File: MagnetsElectric.c

package info (click to toggle)
chipmunk 5.3.4-1
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 6,552 kB
  • sloc: ansic: 10,469; objc: 1,845; ruby: 279; perl: 108; makefile: 62; sh: 20
file content (501 lines) | stat: -rw-r--r-- 12,760 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
// This Demo was written by Juan Pablo Carbajal. Nov 2008.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <time.h>
#include <string.h>

#include "chipmunk_private.h"
#include "drawSpace.h"
#include "ChipmunkDemo.h"

#define WIDTH 600
#define HEIGHT 400

#define SINGMAX 10 // Maximum number of singularities per body
#define NMAG 10 // Number of magnets
#define NCHG 10 // Number of charged bodies
#define NMIX 10 // Number of charged magnets

#define COU_MKS  8.987551787e9 // Some physical constants
#define MAG_MKS 1e-7

// Prototypes
struct DataforForce;
typedef void (*SingForceFunc)(struct DataforForce* data);

// Structures
// Singularities
typedef struct ActorSingularity{
	// Number of singularities 
	int Nsing; 
	// Value of the singularities 
	cpFloat value[SINGMAX];
	// Type of the singularities 
	char type[SINGMAX][100]; 
	// Global position of the singularities
	cpVect Gpos[SINGMAX];
	// Local position of the singularities
	cpVect position[SINGMAX];
	// Angle of the singularities measured in the body axes
	cpFloat angle[SINGMAX];
	// Angle of the singularities measured from x
	cpFloat Gangle[SINGMAX];
	// Force function
	SingForceFunc force_func[SINGMAX];
	// Force function
	SingForceFunc torque_func[SINGMAX];
}Sing;

// Data for the force functions
typedef struct DataforForce{
	//Everything in global coordinates
	// Position of the source
	cpVect p0;
	// Observed position
	cpVect p;
	// Relative position source-observed
	cpVect relp;
	// distance, disntace^2, ditance ^3
	cpFloat r[3];
	// angle of the source
	cpFloat ang0;
	// angle of the observed singularity
	cpFloat ang;
	// Foce value
	cpVect F;
	// Torque value
	cpFloat T;
}ForceData;

// Global Varibales
static cpSpace *space;


// **** Forces ****** // 
// Calculate the forces between two bodies. all this functions requieres 
// a pointer to an structure with the necessary fields.

// forces between charges
static void
CoulombForce(ForceData* data){
	data->F=cpvmult(cpvnormalize(data->relp),COU_MKS/data->r[1]);
}

// forces between magnets
static void
MagDipoleForce(ForceData* data){
	static cpFloat phi,alpha,beta,Fr,Fphi;
	
	// Angle of the relative position vector
	phi=cpvtoangle(data->relp);
	alpha=data->ang0;
	beta=data->ang;		

	alpha =phi - alpha;
	beta = phi - beta;
	
	
	// Components in polar coordinates
	Fr=(2.0e0*cos(alpha)*cos(beta) - sin(alpha)*sin(beta));
	Fphi=sin(alpha+beta);
//	printf("%g %g %g %g %g\n",phi,alpha,beta,Fphi);
	
	// Cartesian coordinates
	data->F=cpv(Fr*cos(phi)-Fphi*sin(phi),Fr*sin(phi)+Fphi*cos(phi));
	data->F=cpvmult(data->F,-3.e0*MAG_MKS/(data->r[1]*data->r[1]));
}

static void
MagDipoleTorque(ForceData* data){
	static cpFloat phi,alpha,beta;
	
	phi=cpvtoangle(data->relp);
	alpha=data->ang0;
	beta=data->ang;		
	alpha =phi - alpha;
	beta = phi - beta;

	// Torque. Though we could use a component of F to save some space, 
	// we use another variables for the sake of clarity.
	
	data->T=(MAG_MKS/data->r[2])*(3.0e0*cos(alpha)*sin(beta) + sin(alpha-beta));
}
// ******* // 

// This function fills the data structure for the force functions
// The structure Sing has the information about the singularity (charge or magnet)
static void
FillForceData(Sing* source,int inds, Sing* obs,int indo, ForceData* data)
{
	// Global Position and orientation of the source singularity
	 data->p0=source->Gpos[inds];
	 data->ang0=source->Gangle[inds]; 
	 
	// Global Position and orientation of the observed singularity
	 data->p=obs->Gpos[indo];
	 data->ang=obs->Gangle[indo];
	
