1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
|
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/memory/discardable_memory_ashmem_allocator.h"
#include <sys/mman.h>
#include <unistd.h>
#include <algorithm>
#include <cmath>
#include <limits>
#include <set>
#include <utility>
#include "base/basictypes.h"
#include "base/containers/hash_tables.h"
#include "base/file_util.h"
#include "base/files/scoped_file.h"
#include "base/logging.h"
#include "base/memory/scoped_vector.h"
#include "third_party/ashmem/ashmem.h"
// The allocator consists of three parts (classes):
// - DiscardableMemoryAshmemAllocator: entry point of all allocations (through
// its Allocate() method) that are dispatched to the AshmemRegion instances
// (which it owns).
// - AshmemRegion: manages allocations and destructions inside a single large
// (e.g. 32 MBytes) ashmem region.
// - DiscardableAshmemChunk: class mimicking the DiscardableMemory interface
// whose instances are returned to the client.
namespace base {
namespace {
// Only tolerate fragmentation in used chunks *caused by the client* (as opposed
// to the allocator when a free chunk is reused). The client can cause such
// fragmentation by e.g. requesting 4097 bytes. This size would be rounded up to
// 8192 by the allocator which would cause 4095 bytes of fragmentation (which is
// currently the maximum allowed). If the client requests 4096 bytes and a free
// chunk of 8192 bytes is available then the free chunk gets splitted into two
// pieces to minimize fragmentation (since 8192 - 4096 = 4096 which is greater
// than 4095).
// TODO(pliard): tune this if splitting chunks too often leads to performance
// issues.
const size_t kMaxChunkFragmentationBytes = 4096 - 1;
const size_t kMinAshmemRegionSize = 32 * 1024 * 1024;
// Returns 0 if the provided size is too high to be aligned.
size_t AlignToNextPage(size_t size) {
const size_t kPageSize = 4096;
DCHECK_EQ(static_cast<int>(kPageSize), getpagesize());
if (size > std::numeric_limits<size_t>::max() - kPageSize + 1)
return 0;
const size_t mask = ~(kPageSize - 1);
return (size + kPageSize - 1) & mask;
}
bool CreateAshmemRegion(const char* name,
size_t size,
int* out_fd,
void** out_address) {
base::ScopedFD fd(ashmem_create_region(name, size));
if (!fd.is_valid()) {
DLOG(ERROR) << "ashmem_create_region() failed";
return false;
}
const int err = ashmem_set_prot_region(fd.get(), PROT_READ | PROT_WRITE);
if (err < 0) {
DLOG(ERROR) << "Error " << err << " when setting protection of ashmem";
return false;
}
// There is a problem using MAP_PRIVATE here. As we are constantly calling
// Lock() and Unlock(), data could get lost if they are not written to the
// underlying file when Unlock() gets called.
void* const address = mmap(
NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, fd.get(), 0);
if (address == MAP_FAILED) {
DPLOG(ERROR) << "Failed to map memory.";
return false;
}
*out_fd = fd.release();
*out_address = address;
return true;
}
bool CloseAshmemRegion(int fd, size_t size, void* address) {
if (munmap(address, size) == -1) {
DPLOG(ERROR) << "Failed to unmap memory.";
close(fd);
return false;
}
return close(fd) == 0;
}
bool LockAshmemRegion(int fd, size_t off, size_t size) {
return ashmem_pin_region(fd, off, size) != ASHMEM_WAS_PURGED;
}
bool UnlockAshmemRegion(int fd, size_t off, size_t size) {
const int failed = ashmem_unpin_region(fd, off, size);
if (failed)
DLOG(ERROR) << "Failed to unpin memory.";
return !failed;
}
} // namespace
namespace internal {
class AshmemRegion {
public:
// Note that |allocator| must outlive |this|.
static scoped_ptr<AshmemRegion> Create(
size_t size,
const std::string& name,
DiscardableMemoryAshmemAllocator* allocator) {
DCHECK_EQ(size, AlignToNextPage(size));
int fd;
void* base;
if (!CreateAshmemRegion(name.c_str(), size, &fd, &base))
return scoped_ptr<AshmemRegion>();
return make_scoped_ptr(new AshmemRegion(fd, size, base, allocator));
}
~AshmemRegion() {
const bool result = CloseAshmemRegion(fd_, size_, base_);
DCHECK(result);
DCHECK(!highest_allocated_chunk_);
}
// Returns a new instance of DiscardableAshmemChunk whose size is greater or
// equal than |actual_size| (which is expected to be greater or equal than
// |client_requested_size|).
// Allocation works as follows:
// 1) Reuse a previously freed chunk and return it if it succeeded. See
// ReuseFreeChunk_Locked() below for more information.
// 2) If no free chunk could be reused and the region is not big enough for
// the requested size then NULL is returned.
