tags for match extraction from Peter Bex.
;; 0.8.3: 2011/12/18 - various accumulated bugfixes
;; 0.8.2: 2010/08/28 - (...)? submatch extraction fix and alternate
;;                     named submatches from Peter Bex
;;                     Added irregex-split, irregex-extract,
;;                     irregex-match-names and irregex-match-valid-index?
;;                     to Chicken and Guile module export lists and made
;;                     the latter accept named submatches.  The procedures
;;                     irregex-match-{start,end}-{index,chunk} now also
;;                     accept named submatches, with the index argument
;;                     made optional.  Improved argument type checks.
;;                     Disallow negative submatch index.
;;                     Improve performance of backtracking matcher.
;;                     Refactor charset handling into a consistent API
;; 0.8.1: 2010/03/09 - backtracking irregex-match fix and other small fixes
;; 0.8.0: 2010/01/20 - optimizing DFA compilation, adding SRE escapes
;;                     inside PCREs, adding utility SREs
;; 0.7.5: 2009/08/31 - adding irregex-extract and irregex-split
;;                     *-fold copies match data (use *-fold/fast for speed)
;;                     irregex-opt now returns an SRE
;; 0.7.4: 2009/05/14 - empty alternates (or) and empty csets always fail,
;;                     bugfix in default finalizer for irregex-fold/chunked
;; 0.7.3: 2009/04/14 - adding irregex-fold/chunked, minor doc fixes
;; 0.7.2: 2009/02/11 - some bugfixes, much improved documentation
;; 0.7.1: 2008/10/30 - several bugfixes (thanks to Derick Eddington)
;; 0.7.0: 2008/10/20 - support abstract chunked strings
;; 0.6.2: 2008/07/26 - minor bugfixes, allow global disabling of utf8 mode,
;;                     friendlier error messages in parsing, \Q..\E support
;; 0.6.1: 2008/07/21 - added utf8 mode, more utils, bugfixes
;;   0.6: 2008/05/01 - most of PCRE supported
;;   0.5: 2008/04/24 - fully portable R4RS, many PCRE features implemented
;;   0.4: 2008/04/17 - rewriting NFA to use efficient closure compilation,
;;                     normal strings only, but all of the spencer tests pass
;;   0.3: 2008/03/10 - adding DFA converter (normal strings only)
;;   0.2: 2005/09/27 - adding irregex-opt (like elisp's regexp-opt) utility
;;   0.1: 2005/08/18 - simple NFA interpreter over abstract chunked strings

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;; Data Structures

(define (vector-copy v)
  (let ((v2 (make-vector (vector-length v))))
    (vector-copy! v v2)
    v2))

(cond-expand
  (chicken-bootstrap
   (begin
     ;; make-irregex defined elsewhere
     (define (irregex? x)
       (##sys#structure? x 'regexp))
     (define (irregex-dfa x)
       (##sys#check-structure x 'regexp 'irregex-dfa)
       (##sys#slot x 1))
     (define (irregex-dfa/search x)
       (##sys#check-structure x 'regexp 'irregex-dfa/search)
       (##sys#slot x 2))
     (define (irregex-nfa x)
       (##sys#check-structure x 'regexp 'irregex-nfa)
       (##sys#slot x 3))
     (define (irregex-flags x)
       (##sys#check-structure x 'regexp 'irregex-flags)
       (##sys#slot x 4))
     (define (irregex-num-submatches x)
       (##sys#check-structure x 'regexp 'irregex-num-submatches)
       (##sys#slot x 5))
     (define (irregex-lengths x)
       (##sys#check-structure x 'regexp 'irregex-lengths)
       (##sys#slot x 6))
     (define (irregex-names x)
       (##sys#check-structure x 'regexp 'irregex-names)
       (##sys#slot x 7))
     ;; make-irregex-match defined elsewhere
     (define (irregex-new-matches irx)
       (make-irregex-match (irregex-num-submatches irx) (irregex-names irx)))
     (define (irregex-reset-matches! m)
       (let ((v (##sys#slot m 1)))
	 (vector-fill! v #f)
	 m))
     (define (irregex-copy-matches m)
       (and (##sys#structure? m 'regexp-match)
	    (##sys#make-structure
	     'regexp-match
	     (vector-copy (##sys#slot m 1))
	     (##sys#slot m 2)
	     (##sys#slot m 3)
	     (##sys#slot m 4))))
     (define (irregex-match-data? obj)
       (##sys#structure? obj 'regexp-match))
     (define (irregex-match-num-submatches m)
       (##sys#check-structure m 'regexp-match 'irregex-match-num-submatches)
       (- (fx/ (##sys#size (##sys#slot m 1)) 4) 2))
     (define (irregex-match-chunker m)
       (##sys#slot m 3))
     (define (irregex-match-names m)
       (##sys#check-structure m 'regexp-match 'irregex-match-names)
       (##sys#slot m 2))
     (define (irregex-match-chunker-set! m str)
       (##sys#setslot m 3 str))
     (define-inline (%irregex-match-start-chunk m n)
       (##sys#slot (##sys#slot m 1) (* n 4)))
     (define-inline (%irregex-match-start-index m n)
       (##sys#slot (##sys#slot m 1) (+ 1 (* n 4))))
     (define-inline (%irregex-match-end-chunk m n)
       (##sys#slot (##sys#slot m 1) (+ 2 (* n 4))))
     (define (%irregex-match-end-index m n)
       (##sys#slot (##sys#slot m 1) (+ 3 (* n 4))))
     (define (%irregex-match-fail m) (##sys#slot m 4))
     (define (%irregex-match-fail-set! m x) (##sys#setslot m 4 x))
     (set-record-printer! 'regexp-match
       (lambda (m out)
	 (let ((n (irregex-match-num-submatches m)))
	   (display "#<regexp-match (" out)
	   (display n out)
	   (display " submatch" out)
	   (when (or (eq? n 0) (fx> n 1)) (display "es" out))
	   (display ")>" out))))
     (define-inline (irregex-match-valid-numeric-index? m n)
       (let ((v (##sys#slot m 1)))
	 (and (>= n 0) (< (* n 4) (- (##sys#size v) 4)))))
     (define-inline (irregex-match-matched-numeric-index? m n)
       (let ((v (##sys#slot m 1)))
         (and (##sys#slot v (+ 1 (* n 4)))
              #t)))))
  (else
   (begin
     (define irregex-tag '*irregex-tag*)
     (define (make-irregex dfa dfa/search nfa flags submatches lengths names)
       (vector irregex-tag dfa dfa/search nfa flags submatches lengths names))
     (define (irregex? obj)
       (and (vector? obj)
	    (= 8 (vector-length obj))
	    (eq? irregex-tag (vector-ref obj 0))))
     (define (irregex-dfa x) (vector-ref x 1))
     (define (irregex-dfa/search x) (vector-ref x 2))
     (define (irregex-nfa x) (vector-ref x 3))
     (define (irregex-flags x) (vector-ref x 4))
     (define (irregex-num-submatches x) (vector-ref x 5))
     (define (irregex-lengths x) (vector-ref x 6))
     (define (irregex-names x) (vector-ref x 7))
     (define (irregex-new-matches irx)
       (make-irregex-match (irregex-num-submatches irx) (irregex-names irx)))
     (define (irregex-reset-matches! m)
       (do ((i (- (vector-length m) 1) (- i 1)))
	   ((<= i 3) m)
	 (vector-set! m i #f)))
     (define (irregex-copy-matches m)
       (and (vector? m) (vector-copy m)))
     (define irregex-match-tag '*irregex-match-tag*)
     (define (irregex-match-data? obj)
       (and (vector? obj)
	    (>= (vector-length obj) 11)
	    (eq? irregex-match-tag (vector-ref obj 0))))
     (define (make-irregex-match count names)
       (let ((res (make-vector (+ (* 4 (+ 2 count)) 3) #f)))
	 (vector-set! res 0 irregex-match-tag)
	 (vector-set! res 2 names)
	 res))
     (define (irregex-match-num-submatches m)
       (- (quotient (- (vector-length m) 3) 4) 2))
     (define (irregex-match-chunker m)
       (vector-ref m 1))
     (define (irregex-match-names m)
       (vector-ref m 2))
     (define (irregex-match-chunker-set! m str)
       (vector-set! m 1 str))
     (define (%irregex-match-start-chunk m n) (vector-ref m (+ 3 (* n 4))))
     (define (%irregex-match-start-index m n) (vector-ref m (+ 4 (* n 4))))
     (define (%irregex-match-end-chunk m n)   (vector-ref m (+ 5 (* n 4))))
     (define (%irregex-match-end-index m n)   (vector-ref m (+ 6 (* n 4))))
     (define (%irregex-match-fail m) (vector-ref m (- (vector-length m) 1)))
     (define (%irregex-match-fail-set! m x) (vector-set! m (- (vector-length m) 1) x))
     (define (irregex-match-valid-numeric-index? m n)
       (and (>= n 0) (< (+ 3 (* n 4)) (- (vector-length m) 4))))
     (define (irregex-match-matched-numeric-index? m n)
       (and (vector-ref m (+ 4 (* n 4)))
            #t)))))

(define (irregex-match-valid-named-index? m n)
  (and (assq n (irregex-match-names m))
       #t))

;; public interface with error checking
(define (irregex-match-start-chunk m . opt)
  (let ((n (irregex-match-numeric-index 'irregex-match-start-chunk m opt)))
    (and n (%irregex-match-start-chunk m n))))
(define (irregex-match-start-index m . opt)
  (let ((n (irregex-match-numeric-index 'irregex-match-start-index m opt)))
    (and n (%irregex-match-start-index m n))))
(define (irregex-match-end-chunk m . opt)
  (let ((n (irregex-match-numeric-index 'irregex-match-end-chunk m opt)))
    (and n (%irregex-match-end-chunk m n))))
(define (irregex-match-end-index m . opt)
  (let ((n (irregex-match-numeric-index 'irregex-match-end-index m opt)))
    (and n (%irregex-match-end-index m n))))

(define (irregex-match-start-chunk-set! m n start)
  (vector-set! m (+ 3 (* n 4)) start))
(define (irregex-match-start-index-set! m n start)
  (vector-set! m (+ 4 (* n 4)) start))
(define (irregex-match-end-chunk-set! m n end)
  (vector-set! m (+ 5 (* n 4)) end))
(define (irregex-match-end-index-set! m n end)
  (vector-set! m (+ 6 (* n 4)) end))

;; Tags use indices that are aligned to start/end positions just like the
;; match vectors.  ie, a tag 0 is a start tag, 1 is its corresponding end tag.
;; They start at 0, which requires us to map them to submatch index 1.
;; Sorry for the horrible name ;)
(define (irregex-match-chunk&index-from-tag-set! m t chunk index)
  (vector-set! m (+ 7 (* t 2)) chunk)
  (vector-set! m (+ 8 (* t 2)) index))

;; Helper procedure to convert any type of index from a rest args list
;; to a numeric index.  Named submatches are converted to their corresponding
;; numeric index, and numeric submatches are checked for validity.
;; An error is raised for invalid numeric or named indices, #f is returned
;; for defined but nonmatching indices.
(define (irregex-match-numeric-index location m opt)
  (cond
   ((not (irregex-match-data? m))
    (error location "not match data" m))
   ((not (pair? opt)) 0)
   ((pair? (cdr opt))
    (apply error location "too many arguments" m opt))
   (else
    (let ((n (car opt)))
      (if (number? n)
          (if (and (integer? n) (exact? n))
              (if (irregex-match-valid-numeric-index? m n)
                  (and (irregex-match-matched-numeric-index? m n) n)
                  (error location "not a valid index" m n))
              (error location "not an exact integer" n))
          (let lp ((ls (irregex-match-names m))
                   (unknown? #t))
            (cond
             ((null? ls)
              (and unknown?
                   (error location "unknown match name" n)))
             ((eq? n (caar ls))
              (if (%irregex-match-start-chunk m (cdar ls))
                  (cdar ls)
                  (lp (cdr ls) #f)))
             (else (lp (cdr ls) unknown?)))))))))

(define (irregex-match-valid-index? m n)
  (if (not (irregex-match-data? m))
      (error 'irregex-match-valid-index? "not match data" m))
  (if (integer? n)
      (if (not (exact? n))
          (error 'irregex-match-valid-index? "not an exact integer" n)
          (irregex-match-valid-numeric-index? m n))
      (irregex-match-valid-named-index? m n)))

(define (irregex-match-substring m . opt)
  (let* ((n (irregex-match-numeric-index 'irregex-match-substring m opt))
         (cnk (irregex-match-chunker m)))
    (and n
         ((chunker-get-substring cnk)
          (%irregex-match-start-chunk m n)
          (%irregex-match-start-index m n)
          (%irregex-match-end-chunk m n)
          (%irregex-match-end-index m n)))))

(define (irregex-match-subchunk m . opt)
  (let* ((n (irregex-match-numeric-index 'irregex-match-subchunk m opt))
         (cnk (irregex-match-chunker m))
         (get-subchunk (chunker-get-subchunk cnk)))
    (if (not get-subchunk)
        (error "this chunk type does not support match subchunks" m n)
        (and n (get-subchunk
                (%irregex-match-start-chunk m n)
                (%irregex-match-start-index m n)
                (%irregex-match-end-chunk m n)
                (%irregex-match-end-index m n))))))

;; chunkers tell us how to navigate through chained chunks of strings

(define (make-irregex-chunker get-next get-str . o)
  (let* ((get-start (or (and (pair? o) (car o)) (lambda (cnk) 0)))
         (o (if (pair? o) (cdr o) o))
         (get-end (or (and (pair? o) (car o))
                      (lambda (cnk) (string-length (get-str cnk)))))
         (o (if (pair? o) (cdr o) o))
         (get-substr
          (or (and (pair? o) (car o))
              (lambda (cnk1 start cnk2 end)
                (if (eq? cnk1 cnk2)
                    (substring (get-str cnk1) start end)
                    (let loop ((cnk (get-next cnk1))
                               (res (list (substring (get-str cnk1)
                                                     start
                                                     (get-end cnk1)))))
                      (if (eq? cnk cnk2)
                          (string-cat-reverse
                           (cons (substring (get-str cnk)
                                            (get-start cnk)
                                            end)
                                 res))
                          (loop (get-next cnk)
                                (cons (substring (get-str cnk)
                                                 (get-start cnk)
                                                 (get-end cnk))
                                      res))))))))
         (o (if (pair? o) (cdr o) o))
         (get-subchunk (and (pair? o) (car o))))
    (if (not (and (procedure? get-next) (procedure? get-str)
                  (procedure? get-start) (procedure? get-substr)))
        (error 'make-irregex-chunker "expected a procdure"))
    (vector get-next get-str get-start get-end get-substr get-subchunk)))

(define (chunker-get-next cnk) (vector-ref cnk 0))
(define (chunker-get-str cnk) (vector-ref cnk 1))
(define (chunker-get-start cnk) (vector-ref cnk 2))
(define (chunker-get-end cnk) (vector-ref cnk 3))
(define (chunker-get-substring cnk) (vector-ref cnk 4))
(define (chunker-get-subchunk cnk) (vector-ref cnk 5))

(define (chunker-prev-chunk cnk start end)
  (if (eq? start end)
      #f
      (let ((get-next (chunker-get-next cnk)))
        (let lp ((start start))
          (let ((next (get-next start)))
            (if (eq? next end)
                start
                (and next (lp next))))))))

(define (chunker-prev-char cnk start end)
  (let ((prev (chunker-prev-chunk cnk start end)))
    (and prev
         (string-ref ((chunker-get-str cnk) prev)
                     (- ((chunker-get-end cnk) prev) 1)))))

(define (chunker-next-char cnk src)
  (let ((next ((chunker-get-next cnk) src)))
    (and next
         (string-ref ((chunker-get-str cnk) next)
                     ((chunker-get-start cnk) next)))))

(define (chunk-before? cnk a b)
  (and (not (eq? a b))
       (let ((next ((chunker-get-next cnk) a)))
         (and next
              (if (eq? next b)
                  #t
                  (chunk-before? cnk next b))))))

;; For look-behind searches, wrap an existing chunker such that it
;; returns the same results but ends at a given point.
(define (wrap-end-chunker cnk src i)
  (make-irregex-chunker
   (lambda (x) (and (not (eq? x src)) ((chunker-get-next cnk) x)))
   (chunker-get-str cnk)
   (chunker-get-start cnk)
   (lambda (x)
     ;; TODO: this is a hack workaround for the fact that we don't
     ;; have either a notion of chunk equivalence or chunk truncation,
     ;; until which time (neg-)look-behind in a fold won't work on
     ;; non-basic chunks.
     (if (or (eq? x src)
             (and (not ((chunker-get-next cnk) x))
                  (not ((chunker-get-next cnk) src))))
         i
         ((chunker-get-end cnk) x)))
   (chunker-get-substring cnk)
   (chunker-get-subchunk cnk)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;; String Utilities

;; Unicode version (skip surrogates)
(define *all-chars*
  `(/ ,(integer->char 0) ,(integer->char #xD7FF)
      ,(integer->char #xE000) ,(integer->char #x10FFFF)))

;; ASCII version, offset to not assume 0-255
;; (define *all-chars* `(/ ,(integer->char (- (char->integer #\space) 32)) ,(integer->char (+ (char->integer #\space) 223))))

;; set to #f to ignore even an explicit request for utf8 handling
(define *allow-utf8-mode?* #t)

;; (define *named-char-properties* '())

(define (string-scan-char str c . o)
  (let ((end (string-length str)))
    (let scan ((i (if (pair? o) (car o) 0)))
      (cond ((= i end) #f)
            ((eqv? c (string-ref str i)) i)
            (else (scan (+ i 1)))))))

(define (string-scan-char-escape str c . o)
  (let ((end (string-length str)))
    (let scan ((i (if (pair? o) (car o) 0)))
      (cond ((= i end) #f)
            ((eqv? c (string-ref str i)) i)
            ((eqv? c #\\) (scan (+ i 2)))
            (else (scan (+ i 1)))))))

(define (string-scan-pred str pred . o)
  (let ((end (string-length str)))
    (let scan ((i (if (pair? o) (car o) 0)))
      (cond ((= i end) #f)
            ((pred (string-ref str i)) i)
            (else (scan (+ i 1)))))))

(define (string-split-char str c)
  (let ((end (string-length str)))
    (let lp ((i 0) (from 0) (res '()))
      (define (collect) (cons (substring str from i) res))
      (cond ((>= i end) (reverse (collect)))
            ((eqv? c (string-ref str i)) (lp (+ i 1) (+ i 1) (collect)))
            (else (lp (+ i 1) from res))))))

(define (char-alphanumeric? c)
  (or (char-alphabetic? c) (char-numeric? c)))

(define (%substring=? a b start1 start2 len)
  (let lp ((i 0))
    (cond ((>= i len)
	  #t)
	 ((char=? (string-ref a (+ start1 i)) (string-ref b (+ start2 i)))
          (lp (+ i 1)))
         (else
          #f))))

;; SRFI-13 extracts

(define (%%string-copy! to tstart from fstart fend)
  (do ((i fstart (+ i 1))
       (j tstart (+ j 1)))
      ((>= i fend))
    (string-set! to j (string-ref from i))))

(define (string-cat-reverse string-list)
  (string-cat-reverse/aux
   (fold (lambda (s a) (+ (string-length s) a)) 0 string-list)
   string-list))

(define (string-cat-reverse/aux len string-list)
  (let ((res (make-string len)))
    (let lp ((i len) (ls string-list))
      (if (pair? ls)
          (let* ((s (car ls))
                 (slen (string-length s))
                 (i (- i slen)))
            (%%string-copy! res i s 0 slen)
            (lp i (cdr ls)))))
    res))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;; List Utilities

;; like the one-arg IOTA case
(define (zero-to n)
  (if (<= n 0)
      '()
      (let lp ((i (- n 1)) (res '()))
        (if (zero? i) (cons 0 res) (lp (- i 1) (cons i res))))))

;; SRFI-1 extracts (simplified 1-ary versions)