	// Derived magnitudes
	 data->relp=cpvsub(data->p,data->p0); //Relative position
	 data->r[0]=cpvlength(data->relp); // Distance
	 data->r[1]=cpvlengthsq(data->relp); // Square Distance
	 data->r[2]=data->r[0]*data->r[1]; // Cubic distance
	 
     source->force_func[inds](data); // The value of the force
	 data->F= cpvmult(data->F,source->value[inds]*obs->value[indo]);
}

// Calculation of the interaction
static void
LRangeForceApply(cpBody *a, cpBody *b){
	
	Sing* aux = (Sing*)a->data;
	Sing* aux2 = (Sing*)b->data;
	cpVect delta;
	// General data needed to calculate interaction
	static ForceData fdata;
	fdata.F=cpvzero;
	
	// Calculate the forces between the charges of different bodies
	for (int i=0; i<aux->Nsing; i++)
	{
		for (int j=0; j<aux2->Nsing; j++)
		{
			if(!strcmp(aux->type[i],aux2->type[j]))
			{
				//printf("%s %s\n",aux->type[i],aux2->type[j]);
				FillForceData (aux2,j,aux,i,&fdata);
				
				//Force applied to body A
				delta=cpvsub(aux->Gpos[i], a->p);
				cpBodyApplyForce(a,fdata.F, delta);
				
	 			if(aux->torque_func[i] != NULL)
				{
					//Torque on A
					aux->torque_func[i](&fdata);
					a->t += aux->value[i]*aux2->value[j]*fdata.T;
					
				}
			}
		}
	}
}

// function for the integration of the positions
// The following functions are variations to the starndrd integration in Chipmunk
// you can go ack to the standard ones by doing the appropiate changes.
static void
ChargedBodyUpdatePositionVerlet(cpBody *body, cpFloat dt)
{
    // Long range interaction
    cpArray *bodies = space->bodies;
	static cpBody* B;
	Sing* aux=(Sing*)body->data;
	Sing* aux2;

	// General data needed to calculate interaction
	static ForceData fdata;
	fdata.F=cpvzero;
	
	for(int i=0; i< bodies->num; i++)
	{
	  B=(cpBody*)bodies->arr[i];
	  aux2=(Sing*)B->data;
	  
	  if(B != body)
	  {
        // Calculate the forces between the singularities of different bodies
        LRangeForceApply(body, B);
	  }
	}
	
	cpVect dp = cpvmult(cpvadd(body->v, body->v_bias), dt);
	dp = cpvadd(dp,cpvmult(cpvmult(body->f, body->m_inv), 0.5e0*dt*dt));
	body->p = cpvadd(body->p, dp);

	cpBodySetAngle(body, body->a + (body->w + body->w_bias)*dt 
				   + 0.5*body->t*body->i_inv*dt*dt);

	// Update position of the singularities
	aux = (Sing*)body->data;
	for (int i=0; i<aux->Nsing; i++)
	{
        aux->Gpos[i]=cpvadd(body->p,cpvrotate(cpv(aux->position[i].x,
										  aux->position[i].y), body->rot));
		aux->Gangle[i]= aux->angle[i] + body->a;
	}
	
            
 	body->v_bias = cpvzero;
	body->w_bias = 0.0f;
}

// function for the integration of the velocities
static void
ChargedBodyUpdateVelocityVerlet(cpBody *body, cpVect gravity, cpFloat damping, cpFloat dt)
{
	body->v = cpvadd(body->v, cpvmult(cpvadd(gravity, cpvmult(body->f, body->m_inv)), 0.5e0*dt));
	body->w = body->w + body->t*body->i_inv*0.5e0*dt;
	
	body->f = cpvzero;
	body->t = 0.0e0;
	
	// Long range interaction
    cpArray *bodies = space->bodies;
	static cpBody* B;

