1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
|
;;;; matchable.scm -- portable hygienic pattern matcher
;;
;; This code is written by Alex Shinn and placed in the
;; Public Domain. All warranties are disclaimed.
;; Written in fully portable SYNTAX-RULES, with a few non-portable
;; bits at the end of the file conditioned out with COND-EXPAND.
;; This is a simple generative pattern matcher - each pattern is
;; expanded into the required tests, calling a failure continuation if
;; the tests pass. This makes the logic easy to follow and extend,
;; but produces sub-optimal code in cases where you have many similar
;; clauses due to repeating the same tests. Nonetheless a smart
;; compiler should be able to remove the redundant tests. For
;; MATCH-LET and DESTRUCTURING-BIND type uses there is no performance
;; hit.
;; 2008/03/20 - fixing bug where (a ...) matched non-lists
;; 2008/03/15 - removing redundant check in vector patterns
;; 2007/09/04 - fixing quasiquote patterns
;; 2007/07/21 - allowing ellipse patterns in non-final list positions
;; 2007/04/10 - fixing potential hygiene issue in match-check-ellipse
;; (thanks to Taylor Campbell)
;; 2007/04/08 - clean up, commenting
;; 2006/12/24 - bugfixes
;; 2006/12/01 - non-linear patterns, shared variables in OR, get!/set!
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; This is always passed a message, yet won't match the message, and
;; thus always results in a compile-time error.
(define-syntax match-syntax-error
(syntax-rules ()
((_)
(match-syntax-error "invalid match-syntax-error usage"))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; The basic interface. MATCH just performs some basic syntax
;; validation, binds the match expression to a temporary variable, and
;; passes it on to MATCH-NEXT.
(define-syntax match
(syntax-rules ()
((match)
(match-syntax-error "missing match expression"))
((match atom)
(match-syntax-error "missing match clause"))
((match (app ...) (pat . body) ...)
(let ((v (app ...)))
(match-next v (app ...) (set! (app ...)) (pat . body) ...)))
((match #(vec ...) (pat . body) ...)
(let ((v #(vec ...)))
(match-next v v (set! v) (pat . body) ...)))
((match atom (pat . body) ...)
(match-next atom atom (set! atom) (pat . body) ...))
))
;; MATCH-NEXT passes each clause to MATCH-ONE in turn with its failure
;; thunk, which is expanded by recursing MATCH-NEXT on the remaining
;; clauses.
(define-syntax match-next
(syntax-rules (=>)
;; no more clauses, the match failed
((match-next v g s)
(error 'match "no matching pattern"))
;; named failure continuation
((match-next v g s (pat (=> failure) . body) . rest)
(let ((failure (lambda () (match-next v g s . rest))))
;; match-one analyzes the pattern for us
(match-one v pat g s (match-drop-ids (begin . body)) (failure) ())))
;; anonymous failure continuation, give it a dummy name
((match-next v g s (pat . body) . rest)
(match-next v g s (pat (=> failure) . body) . rest))))
;; MATCH-ONE first checks for ellipse patterns, otherwise passes on to
;; MATCH-TWO.
(define-syntax match-one
(syntax-rules ()
;; If it's a list of two values, check to see if the second one is
;; an ellipse and handle accordingly, otherwise go to MATCH-TWO.
((match-one v (p q . r) g s sk fk i)
(match-check-ellipse
q
(match-extract-vars p (match-gen-ellipses v p r g s sk fk i) i ())
(match-two v (p q . r) g s sk fk i)))
;; Otherwise, go directly to MATCH-TWO.
((match-one . x)
(match-two . x))))
;; This is the guts of the pattern matcher. We are passed a lot of
;; information in the form:
;;
;; (match-two var pattern getter setter success-k fail-k (ids ...))
;;
;; where VAR is the symbol name of the current variable we are
;; matching, PATTERN is the current pattern, getter and setter are the
;; corresponding accessors (e.g. CAR and SET-CAR! of the pair holding
;; VAR), SUCCESS-K is the success continuation, FAIL-K is the failure
;; continuation (which is just a thunk call and is thus safe to expand
;; multiple times) and IDS are the list of identifiers bound in the
;; pattern so far.