(define (find pred ls)
  (let lp ((ls ls))
    (cond ((null? ls) #f)
          ((pred (car ls)) (car ls))
          (else (lp (cdr ls))))))

(define (find-tail pred ls)
  (let lp ((ls ls))
    (cond ((null? ls) #f)
          ((pred (car ls)) ls)
          (else (lp (cdr ls))))))

(define (last ls)
  (if (not (pair? ls))
      (error "can't take last of empty list")
      (let lp ((ls ls))
        (if (pair? (cdr ls))
            (lp (cdr ls))
            (car ls)))))

(define (any pred ls)
  (and (pair? ls)
       (let lp ((head (car ls)) (tail (cdr ls)))
         (if (null? tail)
             (pred head)
             (or (pred head) (lp (car tail) (cdr tail)))))))

(define (every pred ls)
  (or (null? ls)
      (let lp ((head (car ls))  (tail (cdr ls)))
        (if (null? tail)
            (pred head)
            (and (pred head) (lp (car tail) (cdr tail)))))))

(define (fold kons knil ls)
  (let lp ((ls ls) (res knil))
    (if (null? ls)
        res
        (lp (cdr ls) (kons (car ls) res)))))

(define (filter pred ls)
  (let lp ((ls ls) (res '()))
    (if (null? ls)
        (reverse res)
        (lp (cdr ls) (if (pred (car ls)) (cons (car ls) res) res)))))

(define (remove pred ls)
  (let lp ((ls ls) (res '()))
    (if (null? ls)
        (reverse res)
        (lp (cdr ls) (if (pred (car ls)) res (cons (car ls) res))))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;; Flags

(define (bit-shr n i)
  (quotient n (expt 2 i)))

(define (bit-shl n i)
  (* n (expt 2 i)))

(define (bit-not n) (- #xFFFF n))

(define (bit-ior a b)
  (cond
   ((zero? a) b)
   ((zero? b) a)
   (else
    (+ (if (or (odd? a) (odd? b)) 1 0)
       (* 2 (bit-ior (quotient a 2) (quotient b 2)))))))

(define (bit-and a b)
  (cond
   ((zero? a) 0)
   ((zero? b) 0)
   (else
    (+ (if (and (odd? a) (odd? b)) 1 0)
       (* 2 (bit-and (quotient a 2) (quotient b 2)))))))

(define (integer-log n)
  (define (b8 n r)
    (if (>= n (bit-shl 1 8)) (b4 (bit-shr n 8) (+ r 8)) (b4 n r)))
  (define (b4 n r)
    (if (>= n (bit-shl 1 4)) (b2 (bit-shr n 4) (+ r 4)) (b2 n r)))
  (define (b2 n r)
    (if (>= n (bit-shl 1 2)) (b1 (bit-shr n 2) (+ r 2)) (b1 n r)))
  (define (b1 n r) (if (>= n (bit-shl 1 1)) (+ r 1) r))
  (if (>= n (bit-shl 1 16)) (b8 (bit-shr n 16) 16) (b8 n 0)))

(define (flag-set? flags i)
  (= i (bit-and flags i)))
(define (flag-join a b)
  (if b (bit-ior a b) a))
(define (flag-clear a b)
  (bit-and a (bit-not b)))

(define ~none 0)
(define ~searcher? 1)
(define ~consumer? 2)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;; Parsing Embedded SREs in PCRE Strings

;; (define (with-read-from-string str i proc)
;;   (define (port-size in)
;;     (let lp ((i 0)) (if (eof-object? (read-char in)) i (lp (+ i 1)))))
;;   (let* ((len (string-length str))
;;          (tail-len (- len i))
;;          (in (open-input-string (substring str i len)))
;;          (sre (read in))
;;          (unused-len (port-size in)))
;;     (close-input-port in)
;;     (proc sre (- tail-len unused-len))))

(define close-token (list 'close))
(define dot-token (string->symbol "."))

(define (with-read-from-string str i proc)
  (define end (string-length str))
  (define (read i k)
    (cond
     ((>= i end) (error "unterminated embedded SRE" str))
     (else
      (case (string-ref str i)
        ((#\()
         (let lp ((i (+ i 1)) (ls '()))
           (read
            i
            (lambda (x j)
              (cond
               ((eq? x close-token)
                (k (reverse ls) j))
               ((eq? x dot-token)
                (if (null? ls)
                    (error "bad dotted form" str)
                    (read j (lambda (y j2)
                              (read j2 (lambda (z j3)
                                         (if (not (eq? z close-token))
                                             (error "bad dotted form" str)
                                             (k (append (reverse (cdr ls))
                                                        (cons (car ls) y))
                                                j3))))))))
               (else
                (lp j (cons x ls))))))))
        ((#\))
         (k close-token (+ i 1)))
        ((#\;)
         (let skip ((i (+ i 1)))
           (if (or (>= i end) (eqv? #\newline (string-ref str i)))
               (read (+ i 1) k)
               (skip (+ i 1)))))
        ((#\' #\`)
         (read (+ i 1)
           (lambda (sexp j)
             (let ((q (if (eqv? #\' (string-ref str i)) 'quote 'quasiquote)))
               (k (list q sexp) j)))))
        ((#\,)
         (let* ((at? (and (< (+ i 1) end) (eqv? #\@ (string-ref str (+ i 1)))))
                (u (if at? 'uquote-splicing 'unquote))
                (j (if at? (+ i 2) (+ i 1))))
           (read j (lambda (sexp j) (k (list u sexp) j)))))
        ((#\")
         (let scan ((from (+ i 1)) (i (+ i 1)) (res '()))
           (define (collect)
             (if (= from i) res (cons (substring str from i) res)))
           (if (>= i end)
               (error "unterminated string in embedded SRE" str)
               (case (string-ref str i)
                 ((#\") (k (string-cat-reverse (collect)) (+ i 1)))
                 ((#\\) (scan (+ i 1) (+ i 2) (collect)))
                 (else (scan from (+ i 1) res))))))
        ((#\#)
         (case (string-ref str (+ i 1))
           ((#\;)
            (read (+ i 2) (lambda (sexp j) (read j k))))
           ((#\\)
            (read (+ i 2)
              (lambda (sexp j)
                (k (case sexp
                     ((space) #\space)
                     ((newline) #\newline)
                     (else (let ((s (if (number? sexp)
                                        (number->string sexp)
                                        (symbol->string sexp))))
                             (string-ref s 0))))
                   j))))
           ((#\t #\f)
            (k (eqv? #\t (string-ref str (+ i 1))) (+ i 2)))
           (else
            (error "bad # syntax in simplified SRE" i))))
        (else
         (cond
          ((char-whitespace? (string-ref str i))
           (read (+ i 1) k))
          (else ;; symbol/number
           (let scan ((j (+ i 1)))
             (cond
              ((or (>= j end)
                   (let ((c (string-ref str j)))
                     (or (char-whitespace? c)
                         (memv c '(#\; #\( #\) #\" #\# #\\)))))
               (let ((str2 (substring str i j)))
                 (k (or (string->number str2) (string->symbol str2)) j)))
              (else (scan (+ j 1))))))))))))
  (read i (lambda (res j)
            (if (eq? res 'close-token)
                (error "unexpected ')' in SRE" str j)
                (proc res j)))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;; Parsing PCRE Strings

(define ~save? 1)
(define ~case-insensitive? 2)
(define ~multi-line? 4)
(define ~single-line? 8)
(define ~ignore-space? 16)
(define ~utf8? 32)

(define (symbol-list->flags ls)
  (let lp ((ls ls) (res ~none))
    (if (not (pair? ls))
        res
        (lp (cdr ls)
            (flag-join
             res
             (case (car ls)
               ((i ci case-insensitive) ~case-insensitive?)
               ((m multi-line) ~multi-line?)
               ((s single-line) ~single-line?)
               ((x ignore-space) ~ignore-space?)
               ((u utf8) (if *allow-utf8-mode?* ~utf8? ~none))
               (else #f)))))))

(define (maybe-string->sre obj)
  (if (string? obj) (string->sre obj) obj))

(define (string->sre str . o)
  (if (not (string? str)) (error 'string->sre "expected a string" str))
  (let ((end (string-length str))
        (flags (symbol-list->flags o)))

    (let lp ((i 0) (from 0) (flags flags) (res '()) (st '()))

      ;; handle case sensitivity at the literal char/string level
      (define (cased-char ch)
        (if (and (flag-set? flags ~case-insensitive?)
                 (char-alphabetic? ch))
            `(or ,ch ,(char-altcase ch))
            ch))
      (define (cased-string str)
        (if (flag-set? flags ~case-insensitive?)
            (sre-sequence (map cased-char (string->list str)))
            str))
      ;; accumulate the substring from..i as literal text
      (define (collect)
        (if (= i from) res (cons (cased-string (substring str from i)) res)))
      ;; like collect but breaks off the last single character when
      ;; collecting literal data, as the argument to ?/*/+ etc.
      (define (collect/single)
        (let* ((utf8? (flag-set? flags ~utf8?))
               (j (if (and utf8? (> i 1))
                      (utf8-backup-to-initial-char str (- i 1))
                      (- i 1))))
          (cond
           ((< j from)
            res)
           (else
            (let ((c (cased-char (if utf8?
                                     (utf8-string-ref str j (- i j))
                                     (string-ref str j)))))
              (cond
               ((= j from)
                (cons c res))
               (else
                (cons c
                      (cons (cased-string (substring str from j))
                            res)))))))))
      ;; collects for use as a result, reversing and grouping OR
      ;; terms, and some ugly tweaking of `function-like' groups and
      ;; conditionals
      (define (collect/terms)
        (let* ((ls (collect))
               (func
                (and (pair? ls)
                     (memq (last ls)
                           '(atomic if look-ahead neg-look-ahead
                                    look-behind neg-look-behind
                                    => submatch-named
                                    w/utf8 w/noutf8))))
               (prefix (if (and func (memq (car func) '(=> submatch-named)))
                           (list 'submatch-named (cadr (reverse ls)))
                           (and func (list (car func)))))
               (ls (if func
                       (if (memq (car func) '(=> submatch-named))
                           (reverse (cddr (reverse ls)))
                           (reverse (cdr (reverse ls))))
                       ls)))
          (let lp ((ls ls) (term '()) (res '()))
            (define (shift)
              (cons (sre-sequence term) res))
            (cond
             ((null? ls)
              (let* ((res (sre-alternate (shift)))
                     (res (if (flag-set? flags ~save?)
                              (list 'submatch res)
                              res)))
                (if prefix
                    (if (eq? 'if (car prefix))
                        (cond
                         ((not (pair? res))
                          'epsilon)
                         ((memq (car res)
                                '(look-ahead neg-look-ahead
                                             look-behind neg-look-behind))
                          res)
                         ((eq? 'seq (car res))
                          `(if ,(cadr res)
                               ,(sre-sequence (cddr res))))
                         (else
                          `(if ,(cadadr res)
                               ,(sre-sequence (cddadr res))
                               ,(sre-alternate (cddr res)))))
                        `(,@prefix ,res))
                    res)))
             ((eq? 'or (car ls)) (lp (cdr ls) '() (shift)))
             (else (lp (cdr ls) (cons (car ls) term) res))))))
      (define (save)
        (cons (cons flags (collect)) st))

      ;; main parsing
      (if (>= i end)
          (if (pair? st)
              (error "unterminated parenthesis in regexp" str)
              (collect/terms))
          (let ((c (string-ref str i)))
            (case c
              ((#\.)
               (lp (+ i 1) (+ i 1) flags
                   (cons (if (flag-set? flags ~single-line?) 'any 'nonl)
                         (collect))
                   st))
              ((#\?)
               (let ((res (collect/single)))
                 (if (null? res)
                     (error "? can't follow empty pattern" str res)
                     (let ((x (car res)))
                       (lp (+ i 1)
                           (+ i 1)
                           flags
                           (cons
                            (if (pair? x)
                                (case (car x)
                                  ((*)  `(*? ,@(cdr x)))
                                  ((+)  `(**? 1 #f ,@(cdr x)))
                                  ((?)  `(?? ,@(cdr x)))
                                  ((**) `(**? ,@(cdr x)))
                                  ((=)  `(**? ,(cadr x) ,@(cdr x)))
                                  ((>=)  `(**? ,(cadr x) #f ,@(cddr x)))
                                  (else `(? ,x)))
                                `(? ,x))
                            (cdr res))
                           st)))))
              ((#\+ #\*)
               (let* ((res (collect/single))
                      (x (if (pair? res) (car res) 'epsilon))
                      (op (string->symbol (string c))))
                 (cond
                  ((sre-repeater? x)
                   (error "duplicate repetition (e.g. **) in pattern" str res))
                  ((sre-empty? x)
                   (error "can't repeat empty pattern (e.g. ()*)" str res))
                  (else
                   (lp (+ i 1) (+ i 1) flags
                       (cons (list op x) (cdr res))
                       st)))))
              ((#\()
               (cond
                ((>= (+ i 1) end)
                 (error "unterminated parenthesis in regexp" str))
                ((not (memv (string-ref str (+ i 1)) '(#\? #\*))) ; normal case
                 (lp (+ i 1) (+ i 1) (flag-join flags ~save?) '() (save)))
                ((>= (+ i 2) end)
                 (error "unterminated parenthesis in regexp" str))
                ((eqv? (string-ref str (+ i 1)) #\*)
                 (if (eqv? #\' (string-ref str (+ i 2)))
                     (with-read-from-string str (+ i 3)
                       (lambda (sre j)
                         (if (or (>= j end) (not (eqv? #\) (string-ref str j))))
                             (error "unterminated (*'...) SRE escape" str)
                             (lp (+ j 1) (+ j 1) flags (cons sre (collect)) st))))
                     (error "bad regexp syntax: (*FOO) not supported" str)))
                (else                   ;; (?...) case
                 (case (string-ref str (+ i 2))
                   ((#\#)
                    (let ((j (string-scan-char str #\) (+ i 3))))
                      (lp (+ j i) (+ j 1) flags (collect) st)))
                   ((#\:)
                    (lp (+ i 3) (+ i 3) (flag-clear flags ~save?) '() (save)))
                   ((#\=)
                    (lp (+ i 3) (+ i 3) (flag-clear flags ~save?)
                        '(look-ahead) (save)))
                   ((#\!)
                    (lp (+ i 3) (+ i 3) (flag-clear flags ~save?)
                        '(neg-look-ahead) (save)))
                   ((#\<)
                    (cond
                     ((>= (+ i 3) end)
                      (error "unterminated parenthesis in regexp" str))
                     (else
                      (case (string-ref str (+ i 3))
                        ((#\=)
                         (lp (+ i 4) (+ i 4) (flag-clear flags ~save?)
                             '(look-behind) (save)))
                        ((#\!)
                         (lp (+ i 4) (+ i 4) (flag-clear flags ~save?)
                             '(neg-look-behind) (save)))
                        (else
                         (let ((j (and (char-alphabetic?
                                        (string-ref str (+ i 3)))
                                       (string-scan-char str #\> (+ i 4)))))
                           (if j
                               (lp (+ j 1) (+ j 1) (flag-clear flags ~save?)
                                   `(,(string->symbol (substring str (+ i 3) j))
                                     submatch-named)
                                   (save))
                               (error "invalid (?< sequence" str))))))))
                   ((#\>)
                    (lp (+ i 3) (+ i 3) (flag-clear flags ~save?)
                        '(atomic) (save)))
                   ;;((#\' #\P) ; named subpatterns
                   ;; )
                   ;;((#\R) ; recursion
                   ;; )
                   ((#\()
                    (cond
                     ((>= (+ i 3) end)
                      (error "unterminated parenthesis in regexp" str))
                     ((char-numeric? (string-ref str (+ i 3)))
                      (let* ((j (string-scan-char str #\) (+ i 3)))
                             (n (string->number (substring str (+ i 3) j))))
                        (if (not n)
                            (error "invalid conditional reference" str)
                            (lp (+ j 1) (+ j 1) (flag-clear flags ~save?)
                                `(,n if) (save)))))
                     ((char-alphabetic? (string-ref str (+ i 3)))
                      (let* ((j (string-scan-char str #\) (+ i 3)))
                             (s (string->symbol (substring str (+ i 3) j))))
                        (lp (+ j 1) (+ j 1) (flag-clear flags ~save?)
                            `(,s if) (save))))
                     (else
                      (lp (+ i 2) (+ i 2) (flag-clear flags ~save?)
                          '(if) (save)))))
                   ((#\{)
                    (error "unsupported Perl-style cluster" str))
                   (else
                    (let ((old-flags flags))
                      (let lp2 ((j (+ i 2)) (flags flags) (invert? #f))
                        (define (join x)
                          ((if invert? flag-clear flag-join) flags x))
                        (define (new-res res)
                          (let ((before (flag-set? old-flags ~utf8?))
                                (after (flag-set? flags ~utf8?)))
                            (if (eq? before after)
                                res
                                (cons (if after 'w/utf8 'w/noutf8) res))))
                        (cond
                         ((>= j end)
                          (error "incomplete cluster" str i))
                         (else
                          (case (string-ref str j)
                            ((#\i)
                             (lp2 (+ j 1) (join ~case-insensitive?) invert?))
                            ((#\m)
                             (lp2 (+ j 1) (join ~multi-line?) invert?))
                            ((#\x)
                             (lp2 (+ j 1) (join ~ignore-space?) invert?))
                            ((#\u)
                             (if *allow-utf8-mode?*
                                 (lp2 (+ j 1) (join ~utf8?) invert?)
                                 (lp2 (+ j 1) flags invert?)))
                            ((#\-)
                             (lp2 (+ j 1) flags (not invert?)))
                            ((#\))
                             (lp (+ j 1) (+ j 1) flags (new-res (collect))
                                 st))
                            ((#\:)
                             (lp (+ j 1) (+ j 1) flags (new-res '())
                                 (cons (cons old-flags (collect)) st)))
                            (else
                             (error "unknown regex cluster modifier" str)
                             )))))))))))
              ((#\))
               (if (null? st)
                   (error "too many )'s in regexp" str)
                   (lp (+ i 1)
                       (+ i 1)
                       (caar st)
                       (cons (collect/terms) (cdar st))
                       (cdr st))))
              ((#\[)
               (apply
                (lambda (sre j)
                  (lp (+ j 1) (+ j 1) flags (cons sre (collect)) st))
                (string-parse-cset str (+ i 1) flags)))
              ((#\{)
               (cond
                ((or (>= (+ i 1) end)
                     (not (or (char-numeric? (string-ref str (+ i 1)))
                              (eqv? #\, (string-ref str (+ i 1))))))
                 (lp (+ i 1) from flags res st))
                (else
                 (let ((res (collect/single)))
                   (cond
                    ((null? res)
                     (error "{ can't follow empty pattern"))
                    (else
                     (let* ((x (car res))
                            (tail (cdr res))
                            (j (string-scan-char str #\} (+ i 1)))
                            (s2 (string-split-char (substring str (+ i 1) j)
                                                   #\,))
                            (n (string->number (car s2)))
                            (m (and (pair? (cdr s2))
                                    (string->number (cadr s2)))))
                       (cond
                        ((or (not n)
                             (and (pair? (cdr s2))
                                  (not (equal? "" (cadr s2)))
                                  (not m)))
                         (error "invalid {n} repetition syntax" s2))
                        ((null? (cdr s2))
                         (lp (+ j 1) (+ j 1) flags `((= ,n ,x) ,@tail) st))
                        (m
                         (lp (+ j 1) (+ j 1) flags `((** ,n ,m ,x) ,@tail) st))
                        (else
                         (lp (+ j 1) (+ j 1) flags `((>= ,n ,x) ,@tail) st)
                         )))))))))
              ((#\\)
               (cond
                ((>= (+ i 1) end)
                 (error "incomplete escape sequence" str))
                (else
                 (let ((c (string-ref str (+ i 1))))
                   (case c
                     ((#\d)
                      (lp (+ i 2) (+ i 2) flags `(numeric ,@(collect)) st))
                     ((#\D)
                      (lp (+ i 2) (+ i 2) flags `((~ numeric) ,@(collect)) st))
                     ((#\s)
                      (lp (+ i 2) (+ i 2) flags `(space ,@(collect)) st))
                     ((#\S)
                      (lp (+ i 2) (+ i 2) flags `((~ space) ,@(collect)) st))
                     ((#\w)
                      (lp (+ i 2) (+ i 2) flags
                          `((or alphanumeric ("_")) ,@(collect)) st))
                     ((#\W)
                      (lp (+ i 2) (+ i 2) flags
                          `((~ (or alphanumeric ("_"))) ,@(collect)) st))
                     ((#\b)
                      (lp (+ i 2) (+ i 2) flags
                          `((or bow eow) ,@(collect)) st))
                     ((#\B)
                      (lp (+ i 2) (+ i 2) flags `(nwb ,@(collect)) st))
                     ((#\A)
                      (lp (+ i 2) (+ i 2) flags `(bos ,@(collect)) st))
                     ((#\Z)
                      (lp (+ i 2) (+ i 2) flags
                          `((? #\newline) eos ,@(collect)) st))
                     ((#\z)
                      (lp (+ i 2) (+ i 2) flags `(eos ,@(collect)) st))
                     ((#\R)
                      (lp (+ i 2) (+ i 2) flags `(newline ,@(collect)) st))
                     ((#\K)
                      (lp (+ i 2) (+ i 2) flags `(reset ,@(collect)) st))
                     ;; these two are from Emacs and TRE, but not in PCRE
                     ((#\<)
                      (lp (+ i 2) (+ i 2) flags `(bow ,@(collect)) st))
                     ((#\>)
                      (lp (+ i 2) (+ i 2) flags `(eow ,@(collect)) st))
                     ((#\x)
                      (apply
                       (lambda (ch j)
                         (lp (+ j 1) (+ j 1) flags `(,ch ,@(collect)) st))
                       (string-parse-hex-escape str (+ i 2) end)))
                     ((#\k)
                      (let ((c (string-ref str (+ i 2))))
                        (if (not (memv c '(#\< #\{ #\')))
                            (error "bad \\k usage, expected \\k<...>" str)
                            (let* ((terminal (char-mirror c))
                                   (j (string-scan-char str terminal (+ i 2)))
                                   (s (and j (substring str (+ i 3) j)))
                                   (backref
                                    (if (flag-set? flags ~case-insensitive?)
                                        'backref-ci
                                        'backref)))
                              (if (not j)
                                  (error "unterminated named backref" str)
                                  (lp (+ j 1) (+ j 1) flags
                                      `((,backref ,(string->symbol s))
                                        ,@(collect))
                                      st))))))
                     ((#\Q)  ;; \Q..\E escapes
                      (let ((res (collect)))
                        (let lp2 ((j (+ i 2)))
                          (cond
                           ((>= j end)
                            (lp j (+ i 2) flags res st))
                           ((eqv? #\\ (string-ref str j))
                            (cond
                             ((>= (+ j 1) end)
                              (lp (+ j 1) (+ i 2) flags res st))
                             ((eqv? #\E (string-ref str (+ j 1)))
                              (lp (+ j 2) (+ j 2) flags
                                  (cons (substring str (+ i 2) j) res) st))
                             (else
                              (lp2 (+ j 2)))))
                           (else
                            (lp2 (+ j 1)))))))
                     ((#\')
                      (with-read-from-string str (+ i 2)
                       (lambda (sre j)
                         (lp j j flags (cons sre (collect)) st))))
                     ;;((#\p)  ; XXXX unicode properties
                     ;; )
                     ;;((#\P)
                     ;; )
                     (else
                      (cond
                       ((char-numeric? c)
                        (let* ((j (or (string-scan-pred
                                       str
                                       (lambda (c) (not (char-numeric? c)))
                                       (+ i 2))
                                      end))
                               (backref
                                (if (flag-set? flags ~case-insensitive?)
                                    'backref-ci
                                    'backref))
                               (res `((,backref ,(string->number
                                                  (substring str (+ i 1) j)))
                                      ,@(collect))))
                          (lp j j flags res st)))
                       ((char-alphabetic? c)
                        (let ((cell (assv c posix-escape-sequences)))
                          (if cell
                              (lp (+ i 2) (+ i 2) flags
                                  (cons (cdr cell) (collect)) st)
                              (error "unknown escape sequence" str c))))
                       (else
                        (lp (+ i 2) (+ i 1) flags (collect) st)))))))))
              ((#\|)
               (lp (+ i 1) (+ i 1) flags (cons 'or (collect)) st))
              ((#\^)
               (let ((sym (if (flag-set? flags ~multi-line?) 'bol 'bos)))
                 (lp (+ i 1) (+ i 1) flags (cons sym (collect)) st)))
              ((#\$)
               (let ((sym (if (flag-set? flags ~multi-line?) 'eol 'eos)))
                 (lp (+ i 1) (+ i 1) flags (cons sym (collect)) st)))
              ((#\space)
               (if (flag-set? flags ~ignore-space?)
                   (lp (+ i 1) (+ i 1) flags (collect) st)
                   (lp (+ i 1) from flags res st)))
              ((#\#)
               (if (flag-set? flags ~ignore-space?)
                   (let ((j (or (string-scan-char str #\newline (+ i 1))
                                (- end 1))))
                     (lp (+ j 1) (+ j 1) flags (collect) st))
                   (lp (+ i 1) from flags res st)))
              (else
               (lp (+ i 1) from flags res st))))))))