	// General data needed to calculate interaction
	static ForceData fdata;
	fdata.F=cpvzero;
	
	for(int i=0; i< bodies->num; i++)
	{
	  B=(cpBody*)bodies->arr[i];
	  
	  if(B != body)
	  {
        // Calculate the forces between the singularities of different bodies
        LRangeForceApply(body, B);
	  }
	}
	body->v = cpvadd(cpvmult(body->v,damping), cpvmult(cpvadd(gravity, cpvmult(body->f, body->m_inv)), 0.5e0*dt));
	body->w = body->w*damping + body->t*body->i_inv*0.5e0*dt;
}

static void 
update(int ticks)
{
	int steps = 10;
	cpFloat dt = 1.0/60.0/(cpFloat)steps;
	
	cpArray *bodies = space->bodies;

	for(int i=0; i< bodies->num; i++)
		  cpBodyResetForces((cpBody*)bodies->arr[i]);
	
	for(int i=0; i<steps; i++){
		cpSpaceStep(space, dt);
	}
	
}

static void
make_mag(cpVect p, cpFloat ang, cpFloat mag)
{
	int nverts=6;
	cpVect verts[] = {
		cpv(-10,-10),
		cpv(-10, 10),
		cpv( 10, 10),
		cpv( 15, 5),
		cpv( 15, -5),
		cpv( 10,-10)
	};

	cpBody *body = cpBodyNew(1.0, cpMomentForPoly(1.0, nverts, verts, cpvzero));
	body->p = p;
	body->v = cpvzero;
	cpBodySetAngle(body, ang);
	body->w = 0.0e0;
	
    // Load the singularities
    Sing *magnet=(Sing*)cpmalloc(sizeof(Sing));
	magnet->Nsing=1; 
	magnet->value[0]=mag;
	sprintf(magnet->type[0],"magdipole"); 

	// The position and angle could be different form the one of the body
	magnet->position[0]=cpvzero;
	magnet->Gpos[0]=cpvadd(p,magnet->position[0]);
	magnet->angle[0]=0.0f;
	magnet->Gangle[0]=ang;
	
	magnet->force_func[0]=MagDipoleForce;
	magnet->torque_func[0]=MagDipoleTorque;

	body->data=magnet;
	
    body->position_func=ChargedBodyUpdatePositionVerlet;
    body->velocity_func=ChargedBodyUpdateVelocityVerlet;
	cpSpaceAddBody(space, body);
	
	cpShape *shape = cpPolyShapeNew(body, nverts, verts, cpvzero);
	shape->e = 0.0; shape->u = 0.7;
	cpSpaceAddShape(space, shape);
}

static void
make_charged(cpVect p, cpFloat chg)
{
	int nverts=4;
	cpVect verts[] = {
		cpv(-10,-10),
		cpv(-10, 10),
		cpv( 10, 10),
		cpv( 10,-10)
	};

	cpBody *body = cpBodyNew(1.0, cpMomentForPoly(1.0, nverts, verts, cpvzero));
	body->p = p;
	body->v = cpvzero;
	cpBodySetAngle(body, 0);
	body->w = 0.0e0;
	
    // Load the singularities
    Sing *charge=(Sing*)cpmalloc(sizeof(Sing));;
	charge->Nsing=1; 
	charge->value[0]=chg;
	sprintf(charge->type[0],"electrical"); 

	// The position and angle could be different form the one of the body
	charge->position[0]=cpvzero;
	charge->Gpos[0]=cpvadd(p,charge->position[0]);
	charge->Gangle[0]=0;
	
	charge->force_func[0]=CoulombForce;
	charge->torque_func[0]=NULL;
	
	body->data=charge;
	
    body->position_func=ChargedBodyUpdatePositionVerlet;
    body->velocity_func=ChargedBodyUpdateVelocityVerlet;
	cpSpaceAddBody(space, body);
	
	cpShape *shape = cpPolyShapeNew(body, nverts, verts, cpvzero);
	shape->e = 0.0; shape->u = 0.7;
	cpSpaceAddShape(space, shape);
}
void 
make_mix(cpVect p, cpFloat ang, cpFloat mag,cpFloat chg)
{
	int nverts=5;
	cpVect verts[] = {
		cpv(-10,-10),
		cpv(-10, 10),
		cpv( 10, 10),
		cpv( 20, 0),		
		cpv( 10,-10)
	};

	cpBody *body = cpBodyNew(1.0, cpMomentForPoly(1.0, nverts, verts, cpvzero));
	body->p = p;
	body->v = cpvzero;
	cpBodySetAngle(body, ang);
	body->w = 0.0e0;
	
    // Load the singularities
    Sing *mix=(Sing*)cpmalloc(sizeof(Sing));;
	mix->Nsing=2; 
	mix->value[0]=mag;
	mix->value[1]=chg;
	sprintf(mix->type[0],"magdipole");
	sprintf(mix->type[1],"electrical");  