(define-syntax match-two
(syntax-rules (_ ___ quote quasiquote ? $ = and or not set! get!)
((match-two v () g s (sk ...) fk i)
(if (null? v) (sk ... i) fk))
((match-two v (quote p) g s (sk ...) fk i)
(if (equal? v 'p) (sk ... i) fk))
((match-two v (quasiquote p) g s sk fk i)
(match-quasiquote v p g s sk fk i))
((match-two v (and) g s (sk ...) fk i) (sk ... i))
((match-two v (and p q ...) g s sk fk i)
(match-one v p g s (match-one v (and q ...) g s sk fk) fk i))
((match-two v (or) g s sk fk i) fk)
((match-two v (or p) g s sk fk i)
(match-one v p g s sk fk i))
((match-two v (or p ...) g s sk fk i)
(match-extract-vars (or p ...)
(match-gen-or v (p ...) g s sk fk i)
i
()))
((match-two v (not p) g s (sk ...) fk i)
(match-one v p g s (match-drop-ids fk) (sk ... i) i))
((match-two v (get! getter) g s (sk ...) fk i)
(let ((getter (lambda () g))) (sk ... i)))
((match-two v (set! setter) g (s ...) (sk ...) fk i)
(let ((setter (lambda (x) (s ... x)))) (sk ... i)))
((match-two v (? pred p ...) g s sk fk i)
(if (pred v) (match-one v (and p ...) g s sk fk i) fk))
((match-two v (= proc p) g s sk fk i)
(let ((w (proc v)))
(match-one w p g s sk fk i)))
((match-two v (p ___ . r) g s sk fk i)
(match-extract-vars p (match-gen-ellipses v p r g s sk fk i) i ()))
((match-two v (p) g s sk fk i)
(if (and (pair? v) (null? (cdr v)))
(let ((w (car v)))
(match-one w p (car v) (set-car! v) sk fk i))
fk))
((match-two v (p . q) g s sk fk i)
(if (pair? v)
(let ((w (car v)) (x (cdr v)))
(match-one w p (car v) (set-car! v)
(match-one x q (cdr v) (set-cdr! v) sk fk)
fk
i))
fk))
((match-two v #(p ...) g s sk fk i)
(match-vector v 0 () (p ...) sk fk i))
((match-two v _ g s (sk ...) fk i) (sk ... i))
;; Not a pair or vector or special literal, test to see if it's a
;; new symbol, in which case we just bind it, or if it's an
;; already bound symbol or some other literal, in which case we
;; compare it with EQUAL?.
((match-two v x g s (sk ...) fk (id ...))
(let-syntax
((new-sym?
(syntax-rules (id ...)
((new-sym? x sk2 fk2) sk2)
((new-sym? y sk2 fk2) fk2))))
(new-sym? abracadabra ; thanks Oleg
(let ((x v)) (sk ... (id ... x)))
(if (equal? v x) (sk ... (id ...)) fk))))
))
;; QUASIQUOTE patterns
(define-syntax match-quasiquote
(syntax-rules (unquote unquote-splicing quasiquote)
((_ v (unquote p) g s sk fk i)
(match-one v p g s sk fk i))
((_ v ((unquote-splicing p) . rest) g s sk fk i)
(if (pair? v)
(match-one v
(p . tmp)
(match-quasiquote tmp rest g s sk fk)
fk
i)
fk))
((_ v (quasiquote p) g s sk fk i . depth)
(match-quasiquote v p g s sk fk i #f . depth))
((_ v (unquote p) g s sk fk i x . depth)
(match-quasiquote v p g s sk fk i . depth))
((_ v (unquote-splicing p) g s sk fk i x . depth)
(match-quasiquote v p g s sk fk i . depth))
((_ v (p . q) g s sk fk i . depth)
(if (pair? v)
(let ((w (car v)) (x (cdr v)))
(match-quasiquote
w p g s
(match-quasiquote-step x q g s sk fk depth)
fk i . depth))
fk))
((_ v #(elt ...) g s sk fk i . depth)
(if (vector? v)
(let ((ls (vector->list v)))
(match-quasiquote ls (elt ...) g s sk fk i . depth))
fk))
((_ v x g s sk fk i . depth)
(match-one v 'x g s sk fk i))))
(define-syntax match-quasiquote-step
(syntax-rules ()
((match-quasiquote-step x q g s sk fk depth i)
(match-quasiquote x q g s sk fk i . depth))
))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Utilities
;; A CPS utility that takes two values and just expands into the
;; first.