(define posix-escape-sequences
  `((#\n . #\newline)
    (#\r . ,(integer->char (+ (char->integer #\newline) 3)))
    (#\t . ,(integer->char (- (char->integer #\newline) 1)))
    (#\a . ,(integer->char (- (char->integer #\newline) 3)))
    (#\e . ,(integer->char (+ (char->integer #\newline) #x11)))
    (#\f . ,(integer->char (+ (char->integer #\newline) 2)))
    ))

(define (char-altcase c)
  (if (char-upper-case? c) (char-downcase c) (char-upcase c)))

(define (char-mirror c)
  (case c ((#\<) #\>) ((#\{) #\}) ((#\() #\)) ((#\[) #\]) (else c)))

(define (string-parse-hex-escape str i end)
  (cond
   ((>= i end)
    (error "incomplete hex escape" str i))
   ((eqv? #\{ (string-ref str i))
    (let ((j (string-scan-char-escape str #\} (+ i 1))))
      (if (not j)
          (error "incomplete hex brace escape" str i)
          (let* ((s (substring str (+ i 1) j))
                 (n (string->number s 16)))
            (if n
                (list (integer->char n) j)
                (error "bad hex brace escape" s))))))
   ((>= (+ i 1) end)
    (error "incomplete hex escape" str i))
   (else
    (let* ((s (substring str i (+ i 2)))
           (n (string->number s 16)))
      (if n
          (list (integer->char n) (+ i 2))
          (error "bad hex escape" s))))))

(define (string-parse-cset str start flags)
  (let* ((end (string-length str))
         (invert? (and (< start end) (eqv? #\^ (string-ref str start))))
         (utf8? (flag-set? flags ~utf8?)))
    (define (go i prev-char cset)
      (if (>= i end)
          (error "incomplete char set" str i end)
          (let ((c (string-ref str i)))
            (case c
              ((#\])
               (if (cset-empty? cset)
                   (go (+ i 1) #\] (cset-adjoin cset #\]))
                   (let ((ci? (flag-set? flags ~case-insensitive?)))
                     (list
                      (let ((res (if ci? (cset-case-insensitive cset) cset)))
                        (cset->sre (if invert? (cset-complement res) res)))
                      i))))
              ((#\-)
               (cond
                ((or (= i start)
                     (and (= i (+ start 1)) (eqv? #\^ (string-ref str start)))
                     (eqv? #\] (string-ref str (+ i 1))))
                 (go (+ i 1) c (cset-adjoin cset c)))
                ((not prev-char)
                 (error "bad char-set"))
                (else
                 (let ((char (string-ref str (+ i 1))))
                   (apply
                    (lambda (c j)
                      (if (char<? c prev-char)
                          (error "inverted range in char-set" prev-char c)
                          (go j #f (cset-union cset (range->cset prev-char c)))))
                    (cond
                     ((and (eqv? #\\ char) (assv char posix-escape-sequences))
                      => (lambda (x) (list (cdr x) (+ i 3))))
                     ((and (eqv? #\\ char)
                           (eqv? (string-ref str (+ i 2)) #\x))
                      (string-parse-hex-escape str (+ i 3) end))
                     ((and utf8? (<= #x80 (char->integer char) #xFF))
                      (let ((len (utf8-start-char->length char)))
                        (list (utf8-string-ref str (+ i 1) len) (+ i 1 len))))
                     (else
                      (list char (+ i 2)))))))))
              ((#\[)
               (let* ((inv? (eqv? #\^ (string-ref str (+ i 1))))
                      (i2 (if inv? (+ i 2) (+ i 1))))
                 (case (string-ref str i2)
                   ((#\:)
                    (let ((j (string-scan-char str #\: (+ i2 1))))
                      (if (or (not j) (not (eqv? #\] (string-ref str (+ j 1)))))
                          (error "incomplete character class" str)
                          (let* ((class (sre->cset
                                         (string->symbol
                                          (substring str (+ i2 1) j))))
                                 (class (if inv? (cset-complement class) class)))
                            (go (+ j 2) #f (cset-union cset class))))))
                   ((#\= #\.)
                    (error "collating sequences not supported" str))
                   (else
                    (go (+ i 1) #\[ (cset-adjoin cset #\[))))))
              ((#\\)
               (let ((c (string-ref str (+ i 1))))
                 (case c
                   ((#\d #\D #\s #\S #\w #\W)
                    (go (+ i 2) #f
                        (cset-union cset
                                    (sre->cset (string->sre (string #\\ c))))))
                   ((#\x)
                    (apply
                     (lambda (ch j)
                       (go j ch (cset-adjoin cset ch)))
                     (string-parse-hex-escape str (+ i 2) end)))
                   (else
                    (let ((c (cond ((assv c posix-escape-sequences) => cdr)
                                   (else c))))
                      (go (+ i 2) c (cset-adjoin cset c)))))))
              (else
               (if (and utf8? (<= #x80 (char->integer c) #xFF))
                   (let ((len (utf8-start-char->length c)))
                     (go (+ i len)
                         (utf8-string-ref str i len)
                         (cset-adjoin cset (utf8-string-ref str i len))))
                   (go (+ i 1) c (cset-adjoin cset c))))))))
    (if invert?
        (go (+ start 1)
            #f
            (if (flag-set? flags ~multi-line?)
                (char->cset #\newline)
                (make-cset)))
        (go start #f (make-cset)))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;; UTF-8 Utilities

;; Here are some hairy optimizations that need to be documented
;; better.  Thanks to these, we never do any utf8 processing once the
;; regexp is compiled.

;; two chars: ab..ef
;;            a[b..xFF]|[b-d][x80..xFF]|e[x80..xFF]

;; three chars: abc..ghi
;;              ab[c..xFF]|a[d..xFF][x80..xFF]|
;;              [b..f][x80..xFF][x80..xFF]|
;;              g[x80..g][x80..xFF]|gh[x80..i]

;; four chars: abcd..ghij
;;             abc[d..xFF]|ab[d..xFF][x80..xFF]|a[c..xFF][x80..xFF][x80..xFF]|
;;             [b..f][x80..xFF][x80..xFF][x80..xFF]|
;;             g[x80..g][x80..xFF][x80..xFF]|gh[x80..h][x80..xFF]|ghi[x80..j]

(define (high-char? c) (<= #x80 (char->integer c)))

;; number of total bytes in a utf8 char given the 1st byte

(define utf8-start-char->length
  (let ((table '#(
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 0x
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 1x
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 2x
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 3x
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 4x
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 5x
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 6x
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 7x
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 8x
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 9x
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; ax
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; bx
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ; cx
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ; dx
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 ; ex
4 4 4 4 4 4 4 4 5 5 5 5 6 6 0 0 ; fx
)))
    (lambda (c) (vector-ref table (char->integer c)))))

(define (utf8-string-ref str i len)
  (define (byte n) (char->integer (string-ref str n)))
  (case len
    ((1) ; shouldn't happen in this module
     (string-ref str i))
    ((2)
     (integer->char
      (+ (bit-shl (bit-and (byte i) #b00011111) 6)
         (bit-and (byte (+ i 1)) #b00111111))))
    ((3)
     (integer->char
      (+ (bit-shl (bit-and (byte i) #b00001111) 12)
         (bit-shl (bit-and (byte (+ i 1)) #b00111111) 6)
         (bit-and (byte (+ i 2)) #b00111111))))
    ((4)
     (integer->char
      (+ (bit-shl (bit-and (byte i) #b00000111) 18)
         (bit-shl (bit-and (byte (+ i 1)) #b00111111) 12)
         (bit-shl (bit-and (byte (+ i 2)) #b00111111) 6)
         (bit-and (byte (+ i 3)) #b00111111))))
    (else
     (error "invalid utf8 length" str len i))))

(define (utf8-backup-to-initial-char str i)
  (let lp ((i i))
    (if (= i 0)
        0
        (let ((c (char->integer (string-ref str i))))
          (if (or (< c #x80) (>= c #xC0))
              i
              (lp (- i 1)))))))

(define (utf8-lowest-digit-of-length len)
  (case len
    ((1) 0) ((2) #xC0) ((3) #xE0) ((4) #xF0)
    (else (error "invalid utf8 length" len))))

(define (utf8-highest-digit-of-length len)
  (case len
    ((1) #x7F) ((2) #xDF) ((3) #xEF) ((4) #xF7)
    (else (error "invalid utf8 length" len))))

(define (char->utf8-list c)
  (let ((i (char->integer c)))
    (cond
     ((<= i #x7F) (list i))
     ((<= i #x7FF)
      (list (bit-ior #b11000000 (bit-shr i 6))
            (bit-ior #b10000000 (bit-and i #b111111))))
     ((<= i #xFFFF)
      (list (bit-ior #b11100000 (bit-shr i 12))
            (bit-ior #b10000000 (bit-and (bit-shr i 6) #b111111))
            (bit-ior #b10000000 (bit-and i #b111111))))
     ((<= i #x1FFFFF)
      (list (bit-ior #b11110000 (bit-shr i 18))
            (bit-ior #b10000000 (bit-and (bit-shr i 12) #b111111))
            (bit-ior #b10000000 (bit-and (bit-shr i 6) #b111111))
            (bit-ior #b10000000 (bit-and i #b111111))))
     (else (error "unicode codepoint out of range:" i)))))

(define (unicode-range->utf8-pattern lo hi)
  (let ((lo-ls (char->utf8-list lo))
        (hi-ls (char->utf8-list hi)))
    (if (not (= (length lo-ls) (length hi-ls)))
        (sre-alternate (list (unicode-range-climb-digits lo-ls hi-ls)
                             (unicode-range-up-to hi-ls)))
        (let lp ((lo-ls lo-ls) (hi-ls hi-ls))
          (cond
           ((= (car lo-ls) (car hi-ls))
            (sre-sequence
             (cons (integer->char (car lo-ls))
                   (if (null? (cdr lo-ls)) '()
                       (cons (lp (cdr lo-ls) (cdr hi-ls)) '())))))
           ((= (+ (car lo-ls) 1) (car hi-ls))
            (sre-alternate (list (unicode-range-up-from lo-ls)
                                 (unicode-range-up-to hi-ls))))
           (else
            (sre-alternate (list (unicode-range-up-from lo-ls)
                                 (unicode-range-middle lo-ls hi-ls)
                                 (unicode-range-up-to hi-ls)))))))))

(define (unicode-range-helper one ls prefix res)
  (if (null? ls)
      res
      (unicode-range-helper
       one
       (cdr ls)
       (cons (car ls) prefix)
       (cons (sre-sequence
              `(,@(map integer->char prefix)
                ,(one (car ls))
                ,@(map (lambda (_)
                         `(/ ,(integer->char #x80)
                             ,(integer->char #xFF)))
                       (cdr ls))))
             res))))

(define (unicode-range-up-from lo-ls)
  (sre-sequence
   (list (integer->char (car lo-ls))
         (sre-alternate
          (unicode-range-helper
           (lambda (c)
             `(/ ,(integer->char (+ (car lo-ls) 1)) ,(integer->char #xFF)))
           (cdr (reverse (cdr lo-ls)))
           '()
           (list
            (sre-sequence
             (append
              (map integer->char (reverse (cdr (reverse (cdr lo-ls)))))
              `((/ ,(integer->char (last lo-ls))
                   ,(integer->char #xFF)))))))))))

(define (unicode-range-up-to hi-ls)
  (sre-sequence
   (list (integer->char (car hi-ls))
         (sre-alternate
          (unicode-range-helper
           (lambda (c)
             `(/ ,(integer->char #x80) ,(integer->char (- (car hi-ls) 1))))
           (cdr (reverse (cdr hi-ls)))
           '()
           (list
            (sre-sequence
             (append
              (map integer->char (reverse (cdr (reverse (cdr hi-ls)))))
              `((/ ,(integer->char #x80)
                   ,(integer->char (last hi-ls))))))))))))

(define (unicode-range-climb-digits lo-ls hi-ls)
  (let ((lo-len (length lo-ls)))
    (sre-alternate
     (append
      (list
       (sre-sequence
        (cons `(/ ,(integer->char (car lo-ls))
                  ,(integer->char (if (<= (car lo-ls) #x7F) #x7F #xFF)))
              (map (lambda (_)
                     `(/ ,(integer->char #x80) ,(integer->char #xFF)))
                   (cdr lo-ls)))))
      (map
       (lambda (i)
         (sre-sequence
          (cons
           `(/ ,(integer->char (utf8-lowest-digit-of-length (+ i lo-len 1)))
               ,(integer->char (utf8-highest-digit-of-length (+ i lo-len 1))))
           (map (lambda (_)
                  `(/ ,(integer->char #x80) ,(integer->char #xFF)))
                (zero-to (+ i lo-len))))))
       (zero-to (- (length hi-ls) (+ lo-len 1))))
      (list
       (sre-sequence
        (cons `(/ ,(integer->char
                    (utf8-lowest-digit-of-length
                     (utf8-start-char->length
                      (integer->char (- (car hi-ls) 1)))))
                  ,(integer->char (- (car hi-ls) 1)))
              (map (lambda (_)
                     `(/ ,(integer->char #x80) ,(integer->char #xFF)))
                   (cdr hi-ls)))))))))

(define (unicode-range-middle lo-ls hi-ls)
  (let ((lo (integer->char (+ (car lo-ls) 1)))
        (hi (integer->char (- (car hi-ls) 1))))
    (sre-sequence
     (cons (if (char=? lo hi) lo `(/ ,lo ,hi))
           (map (lambda (_) `(/ ,(integer->char #x80) ,(integer->char #xFF)))
                (cdr lo-ls))))))

;; Maybe this should just modify the input?
(define (cset->utf8-pattern cset)
  (let lp ((ls (cset->plist cset)) (alts '()) (lo-cset '()))
    (if (null? ls)
        (sre-alternate (append (reverse alts)
                               (if (null? lo-cset)
                                   '()
                                   (list (cons '/ (reverse lo-cset))))))
        (if (or (high-char? (car ls))  (high-char? (cadr ls)))
            (lp (cddr ls)
                (cons (unicode-range->utf8-pattern (car ls) (cadr ls)) alts)
                lo-cset)
            (lp (cddr ls) alts (cons (cadr ls) (cons (car ls) lo-cset)))))))

