1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
# Copyright 2019 Dan Smith <dsmith@danplanet.com>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
from builtins import bytes
import struct
from chirp.drivers import icf
import logging
LOG = logging.getLogger(__name__)
import sys
l = logging.getLogger()
l.level = logging.ERROR
l.addHandler(logging.StreamHandler(sys.stdout))
class FakeIcomRadio(object):
def __init__(self, radio, mapfile=None):
self._buffer = bytes(b'')
self._radio = radio
if not mapfile:
self._memory = bytes(b'\x00') * radio.get_memsize()
else:
self.load_from_file(mapfile)
def load_from_file(self, filename):
with open(filename, 'rb') as f:
self._memory = bytes(f.read())
LOG.debug('Initialized %i bytes from %s' % (len(self._memory),
filename))
def read(self, count):
"""read() from radio, so here we synthesize responses"""
chunk = self._buffer[:count]
self._buffer = self._buffer[count:]
return chunk
def queue(self, data):
# LOG.debug('Queuing: %r' % data)
self._buffer += data
def make_response(self, cmd, payload):
return bytes([
0xFE, 0xFE,
0xEF, # Radio
0xEE, # PC
cmd,
]) + payload + bytes([0xFD])
@property
def address_fmt(self):
if self._radio.get_memsize() > 0x10000:
return 'I'
else:
return 'H'
def do_clone_out(self):
LOG.debug('Clone from radio started')
size = 16
for addr in range(0, self._radio.get_memsize(), size):
if len(self._memory[addr:]) < 4:
# IC-W32E has an off-by-one hack for detection,
# which will cause us to send a short one-byte
# block of garbage, unlike the real radio. So,
# if we get to the end and have a few bytes
# left, don't be stupid.
break
header = bytes(struct.pack('>%sB' % self.address_fmt,
addr, size))
#LOG.debug('Header for %02x@%04x: %r' % (
# size, addr, header))
chunk = []
cs = 0
for byte in header:
chunk.extend(x for x in bytes(b'%02X' % byte))
cs += byte
#LOG.debug('Chunk so far: %r' % chunk)
for byte in self._memory[addr:addr + size]:
chunk.extend(x for x in bytes(b'%02X' % byte))
cs += byte
#LOG.debug('Chunk is %r' % chunk)
vx = ((cs ^ 0xFFFF) + 1) & 0xFF
chunk.extend(x for x in bytes(b'%02X' % vx))
self.queue(self.make_response(icf.CMD_CLONE_DAT, bytes(chunk)))
#LOG.debug('Stopping after first frame')
#break
self.queue(self.make_response(icf.CMD_CLONE_END, bytes([])))
def do_clone_in(self):
LOG.debug('Clone to radio started')
self._memory = bytes(b'')
def do_clone_data(self, payload_hex):
if self.address_fmt == 'I':
header_len = 5
else:
header_len = 3
def hex_to_byte(hexchars):
return int('%s%s' % (chr(hexchars[0]), chr(hexchars[1])), 16)
payload_bytes = bytes([hex_to_byte(payload_hex[i:i+2])
for i in range(0, len(payload_hex), 2)])
addr, size = struct.unpack('>%sB' % self.address_fmt, payload_bytes[:header_len])
data = payload_bytes[header_len:-1]
csum = payload_bytes[-1]
#addr_hex = payload[0:size_offset]
#size_hex = payload[size_offset:size_offset + 2]
#data_hex = payload[size_offset + 2:-2]
#csum_hex = payload[-2:]
#addr = hex_to_byte(addr_hex[0:2]) << 8 | hex_to_byte(addr_hex[2:4])
#size = hex_to_byte(size_hex)
#csum = hex_to_byte(csum_hex)
#data = []
#for i in range(0, len(data_hex), 2):
# data.append(hex_to_byte(data_hex[i:i+2]))
if len(data) != size:
LOG.debug('Invalid frame size: expected %i, but got %i' % (
size, len(data)))
expected_addr = len(self._memory)
if addr < expected_addr:
LOG.debug('Frame goes back to %04x from %04x' % (addr,
expected_addr))
if len(self._memory) != addr:
LOG.debug('Filling gap between %04x and %04x' % (expected_addr,
addr))
self._memory += (bytes(b'\x00') * (addr - expected_addr))
# FIXME: Check checksum
self._memory += data
def write(self, data):
"""write() to radio, so here we process requests"""
assert isinstance(data, bytes), 'Bytes required, %s received' % data.__class__
if data[:12] == (bytes(b'\xFE') * 12):
LOG.debug('Got hispeed kicker')
data = data[12:]
if data[2] == 0xFE:
return
src = data[2]
dst = data[3]
cmd = data[4]
payload = data[5:-1]
end = data[-1]
LOG.debug('Received command: %r' % cmd)
LOG.debug(' Full frame: %r' % data)
model = self._radio.get_model() + bytes(b'\x00' * 20)
if cmd == 0xE0: # Ident
# FIXME
self.queue(self.make_response(0x01, # Model
model))
elif cmd == icf.CMD_CLONE_OUT:
self.do_clone_out()
elif cmd == icf.CMD_CLONE_IN:
self.do_clone_in()
elif cmd == icf.CMD_CLONE_DAT:
self.do_clone_data(payload)
else:
LOG.debug('Unknown command %i' % cmd)
self.queue(self.make_response(0x00, bytes([0x01])))
return len(data)
def flush(self):
return
|