1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/debug/trace_event_synthetic_delay.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace base {
namespace debug {
namespace {
const int kTargetDurationMs = 100;
// Allow some leeway in timings to make it possible to run these tests with a
// wall clock time source too.
const int kShortDurationMs = 10;
} // namespace
class TraceEventSyntheticDelayTest : public testing::Test,
public TraceEventSyntheticDelayClock {
public:
TraceEventSyntheticDelayTest() {}
virtual ~TraceEventSyntheticDelayTest() {
ResetTraceEventSyntheticDelays();
}
// TraceEventSyntheticDelayClock implementation.
virtual base::TimeTicks Now() OVERRIDE {
AdvanceTime(base::TimeDelta::FromMilliseconds(kShortDurationMs / 10));
return now_;
}
TraceEventSyntheticDelay* ConfigureDelay(const char* name) {
TraceEventSyntheticDelay* delay = TraceEventSyntheticDelay::Lookup(name);
delay->SetClock(this);
delay->SetTargetDuration(
base::TimeDelta::FromMilliseconds(kTargetDurationMs));
return delay;
}
void AdvanceTime(base::TimeDelta delta) { now_ += delta; }
int TestFunction() {
base::TimeTicks start = Now();
{ TRACE_EVENT_SYNTHETIC_DELAY("test.Delay"); }
return (Now() - start).InMilliseconds();
}
int AsyncTestFunctionBegin() {
base::TimeTicks start = Now();
{ TRACE_EVENT_SYNTHETIC_DELAY_BEGIN("test.AsyncDelay"); }
return (Now() - start).InMilliseconds();
}
int AsyncTestFunctionEnd() {
base::TimeTicks start = Now();
{ TRACE_EVENT_SYNTHETIC_DELAY_END("test.AsyncDelay"); }
return (Now() - start).InMilliseconds();
}
private:
base::TimeTicks now_;
DISALLOW_COPY_AND_ASSIGN(TraceEventSyntheticDelayTest);
};
TEST_F(TraceEventSyntheticDelayTest, StaticDelay) {
TraceEventSyntheticDelay* delay = ConfigureDelay("test.Delay");
delay->SetMode(TraceEventSyntheticDelay::STATIC);
EXPECT_GE(TestFunction(), kTargetDurationMs);
}
TEST_F(TraceEventSyntheticDelayTest, OneShotDelay) {
TraceEventSyntheticDelay* delay = ConfigureDelay("test.Delay");
delay->SetMode(TraceEventSyntheticDelay::ONE_SHOT);
EXPECT_GE(TestFunction(), kTargetDurationMs);
EXPECT_LT(TestFunction(), kShortDurationMs);
delay->SetTargetDuration(
base::TimeDelta::FromMilliseconds(kTargetDurationMs));
EXPECT_GE(TestFunction(), kTargetDurationMs);
}
TEST_F(TraceEventSyntheticDelayTest, AlternatingDelay) {
TraceEventSyntheticDelay* delay = ConfigureDelay("test.Delay");
delay->SetMode(TraceEventSyntheticDelay::ALTERNATING);
EXPECT_GE(TestFunction(), kTargetDurationMs);
EXPECT_LT(TestFunction(), kShortDurationMs);
EXPECT_GE(TestFunction(), kTargetDurationMs);
EXPECT_LT(TestFunction(), kShortDurationMs);
}
TEST_F(TraceEventSyntheticDelayTest, AsyncDelay) {
ConfigureDelay("test.AsyncDelay");
EXPECT_LT(AsyncTestFunctionBegin(), kShortDurationMs);
EXPECT_GE(AsyncTestFunctionEnd(), kTargetDurationMs / 2);
}
TEST_F(TraceEventSyntheticDelayTest, AsyncDelayExceeded) {
ConfigureDelay("test.AsyncDelay");
EXPECT_LT(AsyncTestFunctionBegin(), kShortDurationMs);
AdvanceTime(base::TimeDelta::FromMilliseconds(kTargetDurationMs));
EXPECT_LT(AsyncTestFunctionEnd(), kShortDurationMs);
}
TEST_F(TraceEventSyntheticDelayTest, AsyncDelayNoActivation) {
ConfigureDelay("test.AsyncDelay");
EXPECT_LT(AsyncTestFunctionEnd(), kShortDurationMs);
}
TEST_F(TraceEventSyntheticDelayTest, AsyncDelayNested) {
ConfigureDelay("test.AsyncDelay");
EXPECT_LT(AsyncTestFunctionBegin(), kShortDurationMs);
EXPECT_LT(AsyncTestFunctionBegin(), kShortDurationMs);
EXPECT_LT(AsyncTestFunctionEnd(), kShortDurationMs);
EXPECT_GE(AsyncTestFunctionEnd(), kTargetDurationMs / 2);
}
TEST_F(TraceEventSyntheticDelayTest, AsyncDelayUnbalanced) {
ConfigureDelay("test.AsyncDelay");
EXPECT_LT(AsyncTestFunctionBegin(), kShortDurationMs);
EXPECT_GE(AsyncTestFunctionEnd(), kTargetDurationMs / 2);
EXPECT_LT(AsyncTestFunctionEnd(), kShortDurationMs);
EXPECT_LT(AsyncTestFunctionBegin(), kShortDurationMs);
EXPECT_GE(AsyncTestFunctionEnd(), kTargetDurationMs / 2);
}
TEST_F(TraceEventSyntheticDelayTest, ResetDelays) {
ConfigureDelay("test.Delay");
ResetTraceEventSyntheticDelays();
EXPECT_LT(TestFunction(), kShortDurationMs);
}
TEST_F(TraceEventSyntheticDelayTest, BeginParallel) {
TraceEventSyntheticDelay* delay = ConfigureDelay("test.AsyncDelay");
base::TimeTicks end_times[2];
base::TimeTicks start_time = Now();
delay->BeginParallel(&end_times[0]);
EXPECT_FALSE(end_times[0].is_null());
delay->BeginParallel(&end_times[1]);
EXPECT_FALSE(end_times[1].is_null());
delay->EndParallel(end_times[0]);
EXPECT_GE((Now() - start_time).InMilliseconds(), kTargetDurationMs);
start_time = Now();
delay->EndParallel(end_times[1]);
EXPECT_LT((Now() - start_time).InMilliseconds(), kShortDurationMs);
}
} // namespace debug
} // namespace base
|