(define (sre-adjust-utf8 sre flags)
  (let adjust ((sre sre)
               (utf8? (flag-set? flags ~utf8?))
               (ci? (flag-set? flags ~case-insensitive?)))
    (define (rec sre) (adjust sre utf8? ci?))
    (cond
     ((pair? sre)
      (case (car sre)
        ((w/utf8) (adjust (sre-sequence (cdr sre)) #t ci?))
        ((w/noutf8) (adjust (sre-sequence (cdr sre)) #f ci?))
        ((w/case)
         (cons (car sre) (map (lambda (s) (adjust s utf8? #f)) (cdr sre))))
        ((w/nocase)
         (cons (car sre) (map (lambda (s) (adjust s utf8? #t)) (cdr sre))))
        ((/ ~ & -)
         (if (not utf8?)
             sre
             (let ((cset (sre->cset sre ci?)))
               (if (any high-char? (cset->plist cset))
                   (if ci?
                       (list 'w/case (cset->utf8-pattern cset))
                       (cset->utf8-pattern cset))
                   sre))))
        ((*)
         (case (sre-sequence (cdr sre))
           ;; special case optimization: .* w/utf8 == .* w/noutf8
           ((any) '(* any))
           ((nonl) '(* nonl))
           (else (cons '* (map rec (cdr sre))))))
        (else
         (cons (car sre) (map rec (cdr sre))))))
     (else
      (case sre
        ((any) 'utf8-any)
        ((nonl) 'utf8-nonl)
        (else
         (if (and utf8? (char? sre) (high-char? sre))
             (sre-sequence (map integer->char (char->utf8-list sre)))
             sre)))))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;; Compilation

(cond-expand
  (chicken-bootstrap
   (define-syntax cached
     (syntax-rules ()
       ((_ arg fail) (build-cache 5 arg fail)))))
  (else
   (define-syntax cached
     (syntax-rules ()
       ((_ arg fail) fail)))))

(define (irregex x . o)
  (cond ((irregex? x) x)
	((null? o)
	 (cached
	  x
	  (if (string? x)
	      (string->irregex x)
	      (sre->irregex x))))
	(else
	 (if (string? x)
	     (apply string->irregex x o)
	     (apply sre->irregex x o)))))

(define (string->irregex str . o)
  (apply sre->irregex (apply string->sre str o) o))

(define (sre->irregex sre . o)
  (let* ((pat-flags (symbol-list->flags o))
         (sre (if *allow-utf8-mode?*
                  (sre-adjust-utf8 sre pat-flags)
                  sre))
         (searcher? (sre-searcher? sre))
         (sre-dfa (if searcher? (sre-remove-initial-bos sre) sre))
         (dfa-limit (cond ((memq 'small o) 1) ((memq 'fast o) 50) (else 10)))
         ;; TODO: Maybe make these two promises; if we only want to search,
         ;; it's wasteful to compile the matcher, and vice versa
         ;; Maybe provide a flag to compile eagerly, to help benchmarking etc.
         (dfa/search
          (cond ((memq 'backtrack o) #f)
                (searcher? #t)
                ((sre->nfa `(seq (* any) ,sre-dfa) pat-flags)
                 => (lambda (nfa)
                      (nfa->dfa nfa (* dfa-limit (nfa-num-states nfa)))))
                (else #f)))
         (dfa (cond ((and dfa/search (sre->nfa sre-dfa pat-flags))
                     => (lambda (nfa)
                          (nfa->dfa nfa (* dfa-limit (nfa-num-states nfa)))))
                    (else #f)))
         (submatches (sre-count-submatches sre-dfa))
         (names (sre-names sre-dfa 1 '()))
         (lens (sre-length-ranges sre-dfa names))
         (flags (flag-join
                 (flag-join ~none (and searcher? ~searcher?))
                 (and (sre-consumer? sre) ~consumer?))))
    (cond
     (dfa
      (make-irregex dfa dfa/search #f flags submatches lens names))
     (else
      (let ((f (sre->procedure sre pat-flags names)))
        (make-irregex #f #f f flags submatches lens names))))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;; SRE Analysis

;; returns #t if the sre can ever be empty
(define (sre-empty? sre)
  (if (pair? sre)
      (case (car sre)
        ((* ? look-ahead look-behind neg-look-ahead neg-look-behind) #t)
        ((**) (or (not (number? (cadr sre))) (zero? (cadr sre))))
        ((or) (any sre-empty? (cdr sre)))
        ((: seq $ submatch => submatch-named + atomic)
         (every sre-empty? (cdr sre)))
        (else #f))
      (memq sre '(epsilon bos eos bol eol bow eow commit))))

(define (sre-any? sre)
  (or (eq? sre 'any)
      (and (pair? sre)
           (case (car sre)
             ((seq : $ submatch => submatch-named)
              (and (pair? (cdr sre)) (null? (cddr sre)) (sre-any? (cadr sre))))
             ((or) (every sre-any? (cdr sre)))
             (else #f)))))

(define (sre-repeater? sre)
  (and (pair? sre)
       (or (memq (car sre) '(* +))
           (and (memq (car sre) '($ submatch => submatch-named seq :))
                (pair? (cdr sre))
                (null? (cddr sre))
                (sre-repeater? (cadr sre))))))

(define (sre-bos? sre)
  (if (pair? sre)
      (case (car sre)
        ((seq : $ submatch => submatch-named)
         (and (pair? (cdr sre)) (sre-bos? (cadr sre))))
        ((or) (every sre-bos? (cdr sre)))
        (else #f))
      (eq? 'bos sre)))

;; a searcher doesn't need explicit iteration to find the first match
(define (sre-searcher? sre)
  (or (sre-bos? sre)
      (and (pair? sre)
           (case (car sre)
             ((* +) (sre-any? (sre-sequence (cdr sre))))
             ((seq : $ submatch => submatch-named)
              (and (pair? (cdr sre)) (sre-searcher? (cadr sre))))
             ((or) (every sre-searcher? (cdr sre)))
             (else #f)))))

;; a consumer doesn't need to match more than once
(define (sre-consumer? sre)
  (or (sre-bos? sre)
      (and (pair? sre)
           (case (car sre)
             ((* +) (sre-any? (sre-sequence (cdr sre))))
             ((seq : $ submatch => submatch-named)
              (and (pair? (cdr sre)) (sre-consumer? (last sre))))
             ((or) (every sre-consumer? (cdr sre)))
             (else #f)))))

(define (sre-has-submatches? sre)
  (and (pair? sre)
       (or (memq (car sre) '($ submatch => submatch-named))
           (if (eq? 'posix-string (car sre))
               (sre-has-submatches? (string->sre (cadr sre)))
               (any sre-has-submatches? (cdr sre))))))

(define (sre-count-submatches sre)
  (let count ((sre sre) (sum 0))
    (if (pair? sre)
        (fold count
              (+ sum (case (car sre)
                       (($ submatch => submatch-named) 1)
                       ((dsm) (+ (cadr sre) (caddr sre)))
                       ((posix-string)
                        (sre-count-submatches (string->sre (cadr sre))))
                       (else 0)))
              (cdr sre))
        sum)))

(define (sre-length-ranges sre . o)
  (let ((names (if (pair? o) (car o) (sre-names sre 1 '())))
        (sublens (make-vector (+ 1 (sre-count-submatches sre)) #f)))
    (vector-set!
     sublens
     0
     (let lp ((sre sre) (n 1) (lo 0) (hi 0) (return cons))
       (define (grow i) (return (+ lo i) (and hi (+ hi i))))
       (cond
        ((pair? sre)
         (if (string? (car sre))
             (grow 1)
             (case (car sre)
               ((/ ~ & -)
                (grow 1))
               ((posix-string)
                (lp (string->sre (cadr sre)) n lo hi return))
               ((seq : w/case w/nocase atomic)
                (let lp2 ((ls (cdr sre)) (n n) (lo2 0) (hi2 0))
                  (if (null? ls)
                      (return (+ lo lo2) (and hi hi2 (+ hi hi2)))
                      (lp (car ls) n 0 0
                          (lambda (lo3 hi3)
                            (lp2 (cdr ls)
                                 (+ n (sre-count-submatches (car ls)))
                                 (+ lo2 lo3)
                                 (and hi2 hi3 (+ hi2 hi3))))))))
               ((or)
                (let lp2 ((ls (cdr sre)) (n n) (lo2 #f) (hi2 0))
                  (if (null? ls)
                      (return (+ lo (or lo2 1)) (and hi hi2 (+ hi hi2)))
                      (lp (car ls) n 0 0
                          (lambda (lo3 hi3)
                            (lp2 (cdr ls)
                                 (+ n (sre-count-submatches (car ls)))
                                 (if lo2 (min lo2 lo3) lo3)
                                 (and hi2 hi3 (max hi2 hi3))))))))
               ((if)
                (cond
                 ((or (null? (cdr sre)) (null? (cddr sre)))
                  (return lo hi))
                 (else
                  (let ((n1 (sre-count-submatches (car sre)))
                        (n2 (sre-count-submatches (cadr sre))))
                    (lp (if (or (number? (cadr sre)) (symbol? (cadr sre)))
                            'epsilon
                            (cadr sre))
                        n lo hi
                        (lambda (lo2 hi2)
                          (lp (caddr sre) (+ n n1) 0 0
                              (lambda (lo3 hi3)
                                (lp (if (pair? (cdddr sre))
                                        (cadddr sre)
                                        'epsilon)
                                    (+ n n1 n2) 0 0
                                    (lambda (lo4 hi4)
                                      (return (+ lo2 (min lo3 lo4))
                                              (and hi2 hi3 hi4
                                                   (+ hi2 (max hi3 hi4))
                                                   ))))))))))))
               ((dsm)
                (lp (sre-sequence (cdddr sre)) (+ n (cadr sre)) lo hi return))
               (($ submatch => submatch-named)
                (lp (sre-sequence
                     (if (eq? 'submatch (car sre)) (cdr sre) (cddr sre)))
                    (+ n 1) lo hi
                    (lambda (lo2 hi2)
                      (vector-set! sublens n (cons lo2 hi2))
                      (return lo2 hi2))))
               ((backref backref-ci)
                (let ((n (cond
                          ((number? (cadr sre)) (cadr sre))
                          ((assq (cadr sre) names) => cdr)
                          (else (error "unknown backreference" (cadr sre))))))
                  (cond
                   ((or (not (integer? n))
                        (not (< 0 n (vector-length sublens))))
                    (error 'sre-length "invalid backreference" sre))
                   ((not (vector-ref sublens n))
                    (error 'sre-length "invalid forward backreference" sre))
                   (else
                    (let ((lo2 (car (vector-ref sublens n)))
                          (hi2 (cdr (vector-ref sublens n))))
                      (return (+ lo lo2) (and hi hi2 (+ hi hi2))))))))
               ((* *?)
                (lp (sre-sequence (cdr sre)) n lo hi (lambda (lo hi) #f))
                (return lo #f))
               ((** **?)
                (cond
                 ((or (and (number? (cadr sre))
                           (number? (caddr sre))
                           (> (cadr sre) (caddr sre)))
                      (and (not (cadr sre)) (caddr sre)))
                  (return lo hi))
                 (else
                  (if (caddr sre)
                      (lp (sre-sequence (cdddr sre)) n 0 0
                          (lambda (lo2 hi2)
                            (return (+ lo (* (cadr sre) lo2))
                                    (and hi hi2 (+ hi (* (caddr sre) hi2))))))
                      (lp (sre-sequence (cdddr sre)) n 0 0
                          (lambda (lo2 hi2)
                            (return (+ lo (* (cadr sre) lo2)) #f)))))))
               ((+)
                (lp (sre-sequence (cdr sre)) n lo hi
                    (lambda (lo2 hi2)
                      (return (+ lo lo2) #f))))
               ((? ??)
                (lp (sre-sequence (cdr sre)) n lo hi
                    (lambda (lo2 hi2)
                      (return lo (and hi hi2 (+ hi hi2))))))
               ((= =? >= >=?)
                (lp `(** ,(cadr sre)
                         ,(if (memq (car sre) '(>= >=?)) #f (cadr sre))
                         ,@(cddr sre))
                    n lo hi return))
               ((look-ahead neg-look-ahead look-behind neg-look-behind)
                (return lo hi))
               (else
                (cond
                 ((assq (car sre) sre-named-definitions)
                  => (lambda (cell)
                       (lp (apply (cdr cell) (cdr sre)) n lo hi return)))
                 (else
                  (error 'sre-length-ranges "unknown sre operator" sre)))))))
        ((char? sre)
         (grow 1))
        ((string? sre)
         (grow (string-length sre)))
        ((memq sre '(any nonl))
         (grow 1))
        ((memq sre '(epsilon bos eos bol eol bow eow nwb commit))
         (return lo hi))
        (else
         (let ((cell (assq sre sre-named-definitions)))
           (if cell
               (lp (if (procedure? (cdr cell)) ((cdr cell)) (cdr cell))
                   n lo hi return)
               (error 'sre-length-ranges "unknown sre" sre)))))))
    sublens))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;; SRE Manipulation

;; build a (seq ls ...) sre from a list
(define (sre-sequence ls)
  (cond
   ((null? ls) 'epsilon)
   ((null? (cdr ls)) (car ls))
   (else (cons 'seq ls))))

;; build a (or ls ...) sre from a list
(define (sre-alternate ls)
  (cond
   ((null? ls) '(or))
   ((null? (cdr ls)) (car ls))
   (else (cons 'or ls))))

;; returns an equivalent SRE without any match information
(define (sre-strip-submatches sre)
  (if (not (pair? sre))
      sre
      (case (car sre)
        (($ submatch) (sre-strip-submatches (sre-sequence (cdr sre))))
        ((=> submatch-named) (sre-strip-submatches (sre-sequence (cddr sre))))
        ((dsm) (sre-strip-submatches (sre-sequence (cdddr sre))))
        (else (map sre-strip-submatches sre)))))

;; given a char-set list of chars and strings, flattens them into
;; chars only
(define (sre-flatten-ranges ls)
  (let lp ((ls ls) (res '()))
    (cond
     ((null? ls)
      (reverse res))
     ((string? (car ls))
      (lp (append (string->list (car ls)) (cdr ls)) res))
     (else
      (lp (cdr ls) (cons (car ls) res))))))

(define (sre-names sre n names)
  (if (not (pair? sre))
      names
      (case (car sre)
        (($ submatch)
         (sre-names (sre-sequence (cdr sre)) (+ n 1) names))
        ((=> submatch-named)
         (sre-names (sre-sequence (cddr sre))
                    (+ n 1)
                    (cons (cons (cadr sre) n) names)))
        ((dsm)
         (sre-names (sre-sequence (cdddr sre)) (+ n (cadr sre)) names))
        ((seq : or * + ? *? ?? w/case w/nocase atomic
          look-ahead look-behind neg-look-ahead neg-look-behind)
         (sre-sequence-names (cdr sre) n names))
        ((= >=)
         (sre-sequence-names (cddr sre) n names))
        ((** **?)
         (sre-sequence-names (cdddr sre) n names))
        (else
         names))))

(define (sre-sequence-names ls n names)
  (if (null? ls)
      names
      (sre-sequence-names (cdr ls)
                          (+ n (sre-count-submatches (car ls)))
                          (sre-names (car ls) n names))))

(define (sre-remove-initial-bos sre)
  (cond
   ((pair? sre)
    (case (car sre)
      ((seq : $ submatch => submatch-named * +)
       (cond
        ((not (pair? (cdr sre)))
         sre)
        ((eq? 'bos (cadr sre))
         (cons (car sre) (cddr sre)))
        (else
         (cons (car sre)
               (cons (sre-remove-initial-bos (cadr sre)) (cddr sre))))))
      ((or)
       (sre-alternate (map sre-remove-initial-bos (cdr sre))))
      (else
       sre)))
   (else
    sre)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;; Basic Matching

(define irregex-basic-string-chunker
  (make-irregex-chunker (lambda (x) #f)
                        car
                        cadr
                        caddr
                        (lambda (src1 i src2 j)
                          (substring (car src1) i j))))

(define (irregex-search x str . o)
  (if (not (string? str)) (error 'irregex-search "not a string" str))
  (let ((start (or (and (pair? o) (car o)) 0))
        (end (or (and (pair? o) (pair? (cdr o)) (cadr o)) (string-length str))))
    (if (not (and (integer? start) (exact? start)))
        (error 'irregex-search "not an exact integer" start))
    (if (not (and (integer? end) (exact? end)))
        (error 'irregex-search "not an exact integer" end))
    (irregex-search/chunked x
                            irregex-basic-string-chunker
                            (list str start end)
                            start)))

(define (irregex-search/chunked x cnk src . o)
  (let* ((irx (irregex x))
         (matches (irregex-new-matches irx))
         (i (if (pair? o) (car o) ((chunker-get-start cnk) src))))
    (if (not (integer? i)) (error 'irregex-search "not an integer" i))
    (irregex-match-chunker-set! matches cnk)
    (irregex-search/matches irx cnk (cons src i) src i matches)))

;; internal routine, can be used in loops to avoid reallocating the
;; match vector
(define (irregex-search/matches irx cnk init src i matches)
  (cond
   ((irregex-dfa irx)
    (cond
     ((flag-set? (irregex-flags irx) ~searcher?)
      (cond
       ((dfa-match/longest (irregex-dfa irx) cnk src i #f #f matches 0)
        (irregex-match-start-chunk-set! matches 0 src)
        (irregex-match-start-index-set! matches 0 i)
        matches)
       (else
        #f)))
     ((dfa-match/shortest
       (irregex-dfa/search irx) cnk src i matches 0)
      (let ((dfa (irregex-dfa irx))
            (get-start (chunker-get-start cnk))
            (get-end (chunker-get-end cnk))
            (get-next (chunker-get-next cnk)))
        (let lp1 ((src src) (i i))
          (let ((end (get-end src)))
            (let lp2 ((i i))
              (cond
               ((dfa-match/longest dfa cnk src i #f #f matches 0)
                (irregex-match-start-chunk-set! matches 0 src)
                (irregex-match-start-index-set! matches 0 i)
                matches)
               ((>= i end)
                (let ((next (get-next src)))
                  (and next (lp1 next (get-start next)))))
               (else
                (lp2 (+ i 1)))))))))
     (else
      #f)))
   (else
    (let ((res (irregex-search/backtrack irx cnk init src i matches)))
      (if res (%irregex-match-fail-set! res #f))
      res))))

(define (irregex-search/backtrack irx cnk init src i matches)
  (let ((matcher (irregex-nfa irx))
        (str ((chunker-get-str cnk) src))
        (end ((chunker-get-end cnk) src))
        (get-next (chunker-get-next cnk)))
    (if (flag-set? (irregex-flags irx) ~searcher?)
        (matcher cnk init src str i end matches (lambda () #f))
        (let lp ((src2 src)
                 (str str)
                 (i i)
                 (end end))
          (cond
           ((matcher cnk init src2 str i end matches (lambda () #f))
            (irregex-match-start-chunk-set! matches 0 src2)
            (irregex-match-start-index-set! matches 0 i)
            matches)
           ((< i end)
            (lp src2 str (+ i 1) end))
           (else
            (let ((src2 (get-next src2)))
              (if src2
                  (lp src2
                      ((chunker-get-str cnk) src2)
                      ((chunker-get-start cnk) src2)
                      ((chunker-get-end cnk) src2))
                  #f))))))))

(define (irregex-match irx str . o)
  (if (not (string? str)) (error 'irregex-match "not a string" str))
  (let ((start (or (and (pair? o) (car o)) 0))
        (end (or (and (pair? o) (pair? (cdr o)) (cadr o)) (string-length str))))
    (if (not (and (integer? start) (exact? start)))
        (error 'irregex-match "not an exact integer" start))
    (if (not (and (integer? end) (exact? end)))
        (error 'irregex-match "not an exact integer" end))
    (irregex-match/chunked irx
                           irregex-basic-string-chunker
                           (list str start end))))