	// The position and angle could be different form the one of the body
	mix->position[0]=cpvzero;
	mix->Gpos[0]=cpvadd(p,mix->position[0]);
	mix->position[1]=cpvzero;
	mix->Gpos[1]=cpvadd(p,mix->position[1]);
	mix->Gangle[0]=ang;
	mix->Gangle[1]=ang;	
	
	mix->force_func[0]=MagDipoleForce;
	mix->force_func[1]=CoulombForce;
	mix->torque_func[0]=MagDipoleTorque;
	mix->torque_func[1]=NULL;	
	
	body->data=mix;
	
    body->position_func=ChargedBodyUpdatePositionVerlet;
    body->velocity_func=ChargedBodyUpdateVelocityVerlet;
	cpSpaceAddBody(space, body);
	
	cpShape *shape = cpPolyShapeNew(body, nverts, verts, cpvzero);
	shape->e = 0.0; shape->u = 0.7;
	cpSpaceAddShape(space, shape);
}


static cpSpace* 
init(void)
{
	cpResetShapeIdCounter();
	space = cpSpaceNew();
	space->iterations = 5;
	space->gravity = cpvzero; //cpv(0,-100);
	
	cpSpaceResizeActiveHash(space, 30.0, 2999);

	// Screen border
/*	shape = cpSegmentShapeNew(staticBody, cpv(-320,-240), cpv(-320,240), 0.0f);
	shape->e = 1.0; shape->u = 1.0;
	cpSpaceAddShape(space, shape);

	shape = cpSegmentShapeNew(staticBody, cpv(320,-240), cpv(320,240), 0.0f);
	shape->e = 1.0; shape->u = 1.0;
	cpSpaceAddShape(space, shape);

	shape = cpSegmentShapeNew(staticBody, cpv(-320,-240), cpv(320,-240), 0.0f);
	shape->e = 1.0; shape->u = 1.0;
	cpSpaceAddShape(space, shape);

	// Reference line
	// Does not collide with other objects, we just want to draw it.
	shape = cpSegmentShapeNew(staticBody, cpv(-320,0), cpv(320,0), 0.0f);
	shape->collision_type = 1;
	cpSpaceAddShape(space, shape);
	// Add a collision pair function to filter collisions
	cpSpaceAddCollisionPairFunc(space, 0, 1, NULL, NULL);
*/		
	
	srand((unsigned int) time(NULL));
    cpVect p;
	cpFloat ang;
	
	// Create magnets
	for(int i=0; i<NMAG; i++)
	{
	  p.x=(2.0e0*rand()/((cpFloat)RAND_MAX) - 1.0e0)*WIDTH/2.0f;
  	  p.y=(2.0e0*rand()/((cpFloat)RAND_MAX) - 1.0e0)*HEIGHT/2.0f;
  	  ang=(2.0e0*rand()/((cpFloat)RAND_MAX) - 1.0e0)*3.1415;
	  make_mag(p, ang,1.0e7);
	}
	
	// Create charged objects
	for(int i=0; i<NCHG; i++)
	{
	  p.x=(2.0e0*rand()/((cpFloat)RAND_MAX) - 1.0e0)*WIDTH/2.0f;
  	  p.y=(2.0e0*rand()/((cpFloat)RAND_MAX) - 1.0e0)*HEIGHT/2.0f;
  	  ang=(2.0e0*rand()/((cpFloat)RAND_MAX) - 1.0e0)*3.1415;
	  make_charged(p,1.0e-3*pow(-1.0,i%2));
	}
		
	// Create charged magnets objects
	for(int i=0; i<NMIX; i++)
	{
      p.x=(2.0e0*rand()/((cpFloat)RAND_MAX) - 1.0e0)*WIDTH/2.0f;
  	  p.y=(2.0e0*rand()/((cpFloat)RAND_MAX) - 1.0e0)*HEIGHT/2.0f;
  	  ang=(2.0e0*rand()/((cpFloat)RAND_MAX) - 1.0e0)*3.1415;
	  make_mix(p, ang,1.0e7*pow(-1.0,i%2), 1.0e-3*pow(-1.0,i%2));
	}
	
	return space;
}

static void
destroy(void)
{
	cpSpaceFreeChildren(space);
	cpSpaceFree(space);
}

chipmunkDemo MagnetsElectric = {
	"Magnets and Electric Charges (By: Juan Pablo Carbajal)",
	NULL,
	init,
	update,
	destroy,
};