(define-syntax match-drop-ids
(syntax-rules ()
((_ expr ids ...) expr)))
;; Generating OR clauses just involves binding the success
;; continuation into a thunk which takes the identifiers common to
;; each OR clause, and trying each clause, calling the thunk as soon
;; as we succeed.
(define-syntax match-gen-or
(syntax-rules ()
((_ v p g s (sk ...) fk (i ...) ((id id-ls) ...))
(let ((sk2 (lambda (id ...) (sk ... (i ... id ...)))))
(match-gen-or-step
v p g s (match-drop-ids (sk2 id ...)) fk (i ...))))))
(define-syntax match-gen-or-step
(syntax-rules ()
((_ v () g s sk fk i)
;; no OR clauses, call the failure continuation
fk)
((_ v (p) g s sk fk i)
;; last (or only) OR clause, just expand normally
(match-one v p g s sk fk i))
((_ v (p . q) g s sk fk i)
;; match one and try the remaining on failure
(match-one v p g s sk (match-gen-or-step v q g s sk fk i) i))
))
;; We match a pattern (p ...) by matching the pattern p in a loop on
;; each element of the variable, accumulating the bound ids into lists
;; Look at the body - it's just a named let loop, matching each
;; element in turn to the same pattern. This illustrates the
;; simplicity of this generative-style pattern matching. It would be
;; just as easy to implement a tree searching pattern.
(define-syntax match-gen-ellipses
(syntax-rules ()
((_ v p () g s (sk ...) fk i ((id id-ls) ...))
(match-check-identifier p
(let ((p v))
(if (list? p)
(sk ... i)
fk))
(let loop ((ls v) (id-ls '()) ...)
(cond
((null? ls)
(let ((id (reverse id-ls)) ...) (sk ... i)))
((pair? ls)
(let ((w (car ls)))
(match-one w p (car ls) (set-car! ls)
(match-drop-ids (loop (cdr ls) (cons id id-ls) ...))
fk i)))
(else
fk)))))
((_ v p (r ...) g s (sk ...) fk i ((id id-ls) ...))
(match-verify-no-ellipses
(r ...)
(let* ((tail-len (length '(r ...)))
(ls v)
(len (length ls)))
(if (< len tail-len)
fk
(let loop ((ls ls) (n len) (id-ls '()) ...)
(cond
((= n tail-len)
(let ((id (reverse id-ls)) ...)
(match-one ls (r ...) #f #f (sk ... i) fk i)))
((pair? ls)
(let ((w (car ls)))
(match-one w p (car ls) (set-car! ls)
(match-drop-ids
(loop (cdr ls) (- n 1) (cons id id-ls) ...))
fk
i)))
(else
fk)))))))
))
(define-syntax match-verify-no-ellipses
(syntax-rules ()
((_ (x . y) sk)
(match-check-ellipse
x
(match-syntax-error
"multiple ellipse patterns not allowed at same level")
(match-verify-no-ellipses y sk)))
((_ x sk) sk)
))
;; Vector patterns are just more of the same, with the slight
;; exception that we pass around the current vector index being
;; matched.
(define-syntax match-vector
(syntax-rules (___)
((_ v n pats (p q) sk fk i)
(match-check-ellipse q
(match-vector-ellipses v n pats p sk fk i)
(match-vector-two v n pats (p q) sk fk i)))
((_ v n pats (p ___) sk fk i)
(match-vector-ellipses v n pats p sk fk i))
((_ . x)
(match-vector-two . x))))
;; Check the exact vector length, then check each element in turn.