(define (irregex-match/chunked irx cnk src)
  (let* ((irx (irregex irx))
         (matches (irregex-new-matches irx)))
    (irregex-match-chunker-set! matches cnk)
    (cond
     ((irregex-dfa irx)
      (and
       (dfa-match/longest
        (irregex-dfa irx) cnk src ((chunker-get-start cnk) src) #f #f matches 0)
       (= ((chunker-get-end cnk) (%irregex-match-end-chunk matches 0))
          (%irregex-match-end-index matches 0))
       (begin
         (irregex-match-start-chunk-set! matches 0 src)
         (irregex-match-start-index-set! matches
                                         0
                                         ((chunker-get-start cnk) src))
         matches)))
     (else
      (let* ((matcher (irregex-nfa irx))
             (str ((chunker-get-str cnk) src))
             (i ((chunker-get-start cnk) src))
             (end ((chunker-get-end cnk) src))
             (init (cons src i)))
        (let lp ((m (matcher cnk init src str i end matches (lambda () #f))))
          (and m
               (cond
                ((and (not ((chunker-get-next cnk)
                            (%irregex-match-end-chunk m 0)))
                      (= ((chunker-get-end cnk)
                          (%irregex-match-end-chunk m 0))
                         (%irregex-match-end-index m 0)))
                 (%irregex-match-fail-set! m #f)
                 m)
                ((%irregex-match-fail m)
                 (lp ((%irregex-match-fail m))))
                (else
                 #f)))))))))

(define (irregex-match? . args)
  (and (apply irregex-match args) #t))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;; DFA Matching

;; inline these
(define (dfa-init-state dfa)
  (vector-ref dfa 0))
(define (dfa-next-state dfa node)
  (vector-ref dfa (cadr node)))
(define (dfa-cell-commands dfa node)
  (cddr node))
(define (dfa-finalizer dfa state)
  (car state))

;; this searches for the first end index for which a match is possible
(define (dfa-match/shortest dfa cnk src start matches index)
  (let ((get-str (chunker-get-str cnk))
        (get-start (chunker-get-start cnk))
        (get-end (chunker-get-end cnk))
        (get-next (chunker-get-next cnk))
        ;; Skip the "set-up" state, we don't need to set tags.
        (start-state (dfa-next-state dfa (cadr (dfa-init-state dfa)))))
    (let lp1 ((src src) (start start) (state start-state))
      (and
       src
       (let ((str (get-str src))
             (end (get-end src)))
         (let lp2 ((i start) (state state))
           (cond
            ((dfa-finalizer dfa state)
             (cond
              (index
               (irregex-match-end-chunk-set! matches index src)
               (irregex-match-end-index-set! matches index i)))
             #t)
            ((< i end)
             (let* ((ch (string-ref str i))
                    (next (find (lambda (x)
                                  (or (eqv? ch (car x))
                                      (and (not (char? (car x)))
                                           (cset-contains? (car x) ch))))
                                (cdr state))))
               (and next (lp2 (+ i 1) (dfa-next-state dfa next)))))
            (else
             (let ((next (get-next src)))
               (and next (lp1 next (get-start next) state)))))))))))

(define (finalize! finalizer memory matches)
  (for-each
   (lambda (tag&slot)
     (let* ((tag (car tag&slot))
            (slot (vector-ref memory (cdr tag&slot)))
            (chunk&pos (vector-ref slot tag)))
       (irregex-match-chunk&index-from-tag-set!
        matches tag
        (and chunk&pos (car chunk&pos))
        (and chunk&pos (cdr chunk&pos)))))
   finalizer))
(define (make-initial-memory slots matches)
  (let ((size (* (irregex-match-num-submatches matches) 2))
        (memory (make-vector slots)))
    (do ((i 0 (+ i 1)))
        ((= i slots) memory)
      (vector-set! memory i (make-vector size #f)))))

;; this finds the longest match starting at a given index
(define (dfa-match/longest dfa cnk src start end-src end matches index)
  (let* ((get-str (chunker-get-str cnk))
         (get-start (chunker-get-start cnk))
         (get-end (chunker-get-end cnk))
         (get-next (chunker-get-next cnk))
         (initial-state (dfa-init-state dfa))
         (memory-size (car initial-state))
         (submatches? (not (zero? memory-size)))
         ;; A vector of vectors, each of size <number of start/end submatches>
         (memory (make-initial-memory memory-size matches))
         (init-cell (cadr initial-state))
         (start-state (dfa-next-state dfa init-cell))
         (start-finalizer (dfa-finalizer dfa start-state)))
    (cond
     (index
      (irregex-match-end-chunk-set! matches index #f)
      (irregex-match-end-index-set! matches index #f)))
    (cond (submatches?
           (for-each (lambda (s)
                       (let ((slot (vector-ref memory (cdr s))))
                         (vector-set! slot (car s) (cons src start))))
                     (cdr (dfa-cell-commands dfa init-cell)))))
    (let lp1 ((src src)
              (start start)
              (state start-state)
              (res-src (and start-finalizer src))
              (res-index (and start-finalizer start))
              (finalizer start-finalizer))
      (let ((str (get-str src))
            (end (if (eq? src end-src) end (get-end src))))
        (let lp2 ((i start)
                  (state state)
                  (res-src res-src)
                  (res-index res-index)
                  (finalizer finalizer))
          (cond
           ((>= i end)
            (cond
             ((and index res-src)
              (irregex-match-end-chunk-set! matches index res-src)
              (irregex-match-end-index-set! matches index res-index)))
            (let ((next (and (not (eq? src end-src)) (get-next src))))
              (if next
                  (lp1 next (get-start next) state res-src res-index finalizer)
                  (and index
                       (%irregex-match-end-chunk matches index)
                       (or (not finalizer) (finalize! finalizer memory matches))
                       #t))))
           (else
            (let* ((ch (string-ref str i))
                   (cell (find (lambda (x)
                                 (or (eqv? ch (car x))
                                     (and (not (char? (car x)))
                                          (cset-contains? (car x) ch))))
                               (cdr state))))
              (cond
               (cell
                (let* ((next (dfa-next-state dfa cell))
                       (new-finalizer (dfa-finalizer dfa next)))
                  (cond
                   (submatches?
                    (let ((cmds (dfa-cell-commands dfa cell)))
                      ;; Save match when we're moving from accepting state to
                      ;; rejecting state; this could be the last accepting one.
                      (cond ((and finalizer (not new-finalizer))
                             (finalize! finalizer memory matches)))
                      (for-each (lambda (s)
                                  (let ((slot (vector-ref memory (cdr s)))
                                        (chunk&position (cons src (+ i 1))))
                                    (vector-set! slot (car s) chunk&position)))
                                (cdr cmds))
		      ;; Reassigning commands may be in an order which
                      ;; causes memory cells to be clobbered before
                      ;; they're read out.  Make 2 passes to maintain
                      ;; old values by copying them into a closure.
                      (for-each (lambda (execute!) (execute!))
                                (map (lambda (c)
                                       (let* ((tag (vector-ref c 0))
                                              (ss (vector-ref memory (vector-ref c 1)))
                                              (ds (vector-ref memory (vector-ref c 2)))
                                              (value-from (vector-ref ss tag)))
                                         (lambda () (vector-set! ds tag value-from))))
                                     (car cmds))))))
                  (if new-finalizer
                      (lp2 (+ i 1) next src (+ i 1) new-finalizer)
                      (lp2 (+ i 1) next res-src res-index #f))))
               (res-src
                (cond
                 (index
                  (irregex-match-end-chunk-set! matches index res-src)
                  (irregex-match-end-index-set! matches index res-index)))
                (cond (finalizer (finalize! finalizer memory matches)))
                #t)
               ((and index (%irregex-match-end-chunk matches index))
                (cond (finalizer (finalize! finalizer memory matches)))
                #t)
               (else
                #f))))))))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;; Named Definitions

(define sre-named-definitions
  `((any . ,*all-chars*)
    (nonl . (- ,*all-chars* (,(string #\newline))))
    (alphabetic . (/ #\a #\z #\A #\Z))
    (alpha . alphabetic)
    (alphanumeric . (/ #\a #\z #\A #\Z #\0 #\9))
    (alphanum . alphanumeric)
    (alnum . alphanumeric)
    (lower-case . (/ #\a #\z))
    (lower . lower-case)
    (upper-case . (/ #\A #\Z))
    (upper . upper-case)
    (numeric . (/ #\0 #\9))
    (num . numeric)
    (digit . numeric)
    (punctuation . (or #\! #\" #\# #\% #\& #\' #\( #\) #\* #\, #\- #\.
                       #\/ #\: #\; #\? #\@ #\[ #\\ #\] #\_ #\{ #\}))
    (punct . punctuation)
    (graphic
     . (or alphanumeric punctuation #\$ #\+ #\< #\= #\> #\^ #\` #\| #\~))
    (graph . graphic)
    (blank . (or #\space ,(integer->char (- (char->integer #\space) 23))))
    (whitespace . (or blank #\newline))
    (space . whitespace)
    (white . whitespace)
    (printing or graphic whitespace)
    (print . printing)

    ;; XXXX we assume a (possibly shifted) ASCII-based ordering
    (control . (/ ,(integer->char (- (char->integer #\space) 32))
                  ,(integer->char (- (char->integer #\space) 1))))
    (cntrl . control)
    (hex-digit . (or numeric (/ #\a #\f #\A #\F)))
    (xdigit . hex-digit)
    (ascii . (/ ,(integer->char (- (char->integer #\space) 32))
                ,(integer->char (+ (char->integer #\space) 95))))
    (ascii-nonl . (/ ,(integer->char (- (char->integer #\space) 32))
                     ,(integer->char (- (char->integer #\newline) 1))
                     ,(integer->char (+ (char->integer #\newline) 1))
                     ,(integer->char (+ (char->integer #\space) 95))))
    (newline . (or (seq ,(integer->char (+ (char->integer #\newline) 3))
                        #\newline)
                   (/ #\newline
                      ,(integer->char (+ (char->integer #\newline) 3)))))

    ;; ... it's really annoying to support old Scheme48
    (word . (seq bow (+ (or alphanumeric #\_)) eow))
    (utf8-tail-char . (/ ,(integer->char (+ (char->integer #\space) #x60))
                         ,(integer->char (+ (char->integer #\space) #xA1))))
    (utf8-2-char . (seq (/ ,(integer->char (+ (char->integer #\space) #xA2))
                           ,(integer->char (+ (char->integer #\space) #xBF)))
                        utf8-tail-char))
    (utf8-3-char . (seq (/ ,(integer->char (+ (char->integer #\space) #xC0))
                           ,(integer->char (+ (char->integer #\space) #xCF)))
                        utf8-tail-char
                        utf8-tail-char))
    (utf8-4-char . (seq (/ ,(integer->char (+ (char->integer #\space) #xD0))
                           ,(integer->char (+ (char->integer #\space) #xD7)))
                        utf8-tail-char
                        utf8-tail-char
                        utf8-tail-char))
    (utf8-any . (or ascii utf8-2-char utf8-3-char utf8-4-char))
    (utf8-nonl . (or ascii-nonl utf8-2-char utf8-3-char utf8-4-char))

    ;; extended library patterns
    (integer . (seq (? (or #\+ #\-)) (+ numeric)))
    (real . (seq (? (or #\+ #\-))
                 (+ numeric) (? #\. (+ numeric))
                 (? (or #\e #\E) integer)))
    ;; slightly more lax than R5RS, allow ->foo, etc.
    (symbol-initial . (or alpha ("!$%&*/:<=>?^_~")))
    (symbol-subsequent . (or symbol-initial digit ("+-.@")))
    (symbol . (or (seq symbol-initial (* symbol-subsequent))
                  (seq ("+-") (? symbol-initial (* symbol-subsequent)))
                  (seq ".." (* "."))))
    (sexp-space . (seq (* (* space) ";" (* nonl) newline) (+ space)))
    (string . (seq #\" (escape #\\ #\") #\"))
    (escape . ,(lambda (esc . o) `(* (or (~ ,esc ,@o) (seq ,esc any)))))

    (ipv4-digit . (seq (? (/ "12")) (? numeric) numeric))
    (ipv4-address . (seq ipv4-digit (= 3 #\. ipv4-digit)))
    ;; XXXX lax, allows multiple double-colons or < 8 terms w/o a ::
    (ipv6-address . (seq (** 0 4 hex-digit)
                         (** 1 7 #\: (? #\:) (** 0 4 hex-digit))))
    (ip-address . (or ipv4-address ipv6-address))
    (domain-atom . (+ (or alphanumeric #\_ #\-)))
    (domain . (seq domain-atom (+ #\. domain-atom)))
    ;; XXXX now anything can be a top-level domain, but this is still handy
    (top-level-domain . (w/nocase (or "arpa" "com" "gov" "mil" "net" "org"
                                      "edu" "aero" "biz" "coop" "info"
				      "museum" "name" "pro" (= 2 alpha))))
    (domain/common . (seq (+ domain-atom #\.) top-level-domain))
    ;;(email-local-part . (seq (+ (or (~ #\") string))))
    (email-local-part . (+ (or alphanumeric #\_ #\- #\. #\+)))
    (email . (seq email-local-part #\@ domain))
    (url-char . (or alnum #\_ #\- #\+ #\\ #\= #\~ #\. #\, #\& #\;
                    (seq "%" hex-digit hex-digit)))
    (url-final-char . (or alnum #\_ #\- #\+ #\\ #\= #\~ #\&
                          (seq "%" hex-digit hex-digit)))
    (http-url . (w/nocase
                 "http" (? "s") "://"
                 (or domain ipv4-address) ;; (seq "[" ipv6-address "]")
                 (? ":" (+ numeric)) ;; port
                 ;; path
                 (? "/" (* (or url-char "/"))
                    (? "?" (* url-char))                      ;; query
                    (? "#" (? (* url-char) url-final-char)) ;; fragment
                    )))

    ))


;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;; SRE->tNFA compilation
;;
;; A tagged NFA (tNFA) state is a numbered node with a list of
;; pattern->number transitions, where pattern is character set range,
;; or epsilon (indicating an empty transition).
;;
;; (Only) epsilon transitions may be *tagged*.  Each tag represents
;; either the start or the end of a submatch.
;;
;; There may be overlapping ranges - since it's an NFA we process it
;; by considering all possible transitions.

(define *nfa-presize* 128)  ;; constant
(define *nfa-num-fields* 4) ;; constant

(define (nfa-num-states nfa) (quotient (vector-length nfa) *nfa-num-fields*))
(define (nfa-start-state nfa) (- (nfa-num-states nfa) 1))

(define (nfa-num-tags nfa)
  (vector-ref nfa 0))
(define (nfa-highest-map-index nfa)
  (vector-ref nfa 1))
(define (nfa-set-highest-map-index! nfa idx)
  (vector-set! nfa 1 idx))

(define (nfa-get-state-trans nfa i)
  (if (= i 0) '() (vector-ref nfa (* i *nfa-num-fields*))))
(define (nfa-set-state-trans! nfa i x)
  (vector-set! nfa (* i *nfa-num-fields*) x))

(define (nfa-get-epsilons nfa i)
  (if (= i 0) '() (vector-ref nfa (+ (* i *nfa-num-fields*) 1))))
(define (nfa-set-epsilons! nfa i x)
  (vector-set! nfa (+ (* i *nfa-num-fields*) 1) x))
(define (nfa-add-epsilon! nfa i x t)
  (let ((eps (nfa-get-epsilons nfa i)))
    (if (not (assv x eps))
        (nfa-set-epsilons! nfa i (cons (cons x t) eps)))))

(define (nfa-get-reorder-commands nfa mst)
  (cond ((assoc mst (vector-ref nfa (+ (* (mst-hash mst) *nfa-num-fields*) 2)))
         => cdr)
        (else #f)))
(define (nfa-set-reorder-commands! nfa mst x)
  (let ((i (+ (* (mst-hash mst) *nfa-num-fields*) 2)))
    (vector-set! nfa i (cons (cons mst x) (vector-ref nfa i)))))

(define (nfa-get-closure nfa mst)
  (cond ((assoc mst (vector-ref nfa (+ (* (mst-hash mst) *nfa-num-fields*) 3)))
         => cdr)
        (else #f)))
(define (nfa-add-closure! nfa mst x)
  (let ((i (+ (* (mst-hash mst) *nfa-num-fields*) 3)))
    (vector-set! nfa i (cons (cons mst x) (vector-ref nfa i)))))

;; Compile and return the vector of NFA states (in groups of
;; *nfa-num-fields* packed elements).  The start state will be the
;; last element(s) of the vector, and all remaining states will be in
;; descending numeric order, with state 0 being the unique accepting
;; state.
(define (sre->nfa sre init-flags)
  (let* ((buf (make-vector (* *nfa-presize* *nfa-num-fields*) '()))
         ;; Get cons cells and map them to numeric submatch indexes.
         ;; Doing it here is slightly easier than integrating into the loop below
         (match-index
          (let lp ((sre (list sre)) (max 0) (res '()))
            (cond
             ((not (pair? sre))
              ;; We abuse the transitions slot for state 0 (the final state,
              ;; which can have no transitions) to store the number of tags.
              (vector-set! buf 0 (* max 2))
              ;; We abuse the epsilons slot for state 0 to store the highest
              ;; encountered memory slot mapping index.  Initialize to -1.
              (vector-set! buf 1 -1)
              res)
             ((pair? (car sre))
              ;; The appends here should be safe (are they?)
              (case (caar sre)
                (($ submatch => submatch-named)
                 (lp (append (cdar sre) (cdr sre)) (+ max 1)
                     (cons (cons (car sre) max) res)))
                (else (lp (append (car sre) (cdr sre)) max res))))
             (else (lp (cdr sre) max res))))))
    ;; we loop over an implicit sequence list
    (define (lp ls n flags next)
      (define (new-state-number state)
        (max n (+ 1 state)))
      (define (add-state! n2 trans-ls)
        (if (>= (* n2 *nfa-num-fields*) (vector-length buf))
            (let ((tmp (make-vector (* 2 (vector-length buf)) '())))
              (do ((i (- (vector-length buf) 1) (- i 1)))
                  ((< i 0))
                (vector-set! tmp i (vector-ref buf i)))
              (set! buf tmp)))
        (nfa-set-state-trans! buf n2 trans-ls)
        n2)
      (define (extend-state! next trans-cs)
        (and next
             (add-state! (new-state-number next) (cons trans-cs next))))
      (define (add-char-state! next ch)
        (let ((alt (char-altcase ch)))
          (if (flag-set? flags ~case-insensitive?)
              (extend-state! next (cset-union (char->cset ch) (char->cset alt)))
              (extend-state! next (char->cset ch)))))
      (if (null? ls)
          next
          (cond
           ((or (eq? 'epsilon (car ls)) (equal? "" (car ls)))
            ;; chars and epsilons go directly into the transition table
            (let ((next (lp (cdr ls) n flags next)))
              (and next
                   (let ((new (add-state! (new-state-number next) '())))
                     (nfa-add-epsilon! buf new next #f)
                     new))))
           ((string? (car ls))
            ;; process literal strings a char at a time
            (let ((next (lp (cdr ls) n flags next)))
              (and next
                   (let lp2 ((i (- (string-length (car ls)) 1))
                             (next next))
                     (if (< i 0)
                         next
                         (lp2 (- i 1)
                              (add-char-state! next (string-ref (car ls) i))))
                     ))))
           ((char? (car ls))
            (add-char-state! (lp (cdr ls) n flags next) (car ls)))
           ((symbol? (car ls))
            (let ((cell (assq (car ls) sre-named-definitions)))
              (and cell
                   (lp (cons (if (procedure? (cdr cell))
                                 ((cdr cell))
                                 (cdr cell))
                             (cdr ls))
                       n
                       flags
                       next))))
           ((pair? (car ls))
            (cond
             ((string? (caar ls))       ; Enumerated character set
              (let ((set (if (flag-set? flags ~case-insensitive?)
                             (cset-case-insensitive (string->cset (caar ls)))
                             (string->cset (caar ls)))))
               (extend-state! (lp (cdr ls) n flags next) set)))
             (else
              (case (caar ls)
                ((seq :)
                 ;; for an explicit sequence, just append to the list
                 (lp (append (cdar ls) (cdr ls)) n flags next))
                ((w/case w/nocase w/utf8 w/noutf8)
                 (let* ((next (lp (cdr ls) n flags next))
                        (flags ((if (memq (caar ls) '(w/case w/utf8))
                                    flag-clear
                                    flag-join)
                                flags
                                (if (memq (caar ls) '(w/case w/nocase))
                                    ~case-insensitive?
                                    ~utf8?))))
                   (and next
                        (lp (cdar ls) (new-state-number next) flags next))))
                ((/ - & ~)
                 (let ((range (sre->cset (car ls)
                                         (flag-set? flags ~case-insensitive?))))
                   (extend-state! (lp (cdr ls) n flags next)
                                  range)))
                ((or)
                 (let ((next (lp (cdr ls) n flags next)))
                   (and
                    next
                    (if (null? (cdar ls))
                        ;; empty (or) always fails
                        (add-state! (new-state-number next) '())
                        ;; compile both branches and insert epsilon
                        ;; transitions to either
                        (let* ((b (lp (list (sre-alternate (cddar ls)))
                                      (new-state-number next)
                                      flags
                                      next))
                               (a (and b
                                       (lp (list (cadar ls))
                                           (new-state-number (max b next))
                                           flags
                                           next))))
                          (and a
                               (let ((c (add-state! (new-state-number (max a b))
                                                    '())))
                                 (nfa-add-epsilon! buf c a #f)
                                 (nfa-add-epsilon! buf c b #f)
                                 c)))))))
                ((?)
                 (let ((next (lp (cdr ls) n flags next)))
                   ;; insert an epsilon transition directly to next
                   (and
                    next
                    (let ((a (lp (cdar ls) (new-state-number next) flags next)))
                      (if a
                          (nfa-add-epsilon! buf a next #f))
                      a))))
                ((+ *)
                 (let ((next (lp (cdr ls) n flags next)))
                   (and
                    next
                    (let* ((new (lp '(epsilon)
                                    (new-state-number next)
                                    flags
                                    next))
                           (a (lp (cdar ls) (new-state-number new) flags new)))
                      (cond
                       (a
                        ;; for *, insert an epsilon transition as in ? above
                        (if (eq? '* (caar ls))
                            (nfa-add-epsilon! buf a new #f))
                        ;; for both, insert a loop back to self
                        (nfa-add-epsilon! buf new a #f)))
                      a))))
                ;; need to add these to the match extractor first,
                ;; but they tend to generate large DFAs
                ;;((=)
                ;; (lp (append (vector->list
                ;;              (make-vector (cadar ls)
                ;;                           (sre-sequence (cddar ls))))
                ;;             (cdr ls))
                ;;     n flags next))
                ;;((>=)
                ;; (lp (append (vector->list
                ;;              (make-vector (- (cadar ls) 1)
                ;;                           (sre-sequence (cddar ls))))
                ;;             (cons `(+ ,@(cddar ls)) (cdr ls)))
                ;;     n flags next))
                ;;((**)
                ;; (lp (append (vector->list
                ;;              (make-vector (cadar ls)
                ;;                           (sre-sequence (cdddar ls))))
                ;;             (map
                ;;              (lambda (x) `(? ,x))
                ;;              (vector->list
                ;;               (make-vector (- (caddar ls) (cadar ls))
                ;;                            (sre-sequence (cdddar ls)))))
                ;;             (cdr ls))
                ;;     n flags next))
                ;; ignore submatches altogether
                (($ submatch)
                 (let* ((pre-tag (* (cdr (assq (car ls) match-index)) 2))
                        (post-tag (+ pre-tag 1))
                        (next (lp (cdr ls) n flags next)))
                   (and next
                        (let* ((after (add-state! (new-state-number next) '()))
                               (sub (lp (list (sre-sequence (cdar ls)))
                                        (new-state-number after) flags after))
                               (before (and sub (add-state! (new-state-number sub) '()))))
                          (cond (before
                                 (nfa-add-epsilon! buf before sub pre-tag)
                                 (nfa-add-epsilon! buf after next post-tag)))
                          before))))
                ((=> submatch-named)
                 (let* ((pre-tag (* (cdr (assq (car ls) match-index)) 2))
                        (post-tag (+ pre-tag 1))
                        (next (lp (cdr ls) n flags next)))
                   (and next
                        (let* ((after (add-state! (new-state-number next) '()))
                               (sub (lp (list (sre-sequence (cddar ls)))
                                        (new-state-number after) flags after))
                               (before (and sub (add-state! (new-state-number sub) '()))))
                          (cond (before
                                 (nfa-add-epsilon! buf before sub pre-tag)
                                 (nfa-add-epsilon! buf after next post-tag)))
                          before))))
                (else
                 (cond
                  ((assq (caar ls) sre-named-definitions)
                   => (lambda (cell)
                        (if (procedure? (cdr cell))
                            (lp (cons (apply (cdr cell) (cdar ls)) (cdr ls))
                                n flags next)
                            (error "non-procedure in op position" (caar ls)))))
                  (else #f)))))))
           (else
            #f))))
    (let ((len (lp (list sre) 1 init-flags 0)))
      (and len
           (let ((nfa (make-vector (* *nfa-num-fields* (+ len 1)))))
             (do ((i (- (vector-length nfa) 1) (- i 1)))
                 ((< i 0))
               (vector-set! nfa i (vector-ref buf i)))
             nfa)))))

;; We don't really want to use this, we use the closure compilation
;; below instead, but this is included for reference and testing the
;; sre->nfa conversion.

;; (define (nfa-match nfa str)
;;   (let ((matches (make-vector (nfa-num-tags nfa) #f)))
;;     (let lp ((pos 0) (ls (string->list str)) (state (nfa-start-state nfa)) (epsilons '()))
;;       (and (or (and (null? ls) (zero? state))
;;                (let ((t (nfa-get-state-trans nfa state)))
;;                  (and (not (null? t)) (not (null? ls))
;;                       (cset-contains? (car t) (car ls))
;;                       (lp (+ pos 1) (cdr ls) (cdr t) '())))
;;                (any (lambda (e)
;;                       (let ((old-matches (vector-copy matches)))
;;                         (cond ((cdr e)
;;                                (vector-set! matches (cdr e) pos)))
;;                         (or (and (not (memv (car e) epsilons))
;;                                  (lp pos ls (car e) (cons (car e) epsilons)))
;;                             ;; reset match, apparently this branch failed
;;                             (begin (set! matches old-matches) #f))))
;;                     (nfa-get-epsilons nfa state)))
;;            matches))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;; NFA multi-state representation

(define *mst-first-state-index* 3)

(define (mst-mappings-summary mst)
  (vector-ref mst 0))

(define (mst-num-states mst)
  (vector-ref mst 1))

(define (mst-num-states-set! mst num)
  (vector-set! mst 1 num))

(define (mst-hash mst)
  ;; We could do (modulo X (nfa-num-states nfa)) here which would be faster,
  ;; but we can't assume a full numerical tower (and updating *could*
  ;; produce a bignum), so we do it each time when updating the hash.
  (vector-ref mst 2))

(define (mst-hash-set! mst hash)
  (vector-set! mst 2 hash))

;; Returns #f if NFA state does not occur in multi-state
(define (mst-state-mappings mst state)
  (vector-ref mst (+ state *mst-first-state-index*)))

(define (mst-state-mappings-set! mst state mappings)
  (vector-set! mst (+ state *mst-first-state-index*) mappings))

;; A multi-state holds a set of states with their tag-to-slot mappings.
;; Slot 0 contains a summary of all mappings for all states in the multi-state.
;; Slot 1 contains the total number of states in the multi-state.
;; Slot 2 contains a hash value, which is used for quick lookup of cached
;; reorder-commands or epsilon-closure in the NFA.  This is the sum of all
;; state numbers plus each tag value (once per occurrence).  This is a silly
;; hashing calculation, but it seems to produce a well-spread out hash table and
;; it has the added advantage that we can use the value as a quick check if the
;; state is definitely NOT equivalent to another in mst-same-states?
;; The other slots contain mappings for each corresponding state.

(define (make-mst nfa)
  (let ((mst (make-vector (+ (nfa-num-states nfa) *mst-first-state-index*) #f)))
    (vector-set! mst 0 (make-vector (nfa-num-tags nfa) '())) ; tag summary
    (vector-set! mst 1 0)               ; total number of states
    (vector-set! mst 2 0)               ; states and tags hash
    mst))

;; NOTE: This doesn't do a deep copy of the mappings.  Don't mutate them!
(define (mst-copy mst)
  (let ((v (vector-copy mst)))
    (vector-set! v 0 (vector-copy (vector-ref mst 0)))
    v))

(define (nfa-state->mst nfa state mappings)
  (let ((mst (make-mst nfa)))
    (mst-add! nfa mst state mappings)
    mst))

;; Extend multi-state with a state and add its tag->slot mappings.
(define (mst-add! nfa mst state mappings)
  (let ((hash-value (mst-hash mst)))
    (cond ((not (mst-state-mappings mst state)) ;  Update state hash & count?
           (set! hash-value (+ hash-value state))
           (mst-num-states-set! mst (+ (mst-num-states mst) 1))))
    (mst-state-mappings-set! mst state mappings)
    (let ((all-mappings (mst-mappings-summary mst)))
      (for-each
       (lambda (tag&slot)
         (let* ((t (car tag&slot))
                (s (cdr tag&slot))
                (m (vector-ref all-mappings t)))
           (cond ((not (memv s m))
                  (set! hash-value (+ hash-value t))
                  (vector-set! all-mappings t (cons s m))))))
       mappings))
    (mst-hash-set! mst (modulo hash-value (nfa-num-states nfa)))))

;; Same as above, but skip updating mappings summary.
;; Called when we know all the tag->slot mappings are already in the summary.
(define (mst-add/fast! nfa mst state mappings)
  (cond ((not (mst-state-mappings mst state)) ;  Update state hash & count?
         (mst-hash-set!
          mst (modulo (+ (mst-hash mst) state)
                      (nfa-num-states nfa)))
         (mst-num-states-set! mst (+ (mst-num-states mst) 1))))
  (mst-state-mappings-set! mst state mappings))

;; Same as above, assigning a new slot for a tag.  This slot is then
;; added to the summary, if it isn't in there yet.  This is more efficient
;; than looping through all the mappings.
(define (mst-add-tagged! nfa mst state mappings tag slot)
  (let* ((mappings-summary (mst-mappings-summary mst))
         (summary-tag-slots (vector-ref mappings-summary tag))
         (new-mappings (let lp ((m mappings)
                                (res '()))
                         (cond ((null? m) (cons (cons tag slot) res))
                               ((= (caar m) tag)
                                (append res (cons (cons tag slot) (cdr m))))
                               (else (lp (cdr m) (cons (car m) res))))))
         (hash-value (mst-hash mst)))
    (cond ((not (mst-state-mappings mst state)) ;  Update state hash & count?
           (set! hash-value (+ hash-value state))
           (mst-num-states-set! mst (+ (mst-num-states mst) 1))))
    (mst-state-mappings-set! mst state new-mappings)
    (cond ((not (memv slot summary-tag-slots)) ; Update tag/slot summary
           (set! hash-value (+ hash-value tag))
           (vector-set! mappings-summary tag (cons slot summary-tag-slots))))
    (mst-hash-set! mst (modulo hash-value (nfa-num-states nfa)))
    new-mappings))

(define (mst-same-states? a b)
  ;; First check if hash and state counts match, then check each state
  (and (= (mst-hash a) (mst-hash b))
       (= (mst-num-states a) (mst-num-states b))
       (let ((len (vector-length a)))
         (let lp ((i *mst-first-state-index*))
           (or (= i len)
               (and (equal? (not (vector-ref a i))
                            (not (vector-ref b i)))
                    (lp (+ i 1))))))))

(define (mst-fold mst kons knil)
  (let ((limit (vector-length mst)))
    (let lp ((i *mst-first-state-index*)
             (acc knil))
      (if (= i limit)
          acc
          (let ((m (vector-ref mst i)))
            (lp (+ i 1) (if m (kons (- i *mst-first-state-index*) m acc) acc)))))))

;; Find the lowest fresh index for this tag that's unused
;; in the multi-state.  This also updates the nfa's highest
;; tag counter if a completely new slot number was assigned.
(define (next-index-for-tag! nfa tag mst)
  (let* ((highest (nfa-highest-map-index nfa))
         (tag-slots (vector-ref (mst-mappings-summary mst) tag))
         (new-index (do ((slot 0 (+ slot 1)))
                        ((not (memv slot tag-slots)) slot))))
    (cond ((> new-index highest)
           (nfa-set-highest-map-index! nfa new-index)))
    new-index))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;; tNFA->DFA compilation
;; During processing, the DFA is a list of the form:
;;
;;   ((annotated-tNFA-states ...) finalizer transitions ...)
;;
;; where the transitions are as in the NFA, except there are no
;; epsilons, duplicate characters or overlapping char-set ranges, and
;; the states moved to are closures (sets of NFA states).  Multiple
;; DFA states may be accepting states.  If the state is an accepting state,
;; the finalizer is a list of (tag . memory-slot) retrieval commands.
;; tNFA-states are annotated with mappings which store the tag values of
;; memory slots, if any.  There is always at most one slot for a tag.
;;
;; The DFA itself simulates a NFA by representing all the simultaneous
;; states the NFA can be in at any given point in time as one DFA state.
;; The tag values are ambiguous since each NFA transition can set a tag.
;; To solve this we keep a bank of memory slots around which tracks tag
;; values for each distinct path through the NFA.
;;
;; Once we get to a final state we can pluck the tag values from the
;; memory slots corresponding to the path through which the NFA could have
;; reached the final state.  To resolve ambiguities, states are assigned
;; priorities, and the path to the final state is chosen correspondingly.
;;
;; For a more detailed explanation about this process, see
;; Ville Laurikari; ``NFAs with Tagged Transitions, their Conversion to
;; Deterministic Automata and Application to Regular Expressions'' (2000).
;; Laurikari also wrote a master's thesis about this approach which is
;; less terse but the algorithms are not exactly the same.
;; ``Efficient submatch addressing for regular expressions'' (2001).
;; This implementation follows the 2000 paper where they differ.

(define (nfa->dfa nfa . o)
  (let* ((max-states (and (pair? o) (car o)))
         (start (nfa-state->mst nfa (nfa-start-state nfa) '()))
         (start-closure (nfa-epsilon-closure nfa start))
         ;; Set up a special "initializer" state from which we reach the
         ;; start-closure to ensure that leading tags are set properly.
         (init-set (tag-set-commands-for-closure nfa start start-closure '()))
         (dummy (make-mst nfa))
         (init-state (list dummy #f `((,start-closure #f () . ,init-set)))))
    ;; Unmarked states are just sets of NFA states with tag-maps, marked states
    ;; are sets of NFA states with transitions to sets of NFA states
    (let lp ((unmarked-states (list start-closure))
             (marked-states (list init-state))
             (dfa-size 0))
      (cond
       ((null? unmarked-states)
        ;; Abuse finalizer slot for storing the number of memory slots we need
        (set-car! (cdr init-state) (+ (nfa-highest-map-index nfa) 1))
        (dfa-renumber (reverse marked-states)))
       ((and max-states (> dfa-size max-states)) ; Too many DFA states
        #f)
       ((assoc (car unmarked-states) marked-states) ; Seen set of NFA-states?
        (lp (cdr unmarked-states) marked-states dfa-size))
       (else
        (let ((dfa-state (car unmarked-states)))
          (let lp2 ((trans (get-distinct-transitions nfa dfa-state))
                    (unmarked-states (cdr unmarked-states))
                    (dfa-trans '()))
            (if (null? trans)
                (let ((finalizer (mst-state-mappings dfa-state 0)))
                  (lp unmarked-states
                      (cons (list dfa-state finalizer dfa-trans) marked-states)
                      (+ dfa-size 1)))
                (let* ((closure (nfa-epsilon-closure nfa (cdar trans)))
                       (reordered
                        (find-reorder-commands nfa closure marked-states))
                       (copy-cmds (if reordered (cdr reordered) '()))
                       ;; Laurikari doesn't mention what "k" is, but it seems it
                       ;; must be the mappings of the state's reach
                       (set-cmds (tag-set-commands-for-closure
                                  nfa (cdar trans) closure copy-cmds))
                       (trans-closure (if reordered (car reordered) closure)))
                  (lp2 (cdr trans)
                       (if reordered
                           unmarked-states
                           (cons trans-closure unmarked-states))
                       (cons `(,trans-closure
                               ,(caar trans) ,copy-cmds . ,set-cmds)
                             dfa-trans)))))))))))

;; When the conversion is complete we renumber the DFA sets-of-states
;; in order and convert the result to a vector for fast lookup.
;; Charsets containing single characters are converted to those characters
;; for quick matching of the literal parts in a regex.
(define (dfa-renumber states)
  (let ((indexes (let lp ((i 0) (states states) (indexes '()))
                   (if (null? states)
                       indexes
                       (lp (+ i 1) (cdr states)
                           (cons (cons (caar states) i) indexes)))))
        (dfa (make-vector (length states))))
    (do ((i 0 (+ i 1))
         (states states (cdr states)))
        ((null? states) dfa)
      (let ((maybe-finalizer (cadar states))
            (transitions (caddar states)))
       (vector-set!
        dfa i
        (cons maybe-finalizer
              (map (lambda (tr)
                     `(,(and (cadr tr) (maybe-cset->char (cadr tr)))
                       ,(cdr (assoc (car tr) indexes)) . ,(cddr tr)))
                   transitions)))))))

;; Extract all distinct ranges and the potential states they can transition
;; to from a given set of states.  Any ranges that would overlap with
;; distinct characters are split accordingly.
;; This function is like "reach" in Laurikari's papers, but for each
;; possible distinct range of characters rather than per character.
(define (get-distinct-transitions nfa annotated-states)
  (define (csets-intersect? a b)
    (let ((i (cset-intersection a b)))
      (and (not (cset-empty? i)) i)))
  (mst-fold
   annotated-states
   (lambda (st mappings res)
     (let ((trans (nfa-get-state-trans nfa st))) ; Always one state per trans
       (if (null? trans)
           res
           (let lp ((ls res) (cs (car trans)) (state (cdr trans)) (res '()))
             (cond
              ;; State not seen yet?  Add a new state transition
              ((null? ls)
               ;; TODO: We should try to find an existing DFA state
               ;; with only this NFA state in it, and extend the cset
               ;; with the current one.  This produces smaller DFAs,
               ;; but takes longer to compile.
               (cons (cons cs (nfa-state->mst nfa state mappings))
                     res))
              ((cset=? cs (caar ls))
               ;; Add state to existing set for this charset
               (mst-add! nfa (cdar ls) state mappings)
               (append ls res))
              ((csets-intersect? cs (caar ls)) =>
               (lambda (intersection)
                 (let* ((only-in-new (cset-difference cs (caar ls)))
                        (only-in-old (cset-difference (caar ls) cs))
                        (states-in-both (cdar ls))
                        (states-for-old
                         (and (not (cset-empty? only-in-old))
                              (mst-copy states-in-both)))
                        (res (if states-for-old
                                 (cons (cons only-in-old states-for-old) res)
                                 res)))
                   (mst-add! nfa states-in-both state mappings)
                   ;; Add this state to the states already here and
                   ;; restrict to the overlapping charset and continue
                   ;; with the remaining subset of the new cset (if
                   ;; nonempty)
                   (if (cset-empty? only-in-new)
                       (cons (cons intersection states-in-both)
                             (append (cdr ls) res))
                       (lp (cdr ls) only-in-new state
                           (cons (cons intersection states-in-both) res))))))
              (else
               (lp (cdr ls) cs state (cons (car ls) res))))))))
   '()))