(define-syntax match-vector-two
(syntax-rules ()
((_ v n ((pat index) ...) () sk fk i)
(if (vector? v)
(let ((len (vector-length v)))
(if (= len n)
(match-vector-step v ((pat index) ...) sk fk i)
fk))
fk))
((_ v n (pats ...) (p . q) sk fk i)
(match-vector v (+ n 1) (pats ... (p n)) q sk fk i))
))
(define-syntax match-vector-step
(syntax-rules ()
((_ v () (sk ...) fk i) (sk ... i))
((_ v ((pat index) . rest) sk fk i)
(let ((w (vector-ref v index)))
(match-one w pat (vector-ref v index) (vector-set! v index)
(match-vector-step v rest sk fk)
fk i)))))
;; With a vector ellipse pattern we first check to see if the vector
;; length is at least the required length.
(define-syntax match-vector-ellipses
(syntax-rules ()
((_ v n ((pat index) ...) p sk fk i)
(if (vector? v)
(let ((len (vector-length v)))
(if (>= len n)
(match-vector-step v ((pat index) ...)
(match-vector-tail v p n len sk fk)
fk i)
fk))
fk))))
(define-syntax match-vector-tail
(syntax-rules ()
((_ v p n len sk fk i)
(match-extract-vars p (match-vector-tail-two v p n len sk fk i) i ()))))
(define-syntax match-vector-tail-two
(syntax-rules ()
((_ v p n len (sk ...) fk i ((id id-ls) ...))
(let loop ((j n) (id-ls '()) ...)
(if (>= j len)
(let ((id (reverse id-ls)) ...) (sk ... i))
(let ((w (vector-ref v j)))
(match-one w p (vector-ref v j) (vetor-set! v j)
(match-drop-ids (loop (+ j 1) (cons id id-ls) ...))
fk i)))))))
;; Extract all identifiers in a pattern. A little more complicated
;; than just looking for symbols, we need to ignore special keywords
;; and not pattern forms (such as the predicate expression in ?
;; patterns).
;;
;; (match-extract-vars pattern continuation (ids ...) (new-vars ...))
(define-syntax match-extract-vars
(syntax-rules (_ ___ ? $ = quote quasiquote and or not get! set!)
((match-extract-vars (? pred . p) k i v)
(match-extract-vars p k i v))
((match-extract-vars ($ rec . p) k i v)
(match-extract-vars p k i v))
((match-extract-vars (= proc p) k i v)
(match-extract-vars p k i v))
((match-extract-vars (quote x) (k ...) i v)
(k ... v))
((match-extract-vars (quasiquote x) k i v)
(match-extract-quasiquote-vars x k i v (#t)))
((match-extract-vars (and . p) k i v)
(match-extract-vars p k i v))
((match-extract-vars (or . p) k i v)
(match-extract-vars p k i v))
((match-extract-vars (not . p) k i v)
(match-extract-vars p k i v))
;; A non-keyword pair, expand the CAR with a continuation to
;; expand the CDR.
((match-extract-vars (p q . r) k i v)
(match-check-ellipse
q
(match-extract-vars (p . r) k i v)
(match-extract-vars p (match-extract-vars-step (q . r) k i v) i ())))
((match-extract-vars (p . q) k i v)
(match-extract-vars p (match-extract-vars-step q k i v) i ()))
((match-extract-vars #(p ...) k i v)
(match-extract-vars (p ...) k i v))
((match-extract-vars _ (k ...) i v) (k ... v))
((match-extract-vars ___ (k ...) i v) (k ... v))
;; This is the main part, the only place where we might add a new
;; var if it's an unbound symbol.
((match-extract-vars p (k ...) (i ...) v)
(let-syntax
((new-sym?
(syntax-rules (i ...)
((new-sym? p sk fk) sk)
((new-sym? x sk fk) fk))))
(new-sym? random-sym-to-match
(k ... ((p p-ls) . v))
(k ... v))))
))
;; Stepper used in the above so it can expand the CAR and CDR
;; separately.
(define-syntax match-extract-vars-step
(syntax-rules ()
((_ p k i v ((v2 v2-ls) ...))