;; The epsilon-closure of a set of states is all the states reachable
;; through epsilon transitions, with the tags encountered on the way.
(define (nfa-epsilon-closure-internal nfa annotated-states)
  ;; The stack _MUST_ be in this order for some reason I don't fully understand
  (let lp ((stack (mst-fold annotated-states
                                        (lambda (st m res)
                                          (cons (cons st m) res))
                                        '()))
           (priorities (make-vector (nfa-num-states nfa) 0))
           (closure (mst-copy annotated-states)))
    (if (null? stack)
        closure
        (let ((prio/orig-state (caar stack)) ; priority is just the state nr.
              (mappings (cdar stack)))
          (let lp2 ((trans (nfa-get-epsilons nfa prio/orig-state))
                    (stack (cdr stack)))
            (if (null? trans)
                (lp stack priorities closure)
                (let ((state (caar trans)))
                  (cond
                   ;; Our priorities are inverted because we start at
                   ;; the highest state number and go downwards to 0.
                   ((> prio/orig-state (vector-ref priorities state))
                    (vector-set! priorities state prio/orig-state)
                    (cond
                     ((cdar trans) =>   ; tagged transition?
                      (lambda (tag)
                       (let* ((index (next-index-for-tag! nfa tag closure))
                              (new-mappings
                               (mst-add-tagged!
                                nfa closure state mappings tag index)))
                         (lp2 (cdr trans)
                              (cons (cons state new-mappings) stack)))))
                     (else
                      (mst-add/fast! nfa closure state mappings)
                      (lp2 (cdr trans) (cons (cons state mappings) stack)))))
                   (else (lp2 (cdr trans) stack))))))))))

(define (nfa-epsilon-closure nfa states)
  (or (nfa-get-closure nfa states)
      (let ((res (nfa-epsilon-closure-internal nfa states)))
        (nfa-add-closure! nfa states res)
        res)))

;; Generate "set" commands for all tags in the closure that are
;; not present in the original state.
(define (tag-set-commands-for-closure nfa orig-state closure copy-cmds)
  (let ((num-tags (nfa-num-tags nfa))
        (closure-summary (mst-mappings-summary closure))
        (state-summary (mst-mappings-summary orig-state)))
    (let lp ((t 0) (cmds '()))
      (if (= t num-tags)
          cmds
          (let lp2 ((s1 (vector-ref closure-summary t))
                    (s2 (vector-ref state-summary t))
                    (cmds cmds))
            (cond ((null? s1) (lp (+ t 1) cmds))
                  ((or (memv (car s1) s2) ; Tag in original state?
                       ;; Try to avoid generating set-commands for any slots
                       ;; that will be overwritten by copy commands, but only
                       ;; if that slot isn't copied to another slot.
                       (and (not (null? copy-cmds)) ; null check for performance
                            ;; Look for copy command overwriting this tag-slot
                            (any (lambda (c)
                                   (and (= (vector-ref c 0) t)
                                        (= (vector-ref c 2) (car s1))))
                                 copy-cmds)
                            ;; Ensure it's not copied to another slot before
                            ;; discarding the set-command.
                            (not (any (lambda (c)
                                        (and (= (vector-ref c 0) t)
                                             (= (vector-ref c 1) (car s1))))
                                      copy-cmds))))
                   (lp2 (cdr s1) s2 cmds))
                  (else (lp2 (cdr s1) s2
                             (cons (cons t (car s1)) cmds)))))))))

;; Look in dfa-states for an already existing state which matches
;; closure, but has different tag value mappings.
;; If found, calculate reordering commands so we can map the closure
;; to that state instead of adding a new DFA state.
;; This is completely handwaved away in Laurikari's paper (it basically
;; says "insert reordering algorithm here"), so this code was constructed
;; after some experimentation.  In other words, bugs be here.
(define (find-reorder-commands-internal nfa closure dfa-states)
  (let ((num-tags (nfa-num-tags nfa))
        (closure-summary (mst-mappings-summary closure)))
    (let lp ((dfa-states dfa-states))
      (if (null? dfa-states)
          #f
          (if (not (mst-same-states? (caar dfa-states) closure))
              (lp (cdr dfa-states))
              (let lp2 ((state-summary (mst-mappings-summary (caar dfa-states)))
                        (t 0) (cmds '()))
                (if (= t num-tags)
                    (cons (caar dfa-states) cmds)
                    (let lp3 ((closure-slots (vector-ref closure-summary t))
                              (state-slots (vector-ref state-summary t))
                              (cmds cmds))
                      (cond ((null? closure-slots)
                             (if (null? state-slots)
                                 (lp2 state-summary (+ t 1) cmds)
                                 (lp (cdr dfa-states))))
                            ((null? state-slots) (lp (cdr dfa-states)))
                            (else (lp3 (cdr closure-slots)
                                       (cdr state-slots)
                                       (if (= (car closure-slots) (car state-slots))
                                           cmds
                                           (cons (vector t (car closure-slots) (car state-slots))
                                                 cmds)))))))))))))

(define (find-reorder-commands nfa closure dfa-states)
  (or (nfa-get-reorder-commands nfa closure)
      (let ((res (find-reorder-commands-internal nfa closure dfa-states)))
        (nfa-set-reorder-commands! nfa closure res)
        res)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;; Closure Compilation
;;
;; We use this for non-regular expressions instead of an interpreted
;; NFA matcher.  We use backtracking anyway, but this gives us more
;; freedom of implementation, allowing us to support patterns that
;; can't be represented in the above NFA representation.

(define (sre->procedure sre . o)
  (define names
    (if (and (pair? o) (pair? (cdr o))) (cadr o) (sre-names sre 1 '())))
  (let lp ((sre sre)
           (n 1)
           (flags (if (pair? o) (car o) ~none))
           (next (lambda (cnk init src str i end matches fail)
                   (irregex-match-start-chunk-set! matches 0 (car init))
                   (irregex-match-start-index-set! matches 0 (cdr init))
                   (irregex-match-end-chunk-set! matches 0 src)
                   (irregex-match-end-index-set! matches 0 i)
                   (%irregex-match-fail-set! matches fail)
                   matches)))
    ;; XXXX this should be inlined
    (define (rec sre) (lp sre n flags next))
    (cond
     ((pair? sre)
      (if (string? (car sre))
          (sre-cset->procedure
           (sre->cset (car sre) (flag-set? flags ~case-insensitive?))
           next)
          (case (car sre)
            ((~ - & /)
             (sre-cset->procedure
              (sre->cset sre (flag-set? flags ~case-insensitive?))
              next))
            ((or)
             (case (length (cdr sre))
               ((0) (lambda (cnk init src str i end matches fail) (fail)))
               ((1) (rec (cadr sre)))
               (else
                (let* ((first (rec (cadr sre)))
                       (rest (lp (sre-alternate (cddr sre))
                                 (+ n (sre-count-submatches (cadr sre)))
                                 flags
                                 next)))
                  (lambda (cnk init src str i end matches fail)
                    (first cnk init src str i end matches
                           (lambda ()
                             (rest cnk init src str i end matches fail))))))))
            ((w/case)
             (lp (sre-sequence (cdr sre))
                 n
                 (flag-clear flags ~case-insensitive?)
                 next))
            ((w/nocase)
             (lp (sre-sequence (cdr sre))
                 n
                 (flag-join flags ~case-insensitive?)
                 next))
            ((w/utf8)
             (lp (sre-sequence (cdr sre)) n (flag-join flags ~utf8?) next))
            ((w/noutf8)
             (lp (sre-sequence (cdr sre)) n (flag-clear flags ~utf8?) next))
            ((seq :)
             (case (length (cdr sre))
               ((0) next)
               ((1) (rec (cadr sre)))
               (else
                (let ((rest (lp (sre-sequence (cddr sre))
                                (+ n (sre-count-submatches (cadr sre)))
                                flags
                                next)))
                  (lp (cadr sre) n flags rest)))))
            ((?)
             (let ((body (rec (sre-sequence (cdr sre)))))
               (lambda (cnk init src str i end matches fail)
                 (body cnk init src str i end matches
                       (lambda () (next cnk init src str i end matches fail))))))
            ((??)
             (let ((body (rec (sre-sequence (cdr sre)))))
               (lambda (cnk init src str i end matches fail)
                 (next cnk init src str i end matches
                       (lambda () (body cnk init src str i end matches fail))))))
            ((*)
             (cond
              ((sre-empty? (sre-sequence (cdr sre)))
               (error "invalid sre: empty *" sre))
              (else
               (let ((body (rec (list '+ (sre-sequence (cdr sre))))))
                 (lambda (cnk init src str i end matches fail)
                   (body cnk init src str i end matches
                         (lambda ()
                           (next cnk init src str i end matches fail))))))))
            ((*?)
             (cond
              ((sre-empty? (sre-sequence (cdr sre)))
               (error "invalid sre: empty *?" sre))
              (else
               (letrec
                   ((body
                     (lp (sre-sequence (cdr sre))
                         n
                         flags
                         (lambda (cnk init src str i end matches fail)
                           (next cnk init src str i end matches
                                 (lambda ()
                                   (body cnk init src str i end matches fail)
                                   ))))))
                 (lambda (cnk init src str i end matches fail)
                   (next cnk init src str i end matches
                         (lambda ()
                           (body cnk init src str i end matches fail))))))))
            ((+)
             (cond
              ((sre-empty? (sre-sequence (cdr sre)))
               (error "invalid sre: empty +" sre))
              (else
               (letrec
                   ((body
                     (lp (sre-sequence (cdr sre))
                         n
                         flags
                         (lambda (cnk init src str i end matches fail)
                           (body cnk init src str i end matches
                                 (lambda ()
                                   (next cnk init src str i end matches fail)
                                   ))))))
                 body))))
            ((=)
             (rec `(** ,(cadr sre) ,(cadr sre) ,@(cddr sre))))
            ((>=)
             (rec `(** ,(cadr sre) #f ,@(cddr sre))))
            ((**)
             (cond
              ((or (and (number? (cadr sre))
                        (number? (caddr sre))
                        (> (cadr sre) (caddr sre)))
                   (and (not (cadr sre)) (caddr sre)))
               (lambda (cnk init src str i end matches fail) (fail)))
              (else
               (letrec
                   ((from (cadr sre))
                    (to (caddr sre))
                    (body-contents (sre-sequence (cdddr sre)))
                    (body
                     (lambda (count)
                       (lp body-contents
                           n
                           flags
                           (lambda (cnk init src str i end matches fail)
                             (if (and to (= count to))
                                 (next cnk init src str i end matches fail)
                                 ((body (+ 1 count))
                                  cnk init src str i end matches
                                  (lambda ()
                                    (if (>= count from)
                                        (next cnk init src str i end matches fail)
                                        (fail))))))))))
                 (if (and (zero? from) to (zero? to))
                     next
                     (lambda (cnk init src str i end matches fail)
                       ((body 1) cnk init src str i end matches
                        (lambda ()
                          (if (zero? from)
                              (next cnk init src str i end matches fail)
                              (fail))))))))))
            ((**?)
             (cond
              ((or (and (number? (cadr sre))
                        (number? (caddr sre))
                        (> (cadr sre) (caddr sre)))
                   (and (not (cadr sre)) (caddr sre)))
               (lambda (cnk init src str i end matches fail) (fail)))
              (else
               (letrec
                   ((from (cadr sre))
                    (to (caddr sre))
                    (body-contents (sre-sequence (cdddr sre)))
                    (body
                     (lambda (count)
                       (lp body-contents
                           n
                           flags
                           (lambda (cnk init src str i end matches fail)
                             (if (< count from)
                                 ((body (+ 1 count)) cnk init
                                  src str i end matches fail)
                                 (next cnk init src str i end matches
                                       (lambda ()
                                         (if (and to (= count to))
                                             (fail)
                                             ((body (+ 1 count)) cnk init
                                              src str i end matches fail))))))))))
                 (if (and (zero? from) to (zero? to))
                     next
                     (lambda (cnk init src str i end matches fail)
                       (if (zero? from)
                           (next cnk init src str i end matches
                                 (lambda ()
                                   ((body 1) cnk init src str i end matches fail)))
                           ((body 1) cnk init src str i end matches fail))))))))
            ((word)
             (rec `(seq bow ,@(cdr sre) eow)))
            ((word+)
             (rec `(seq bow (+ (& (or alphanumeric "_")
                                  (or ,@(cdr sre)))) eow)))
            ((posix-string)
             (rec (string->sre (cadr sre))))
            ((look-ahead)
             (let ((check
                    (lp (sre-sequence (cdr sre))
                        n
                        flags
                        (lambda (cnk init src str i end matches fail) i))))
               (lambda (cnk init src str i end matches fail)
                 (if (check cnk init src str i end matches (lambda () #f))
                     (next cnk init src str i end matches fail)
                     (fail)))))
            ((neg-look-ahead)
             (let ((check
                    (lp (sre-sequence (cdr sre))
                        n
                        flags
                        (lambda (cnk init src str i end matches fail) i))))
               (lambda (cnk init src str i end matches fail)
                 (if (check cnk init src str i end matches (lambda () #f))
                     (fail)
                     (next cnk init src str i end matches fail)))))
            ((look-behind neg-look-behind)
             (let ((check
                    (lp (sre-sequence
                         (cons '(* any) (append (cdr sre) '(eos))))
                        n
                        flags
                        (lambda (cnk init src str i end matches fail) i))))
               (lambda (cnk init src str i end matches fail)
                 (let* ((cnk* (wrap-end-chunker cnk src i))
                        (str* ((chunker-get-str cnk*) (car init)))
                        (i* (cdr init))
                        (end* ((chunker-get-end cnk*) (car init))))
                   (if ((if (eq? (car sre) 'look-behind) (lambda (x) x) not)
                        (check cnk* init (car init) str* i* end* matches
                               (lambda () #f)))
                       (next cnk init src str i end matches fail)
                       (fail))))))
            ((atomic)
             (let ((once
                    (lp (sre-sequence (cdr sre))
                        n
                        flags
                        (lambda (cnk init src str i end matches fail) i))))
               (lambda (cnk init src str i end matches fail)
                 (let ((j (once cnk init src str i end matches (lambda () #f))))
                   (if j
                       (next cnk init src str j end matches fail)
                       (fail))))))
            ((if)
             (let* ((test-submatches (sre-count-submatches (cadr sre)))
                    (pass (lp (caddr sre) flags (+ n test-submatches) next))
                    (fail (if (pair? (cdddr sre))
                              (lp (cadddr sre)
                                  (+ n test-submatches
                                     (sre-count-submatches (caddr sre)))
                                  flags
                                  next)
                              (lambda (cnk init src str i end matches fail)
                                (fail)))))
               (cond
                ((or (number? (cadr sre)) (symbol? (cadr sre)))
                 (let ((index
                        (if (symbol? (cadr sre))
                            (cond
                             ((assq (cadr sre) names) => cdr)
                             (else
                              (error "unknown named backref in SRE IF" sre)))
                            (cadr sre))))
                   (lambda (cnk init src str i end matches fail2)
                     (if (%irregex-match-end-chunk matches index)
                         (pass cnk init src str i end matches fail2)
                         (fail cnk init src str i end matches fail2)))))
                (else
                 (let ((test (lp (cadr sre) n flags pass)))
                   (lambda (cnk init src str i end matches fail2)
                     (test cnk init src str i end matches
                           (lambda () (fail cnk init src str i end matches fail2)))
                     ))))))
            ((backref backref-ci)
             (let ((n (cond ((number? (cadr sre)) (cadr sre))
                            ((assq (cadr sre) names) => cdr)
                            (else (error "unknown backreference" (cadr sre)))))
                   (compare (if (or (eq? (car sre) 'backref-ci)
                                    (flag-set? flags ~case-insensitive?))
                                string-ci=?
                                string=?)))
               (lambda (cnk init src str i end matches fail)
                 (let ((s (irregex-match-substring matches n)))
                   (if (not s)
                       (fail)
                       ;; XXXX create an abstract subchunk-compare
                       (let lp ((src src)
                                (str str)
                                (i i)
                                (end end)
                                (j 0)
                                (len (string-length s)))
                         (cond
                          ((<= len (- end i))
                           (cond
                            ((compare (substring s j (string-length s))
                                      (substring str i (+ i len)))
                             (next cnk init src str (+ i len) end matches fail))
                            (else
                             (fail))))
                          (else
                           (cond
                            ((compare (substring s j (+ j (- end i)))
                                      (substring str i end))
                             (let ((src2 ((chunker-get-next cnk) src)))
                               (if src2
                                   (lp src2
                                       ((chunker-get-str cnk) src2)
                                       ((chunker-get-start cnk) src2)
                                       ((chunker-get-end cnk) src2)
                                       (+ j (- end i))
                                       (- len (- end i)))
                                   (fail))))
                            (else
                             (fail)))))))))))
            ((dsm)
             (lp (sre-sequence (cdddr sre)) (+ n (cadr sre)) flags next))
            (($ submatch)
             (let ((body
                    (lp (sre-sequence (cdr sre))
                        (+ n 1)
                        flags
                        (lambda (cnk init src str i end matches fail)
                          (let ((old-source
                                 (%irregex-match-end-chunk matches n))
                                (old-index
                                 (%irregex-match-end-index matches n)))
                            (irregex-match-end-chunk-set! matches n src)
                            (irregex-match-end-index-set! matches n i)
                            (next cnk init src str i end matches
                                  (lambda ()
                                    (irregex-match-end-chunk-set!
                                     matches n old-source)
                                    (irregex-match-end-index-set!
                                     matches n old-index)
                                    (fail))))))))
               (lambda (cnk init src str i end matches fail)
                 (let ((old-source (%irregex-match-start-chunk matches n))
                       (old-index (%irregex-match-start-index matches n)))
                   (irregex-match-start-chunk-set! matches n src)
                   (irregex-match-start-index-set! matches n i)
                   (body cnk init src str i end matches
                         (lambda ()
                           (irregex-match-start-chunk-set!
                            matches n old-source)
                           (irregex-match-start-index-set!
                            matches n old-index)
                           (fail)))))))
            ((=> submatch-named)
             (rec `(submatch ,@(cddr sre))))
            (else
             (error "unknown regexp operator" sre)))))
     ((symbol? sre)
      (case sre
        ((any)
         (lambda (cnk init src str i end matches fail)
           (if (< i end)
               (next cnk init src str (+ i 1) end matches fail)
               (let ((src2 ((chunker-get-next cnk) src)))
                 (if src2
                     (let ((str2 ((chunker-get-str cnk) src2))
                           (i2 ((chunker-get-start cnk) src2))
                           (end2 ((chunker-get-end cnk) src2)))
                       (next cnk init src2 str2 (+ i2 1) end2 matches fail))
                     (fail))))))
        ((nonl)
         (lambda (cnk init src str i end matches fail)
           (if (< i end)
               (if (not (eqv? #\newline (string-ref str i)))
                   (next cnk init src str (+ i 1) end matches fail)
                   (fail))
               (let ((src2 ((chunker-get-next cnk) src)))
                 (if src2
                     (let ((str2 ((chunker-get-str cnk) src2))
                           (i2 ((chunker-get-start cnk) src2))
                           (end2 ((chunker-get-end cnk) src2)))
                       (if (not (eqv? #\newline (string-ref str2 i2)))
                           (next cnk init src2 str2 (+ i2 1) end2 matches fail)
                           (fail)))
                     (fail))))))
        ((bos)
         (lambda (cnk init src str i end matches fail)
           (if (and (eq? src (car init)) (eqv? i (cdr init)))
               (next cnk init src str i end matches fail)
               (fail))))
        ((bol)
         (lambda (cnk init src str i end matches fail)
           (if (let ((ch (if (> i ((chunker-get-start cnk) src))
                             (string-ref str (- i 1))
                             (chunker-prev-char cnk init src))))
                 (or (not ch) (eqv? #\newline ch)))
               (next cnk init src str i end matches fail)
               (fail))))
        ((bow)
         (lambda (cnk init src str i end matches fail)
           (if (and (if (> i ((chunker-get-start cnk) src))
                        (not (char-alphanumeric? (string-ref str (- i 1))))
                        (let ((ch (chunker-prev-char cnk init src)))
                          (or (not ch) (not (char-alphanumeric? ch)))))
                    (if (< i end)
                        (char-alphanumeric? (string-ref str i))
                        (let ((next ((chunker-get-next cnk) src)))
                          (and next
                               (char-alphanumeric?
                                (string-ref ((chunker-get-str cnk) next)
                                            ((chunker-get-start cnk) next)))))))
               (next cnk init src str i end matches fail)
               (fail))))
        ((eos)
         (lambda (cnk init src str i end matches fail)
           (if (and (>= i end) (not ((chunker-get-next cnk) src)))
               (next cnk init src str i end matches fail)
               (fail))))
        ((eol)
         (lambda (cnk init src str i end matches fail)
           (if (if (< i end)
                   (eqv? #\newline (string-ref str i))
                   (let ((src2 ((chunker-get-next cnk) src)))
                     (if (not src2)
                         #t
                         (eqv? #\newline
                               (string-ref ((chunker-get-str cnk) src2)
                                           ((chunker-get-start cnk) src2))))))
               (next cnk init src str i end matches fail)
               (fail))))
        ((eow)
         (lambda (cnk init src str i end matches fail)
           (if (and (if (< i end)
                        (not (char-alphanumeric? (string-ref str i)))
                        (let ((ch (chunker-next-char cnk src)))
                          (or (not ch) (not (char-alphanumeric? ch)))))
                    (if (> i ((chunker-get-start cnk) src))
                        (char-alphanumeric? (string-ref str (- i 1)))
                        (let ((prev (chunker-prev-char cnk init src)))
                          (or (not prev) (char-alphanumeric? prev)))))
               (next cnk init src str i end matches fail)
               (fail))))
        ((nwb)  ;; non-word-boundary
         (lambda (cnk init src str i end matches fail)
           (let ((c1 (if (< i end)
                         (string-ref str i)
                         (chunker-next-char cnk src)))
                 (c2 (if (> i ((chunker-get-start cnk) src))
                         (string-ref str (- i 1))
                         (chunker-prev-char cnk init src))))
             (if (and c1 c2
                      (if (char-alphanumeric? c1)
                          (char-alphanumeric? c2)
                          (not (char-alphanumeric? c2))))
                 (next cnk init src str i end matches fail)
                 (fail)))))
        ((epsilon)
         next)
        (else
         (let ((cell (assq sre sre-named-definitions)))
           (if cell
               (rec (cdr cell))
               (error "unknown regexp" sre))))))
     ((char? sre)
      (if (flag-set? flags ~case-insensitive?)
          ;; case-insensitive
          (lambda (cnk init src str i end matches fail)
            (if (>= i end)
                (let lp ((src2 ((chunker-get-next cnk) src)))
                  (if src2
                      (let ((str2 ((chunker-get-str cnk) src2))
                            (i2 ((chunker-get-start cnk) src2))
                            (end2 ((chunker-get-end cnk) src2)))
                        (if (>= i2 end2)
                            (lp ((chunker-get-next cnk) src2))
                            (if (char-ci=? sre (string-ref str2 i2))
                                (next cnk init src2 str2 (+ i2 1) end2
                                      matches fail)
                                (fail))))
                      (fail)))
                (if (char-ci=? sre (string-ref str i))
                    (next cnk init src str (+ i 1) end matches fail)
                    (fail))))
          ;; case-sensitive
          (lambda (cnk init src str i end matches fail)
            (if (>= i end)
                (let lp ((src2 ((chunker-get-next cnk) src)))
                  (if src2
                      (let ((str2 ((chunker-get-str cnk) src2))
                            (i2 ((chunker-get-start cnk) src2))
                            (end2 ((chunker-get-end cnk) src2)))
                        (if (>= i2 end2)
                            (lp ((chunker-get-next cnk) src2))
                            (if (char=? sre (string-ref str2 i2))
                                (next cnk init src2 str2 (+ i2 1) end2
                                      matches fail)
                                (fail))))
                      (fail)))
                (if (char=? sre (string-ref str i))
                    (next cnk init src str (+ i 1) end matches fail)
                    (fail))))
          ))
     ((string? sre)
      (rec (sre-sequence (string->list sre)))
;; XXXX reintroduce faster string matching on chunks
;;       (if (flag-set? flags ~case-insensitive?)
;;           (rec (sre-sequence (string->list sre)))
;;           (let ((len (string-length sre)))
;;             (lambda (cnk init src str i end matches fail)
;;               (if (and (<= (+ i len) end)
;;                        (%substring=? sre str 0 i len))
;;                   (next str (+ i len) matches fail)
;;                   (fail)))))
      )
     (else
      (error "unknown regexp" sre)))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;; Character Sets
;;
;; Simple character sets as lists of ranges, as used in the NFA/DFA
;; compilation.  This is not especially efficient, but is portable and
;; scalable for any range of character sets.

(define (sre-cset->procedure cset next)
  (lambda (cnk init src str i end matches fail)
    (if (< i end)
        (if (cset-contains? cset (string-ref str i))
            (next cnk init src str (+ i 1) end matches fail)
            (fail))
        (let ((src2 ((chunker-get-next cnk) src)))
          (if src2
              (let ((str2 ((chunker-get-str cnk) src2))
                    (i2 ((chunker-get-start cnk) src2))
                    (end2 ((chunker-get-end cnk) src2)))
                (if (cset-contains? cset (string-ref str2 i2))
                    (next cnk init src2 str2 (+ i2 1) end2 matches fail)
                    (fail)))
              (fail))))))

(define (make-cset) (vector))
(define (range->cset from to) (vector (cons from to)))
(define (char->cset ch) (vector (cons ch ch)))
(define (cset-empty? cs) (zero? (vector-length cs)))
(define (maybe-cset->char cs)
  (if (and (= (vector-length cs) 1)
           (char=? (car (vector-ref cs 0)) (cdr (vector-ref cs 0))))
      (car (vector-ref cs 0))
      cs))

;; Since csets are sorted, there's only one possible representation of any cset
(define cset=? equal?)

(define (cset-size cs)
  (let ((len (vector-length cs)))
   (let lp ((i 0) (size 0))
     (if (= i len)
         size
         (lp (+ i 1) (+ size 1
                        (- (char->integer (cdr (vector-ref cs i)))
                           (char->integer (car (vector-ref cs i))))))))))

(define (cset->plist cs)
  (let lp ((i (- (vector-length cs) 1))
           (res '()))
    (if (= i -1)
        res
        (lp (- i 1) (cons (car (vector-ref cs i))
                          (cons (cdr (vector-ref cs i)) res))))))

(define (plist->cset ls)
  (let lp ((ls ls) (res (make-cset)))
    (if (null? ls)
        res
        (lp (cddr ls) (cset-union (range->cset (car ls) (cadr ls)) res)))))

(define (string->cset s)
  (fold (lambda (ch cs)
          (cset-adjoin cs ch))
        (make-cset)
        (string->list s)))

(define (sre->cset sre . o)
  (let lp ((sre sre) (ci? (and (pair? o) (car o))))
    (define (rec sre) (lp sre ci?))
    (cond
     ((pair? sre)
      (if (string? (car sre))
          (if ci?
              (cset-case-insensitive (string->cset (car sre)))
              (string->cset (car sre)))
          (case (car sre)
            ((~)
             (cset-complement
              (fold cset-union (rec (cadr sre)) (map rec (cddr sre)))))
            ((&)
             (fold cset-intersection (rec (cadr sre)) (map rec (cddr sre))))
            ((-)
             (fold (lambda (x res) (cset-difference res x))
                   (rec (cadr sre))
                   (map rec (cddr sre))))
            ((/)
             (let ((res (plist->cset (sre-flatten-ranges (cdr sre)))))
               (if ci?
                   (cset-case-insensitive res)
                   res)))
            ((or)
             (fold cset-union (rec (cadr sre)) (map rec (cddr sre))))
            ((w/case)
             (lp (sre-alternate (cdr sre)) #f))
            ((w/nocase)
             (lp (sre-alternate (cdr sre)) #t))
            (else
             (error "not a valid sre char-set operator" sre)))))
     ((char? sre) (if ci?
                      (cset-case-insensitive (range->cset sre sre))
                      (range->cset sre sre)))
     ((string? sre) (rec (list sre)))
     (else
      (let ((cell (assq sre sre-named-definitions)))
        (if cell
            (rec (cdr cell))
            (error "not a valid sre char-set" sre)))))))

(define (cset->sre cset)
  (cons '/
        (fold (lambda (x res) (cons (car x) (cons (cdr x) res)))
              '()
              (vector->list cset))))

(define (cset-contains? cset ch)
  ;; CHICKEN: Type assumption added for performance.  This is a very
  ;; hot code path, so every type improvement matters.
  (assume ((cset (vector-of (pair char char)))
           (ch char))
    (let ((len (vector-length cset)))
      (case len
        ((0) #f)
        ((1) (let ((range (vector-ref cset 0)))
               (and (char<=? ch (cdr range)) (char<=? (car range) ch))))
        (else (let lp ((lower 0) (upper len))
                (let* ((middle (quotient (+ upper lower) 2))
                       (range (vector-ref cset middle)))
                  (cond ((char<? (cdr range) ch)
                         (let ((next (+ middle 1)))
                           (and (< next upper) (lp next upper))))
                        ((char<? ch (car range))
                         (and (< lower middle) (lp lower middle)))
                        (else #t)))))))))

(define (char-ranges-union a b)
  (cons (if (char<=? (car a) (car b)) (car a) (car b))
        (if (char>=? (cdr a) (cdr b)) (cdr a) (cdr b))))

(define (cset-union a b)
  (let union-range ((a (vector->list a))
                    (b (vector->list b))
                    (res '()))
    (cond
     ((null? a) (list->vector (reverse (append (reverse b) res))))
     ((null? b) (list->vector (reverse (append (reverse a) res))))
     (else
      (let ((a-range (car a))
            (b-range (car b)))
        (cond
         ;; Can't use next-char here since it will cause an error if we are
         ;; comparing a cset with the maximum character as high char.
         ((< (+ (char->integer (cdr a-range)) 1) (char->integer (car b-range)))
          (union-range (cdr a) b (cons a-range res)))
         ((> (char->integer (car a-range)) (+ (char->integer (cdr b-range)) 1))
          (union-range (cdr b) a (cons b-range res)))
         ((char>=? (cdr a-range) (car b-range))
          (union-range (cons (char-ranges-union a-range b-range) (cdr a))
                       (cdr b)
                       res))
         (else (union-range (cdr a)
                            (cons (char-ranges-union a-range b-range) (cdr b))
                            res))))))))

(define (cset-adjoin cs ch) (cset-union cs (char->cset ch)))

(define (next-char c)
  (integer->char (+ (char->integer c) 1)))

(define (prev-char c)
  (integer->char (- (char->integer c) 1)))

(define (cset-difference a b)
  (let diff ((a (vector->list a))
             (b (vector->list b))
             (res '()))
    (cond ((null? a) (list->vector (reverse res)))
          ((null? b) (list->vector (append (reverse res) a)))
          (else
           (let ((a-range (car a))
                 (b-range (car b)))
             (cond
              ((char<? (cdr a-range) (car b-range))
               (diff (cdr a) b (cons a-range res)))
              ((char>? (car a-range) (cdr b-range))
               (diff a (cdr b) res))
              ((and (char<=? (car b-range) (car a-range))
                    (char>=? (cdr b-range) (cdr a-range)))
               (diff (cdr a) b res))
              (else (let ((left (and (char<? (car a-range) (car b-range))
                                     (cons (car a-range)
                                           (prev-char (car b-range)))))
                          (right (and (char>? (cdr a-range) (cdr b-range))
                                      (cons (next-char (cdr b-range))
                                            (cdr a-range)))))
                      (diff (if right (cons right (cdr a)) (cdr a))
                            b
                            (if left (cons left res) res))))))))))

(define (min-char a b)
  (if (char<? a b) a b))

(define (max-char a b)
  (if (char<? a b) b a))

(define (cset-intersection a b)
  (let intersect ((a (vector->list a))
                  (b (vector->list b))
                  (res '()))
    (if (or (null? a) (null? b))
        (list->vector (reverse res))
        (let ((a-range (car a))
              (b-range (car b)))
          (cond
           ((char<? (cdr a-range) (car b-range))
            (intersect (cdr a) b res))
           ((char>? (car a-range) (cdr b-range))
            (intersect a (cdr b) res))
           (else
            (let ((result (cons (max-char (car b-range) (car a-range))
                                (min-char (cdr a-range) (cdr b-range)))))
              (intersect (if (char>? (cdr a-range) (cdr result))
                             a (cdr a))
                         (if (char>? (cdr b-range) (cdr result))
                             b (cdr b))
                         (cons result res)))))))))

(define (cset-complement a)
  (cset-difference (sre->cset *all-chars*) a))

;; This could use some optimization :)
(define (cset-case-insensitive a)
  (let lp ((ls (vector->list a)) (res '()))
    (cond ((null? ls) (list->vector (reverse res)))
          ((and (char-alphabetic? (caar ls))
                (char-alphabetic? (cdar ls)))
           (lp (cdr ls)
               (reverse
                (vector->list
                 (cset-union (cset-union (list->vector (reverse res))
                                         (vector (car ls)))
                             (range->cset (char-altcase (caar ls))
                                          (char-altcase (cdar ls))))))))
          (else (lp (cdr ls) (reverse (vector->list
                                       (cset-union (list->vector (reverse res))
                                                   (vector (car ls))))))))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;; Match and Replace Utilities

(define (irregex-fold/fast irx kons knil str . o)
  (if (not (string? str)) (error 'irregex-fold "not a string" str))
  (let* ((irx (irregex irx))
         (matches (irregex-new-matches irx))
         (finish (or (and (pair? o) (car o)) (lambda (i acc) acc)))
         (start (if (and (pair? o) (pair? (cdr o))) (cadr o) 0))
         (end (if (and (pair? o) (pair? (cdr o)) (pair? (cddr o)))
                  (caddr o)
                  (string-length str)))
         (init-src (list str start end))
         (init (cons init-src start)))
    (if (not (and (integer? start) (exact? start)))
        (error 'irregex-fold "not an exact integer" start))
    (if (not (and (integer? end) (exact? end)))
        (error 'irregex-fold "not an exact integer" end))
    (irregex-match-chunker-set! matches irregex-basic-string-chunker)
    (let lp ((src init-src) (from start) (i start) (acc knil))
      (if (>= i end)
          (finish from acc)
          (let ((m (irregex-search/matches
                    irx
                    irregex-basic-string-chunker
                    init
                    src
                    i
                    matches)))
            (if (not m)
                (finish from acc)
                (let ((j-start (%irregex-match-start-index m 0))
                      (j (%irregex-match-end-index m 0))
                      (acc (kons from m acc)))
                  (irregex-reset-matches! matches)
                  (cond
                   ((flag-set? (irregex-flags irx) ~consumer?)
                    (finish j acc))
                   ((= j j-start)
                    ;; skip one char forward if we match the empty string
                    (lp (list str j end) j (+ j 1) acc))
                   (else
                    (lp (list str j end) j j acc))))))))))

(define (irregex-fold irx kons . args)
  (if (not (procedure? kons)) (error 'irregex-fold "not a procedure" kons))
  (let ((kons2 (lambda (i m acc) (kons i (irregex-copy-matches m) acc))))
    (apply irregex-fold/fast irx kons2 args)))

(define (irregex-fold/chunked/fast irx kons knil cnk start . o)
  (let* ((irx (irregex irx))
         (matches (irregex-new-matches irx))
         (finish (or (and (pair? o) (car o)) (lambda (src i acc) acc)))
         (i (if (and (pair? o) (pair? (cdr o)))
                (cadr o)
                ((chunker-get-start cnk) start)))
         (init (cons start i)))
    (if (not (integer? i)) (error 'irregex-fold/chunked "not an integer" i))
    (irregex-match-chunker-set! matches cnk)
    (let lp ((start start) (i i) (acc knil))
      (if (not start)
          (finish start i acc)
          (let ((m (irregex-search/matches irx cnk init start i matches)))
            (if (not m)
                (finish start i acc)
                (let ((end-src (%irregex-match-end-chunk m 0))
                      (end-index (%irregex-match-end-index m 0)))
                  (if (and (eq? end-src start) (= end-index i))
                      (if (>= end-index ((chunker-get-end cnk) end-src ))
                          (let ((next ((chunker-get-next cnk) end-src)))
                            (lp next ((chunker-get-start cnk) next) acc))
                          (lp end-src (+ end-index 1) acc))
                      (let ((acc (kons start i m acc)))
                        (irregex-reset-matches! matches)
                        (if (flag-set? (irregex-flags irx) ~consumer?)
                            (finish end-src end-index acc)
                            (lp end-src end-index acc)))))))))))

(define (irregex-fold/chunked irx kons . args)
  (if (not (procedure? kons)) (error 'irregex-fold/chunked "not a procedure" kons))
  (let ((kons2 (lambda (s i m acc) (kons s i (irregex-copy-matches m) acc))))
    (apply irregex-fold/chunked/fast irx kons2 args)))

(define (irregex-replace irx str . o)
  (if (not (string? str)) (error 'irregex-replace "not a string" str))
  (let ((m (irregex-search irx str)))
    (if m
        (string-cat-reverse
         (cons (substring str (%irregex-match-end-index m 0) (string-length str))
               (append (irregex-apply-match m o)
                       (list (substring str 0 (%irregex-match-start-index m 0)))
                       )))
        str)))

(define (irregex-replace/all irx str . o)
  (if (not (string? str)) (error 'irregex-replace/all "not a string" str))
  (irregex-fold/fast
   irx
   (lambda (i m acc)
     (let ((m-start (%irregex-match-start-index m 0)))
       (if (>= i m-start)
           (append (irregex-apply-match m o) acc)
           (append (irregex-apply-match m o)
                   (cons (substring str i m-start) acc)))))
   '()
   str
   (lambda (i acc)
     (let ((end (string-length str)))
       (string-cat-reverse (if (>= i end)
                               acc
                               (cons (substring str i end) acc)))))))

(define (irregex-apply-match m ls)
  (let lp ((ls ls) (res '()))
    (if (null? ls)
        res
        (cond
         ((integer? (car ls))
          (lp (cdr ls)
              (cons (or (irregex-match-substring m (car ls)) "") res)))
         ((procedure? (car ls))
          (lp (cdr ls) (cons ((car ls) m) res)))
         ((symbol? (car ls))
          (case (car ls)
            ((pre)
             (lp (cdr ls)
                 (cons (substring (car (%irregex-match-start-chunk m 0))
                                  0
                                  (%irregex-match-start-index m 0))
                       res)))
            ((post)
             (let ((str (car (%irregex-match-start-chunk m 0))))
               (lp (cdr ls)
                   (cons (substring str
                                    (%irregex-match-end-index m 0)
                                    (string-length str))
                         res))))
            (else
             (cond
              ((assq (car ls) (irregex-match-names m))
               => (lambda (x) (lp (cons (cdr x) (cdr ls)) res)))
              (else
               (error "unknown match replacement" (car ls)))))))
         (else
          (lp (cdr ls) (cons (car ls) res)))))))

(define (irregex-extract irx str . o)
  (if (not (string? str)) (error 'irregex-extract "not a string" str))
  (apply irregex-fold/fast
         irx
         (lambda (i m a) (cons (irregex-match-substring m) a))
         '()
         str
         (lambda (i a) (reverse a))
         o))

(define (irregex-split irx str . o)
  (if (not (string? str)) (error 'irregex-split "not a string" str))
  (let ((start (if (pair? o) (car o) 0))
        (end (if (and (pair? o) (pair? (cdr o))) (cadr o) (string-length str))))
    (irregex-fold/fast
     irx
     (lambda (i m a)
       (cond
        ((= i (%irregex-match-start-index m 0))
         a)
        (else
         (cons (substring str i (%irregex-match-start-index m 0)) a))))
     '()
     str
     (lambda (i a)
       (let lp ((ls (if (= i end) a (cons (substring str i end) a)))
                (res '())
                (was-char? #f))
         (cond
          ((null? ls) res)
          ((char? (car ls))
           (lp (cdr ls)
               (if (or was-char? (null? res))
                   (cons (string (car ls)) res)
                   (cons (string-append (string (car ls)) (car res))
                         (cdr res)))
               #t))
          (else (lp (cdr ls) (cons (car ls) res) #f)))))
     start
     end)))