(match-extract-vars p k (v2 ... . i) ((v2 v2-ls) ... . v)))
))
(define-syntax match-extract-quasiquote-vars
(syntax-rules (quasiquote unquote unquote-splicing)
((match-extract-quasiquote-vars (quasiquote x) k i v d)
(match-extract-quasiquote-vars x k i v (#t . d)))
((match-extract-quasiquote-vars (unquote-splicing x) k i v d)
(match-extract-quasiquote-vars (unquote x) k i v d))
((match-extract-quasiquote-vars (unquote x) k i v (#t))
(match-extract-vars x k i v))
((match-extract-quasiquote-vars (unquote x) k i v (#t . d))
(match-extract-quasiquote-vars x k i v d))
((match-extract-quasiquote-vars (x . y) k i v (#t . d))
(match-extract-quasiquote-vars
x
(match-extract-quasiquote-vars-step y k i v d) i ()))
((match-extract-quasiquote-vars #(x ...) k i v (#t . d))
(match-extract-quasiquote-vars (x ...) k i v d))
((match-extract-quasiquote-vars x (k ...) i v (#t . d))
(k ... v))
))
(define-syntax match-extract-quasiquote-vars-step
(syntax-rules ()
((_ x k i v d ((v2 v2-ls) ...))
(match-extract-quasiquote-vars x k (v2 ... . i) ((v2 v2-ls) ... . v) d))
))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Gimme some sugar baby.
(define-syntax match-lambda
(syntax-rules ()
((_ clause ...) (lambda (expr) (match expr clause ...)))))
(define-syntax match-lambda*
(syntax-rules ()
((_ clause ...) (lambda expr (match expr clause ...)))))
(define-syntax match-let
(syntax-rules ()
((_ (vars ...) . body)
(match-let/helper let () () (vars ...) . body))
((_ loop . rest)
(match-named-let loop () . rest))))
(define-syntax match-letrec
(syntax-rules ()
((_ vars . body) (match-let/helper letrec () () vars . body))))
(define-syntax match-let/helper
(syntax-rules ()
((_ let ((var expr) ...) () () . body)
(let ((var expr) ...) . body))
((_ let ((var expr) ...) ((pat tmp) ...) () . body)
(let ((var expr) ...)
(match-let* ((pat tmp) ...)
. body)))
((_ let (v ...) (p ...) (((a . b) expr) . rest) . body)
(match-let/helper
let (v ... (tmp expr)) (p ... ((a . b) tmp)) rest . body))
((_ let (v ...) (p ...) ((#(a ...) expr) . rest) . body)
(match-let/helper
let (v ... (tmp expr)) (p ... (#(a ...) tmp)) rest . body))
((_ let (v ...) (p ...) ((a expr) . rest) . body)
(match-let/helper let (v ... (a expr)) (p ...) rest . body))
))
(define-syntax match-named-let
(syntax-rules ()
((_ loop ((pat expr var) ...) () . body)
(let loop ((var expr) ...)
(match-let ((pat var) ...)
. body)))
((_ loop (v ...) ((pat expr) . rest) . body)
(match-named-let loop (v ... (pat expr tmp)) rest . body))))
(define-syntax match-let*
(syntax-rules ()
((_ () . body)
(begin . body))
((_ ((pat expr) . rest) . body)
(match expr (pat (match-let* rest . body))))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Not quite portable bits.
;; Matching ellipses `...' is tricky. A strict interpretation of R5RS
;; would suggest that `...' in the literals list would treat it as a
;; literal in pattern, however no SYNTAX-RULES implementation I'm
;; aware of currently supports this. SRFI-46 support would makes this
;; easy, but SRFI-46 also is widely unsupported.
;; In the meantime we conditionally implement this in whatever
;; low-level macro system is available, defaulting to an
;; implementation which doesn't support `...' and requires the user to
;; match with `___'.
(define-syntax match-check-ellipse
(syntax-rules ___ (...)
((_ ... sk fk) sk)
((_ x sk fk) fk)))
(define-syntax match-check-identifier
(syntax-rules ()
((_ (x . y) sk fk) fk)
((_ #(x ...) sk fk) fk)
((_ x sk fk)
(let-syntax
((sym?
(syntax-rules ()
((sym? x sk2 fk2) sk2)
((sym? y sk2 fk2) fk2))))
(sym? abracadabra sk fk))) ))
|