// 3) If there is enough room in the ashmem region then a new chunk is
// returned. This new chunk starts at |offset_| which is the end of the
// previously highest chunk in the region.
scoped_ptr<DiscardableAshmemChunk> Allocate_Locked(
size_t client_requested_size,
size_t actual_size) {
DCHECK_LE(client_requested_size, actual_size);
allocator_->lock_.AssertAcquired();
// Check that the |highest_allocated_chunk_| field doesn't contain a stale
// pointer. It should point to either a free chunk or a used chunk.
DCHECK(!highest_allocated_chunk_ ||
address_to_free_chunk_map_.find(highest_allocated_chunk_) !=
address_to_free_chunk_map_.end() ||
used_to_previous_chunk_map_.find(highest_allocated_chunk_) !=
used_to_previous_chunk_map_.end());
scoped_ptr<DiscardableAshmemChunk> memory = ReuseFreeChunk_Locked(
client_requested_size, actual_size);
if (memory)
return memory.Pass();
if (size_ - offset_ < actual_size) {
// This region does not have enough space left to hold the requested size.
return scoped_ptr<DiscardableAshmemChunk>();
}
void* const address = static_cast<char*>(base_) + offset_;
memory.reset(
new DiscardableAshmemChunk(this, fd_, address, offset_, actual_size));
used_to_previous_chunk_map_.insert(
std::make_pair(address, highest_allocated_chunk_));
highest_allocated_chunk_ = address;
offset_ += actual_size;
DCHECK_LE(offset_, size_);
return memory.Pass();
}
void OnChunkDeletion(void* chunk, size_t size) {
AutoLock auto_lock(allocator_->lock_);
MergeAndAddFreeChunk_Locked(chunk, size);
// Note that |this| might be deleted beyond this point.
}
private:
struct FreeChunk {
FreeChunk() : previous_chunk(NULL), start(NULL), size(0) {}
explicit FreeChunk(size_t size)
: previous_chunk(NULL),
start(NULL),
size(size) {
}
FreeChunk(void* previous_chunk, void* start, size_t size)
: previous_chunk(previous_chunk),
start(start),
size(size) {
DCHECK_LT(previous_chunk, start);
}
void* const previous_chunk;
void* const start;
const size_t size;
bool is_null() const { return !start; }
bool operator<(const FreeChunk& other) const {
return size < other.size;
}
};
// Note that |allocator| must outlive |this|.
AshmemRegion(int fd,
size_t size,
void* base,
DiscardableMemoryAshmemAllocator* allocator)
: fd_(fd),
size_(size),
base_(base),
allocator_(allocator),
highest_allocated_chunk_(NULL),
offset_(0) {
DCHECK_GE(fd_, 0);
DCHECK_GE(size, kMinAshmemRegionSize);
DCHECK(base);
DCHECK(allocator);
}
// Tries to reuse a previously freed chunk by doing a closest size match.
scoped_ptr<DiscardableAshmemChunk> ReuseFreeChunk_Locked(
size_t client_requested_size,
size_t actual_size) {
allocator_->lock_.AssertAcquired();
const FreeChunk reused_chunk = RemoveFreeChunkFromIterator_Locked(
free_chunks_.lower_bound(FreeChunk(actual_size)));
if (reused_chunk.is_null())
return scoped_ptr<DiscardableAshmemChunk>();
used_to_previous_chunk_map_.insert(
std::make_pair(reused_chunk.start, reused_chunk.previous_chunk));
size_t reused_chunk_size = reused_chunk.size;
// |client_requested_size| is used below rather than |actual_size| to
// reflect the amount of bytes that would not be usable by the client (i.e.
// wasted). Using |actual_size| instead would not allow us to detect
// fragmentation caused by the client if he did misaligned allocations.
DCHECK_GE(reused_chunk.size, client_requested_size);
const size_t fragmentation_bytes =
reused_chunk.size - client_requested_size;
if (fragmentation_bytes > kMaxChunkFragmentationBytes) {
// Split the free chunk being recycled so that its unused tail doesn't get
// reused (i.e. locked) which would prevent it from being evicted under
// memory pressure.
reused_chunk_size = actual_size;
void* const new_chunk_start =
static_cast<char*>(reused_chunk.start) + actual_size;
if (reused_chunk.start == highest_allocated_chunk_) {
// We also need to update the pointer to the highest allocated chunk in
// case we are splitting the highest chunk.
highest_allocated_chunk_ = new_chunk_start;
}
DCHECK_GT(reused_chunk.size, actual_size);
const size_t new_chunk_size = reused_chunk.size - actual_size;
// Note that merging is not needed here since there can't be contiguous
// free chunks at this point.
AddFreeChunk_Locked(
FreeChunk(reused_chunk.start, new_chunk_start, new_chunk_size));
}
const size_t offset =
static_cast<char*>(reused_chunk.start) - static_cast<char*>(base_);
LockAshmemRegion(fd_, offset, reused_chunk_size);
scoped_ptr<DiscardableAshmemChunk> memory(
new DiscardableAshmemChunk(
this, fd_, reused_chunk.start, offset, reused_chunk_size));
return memory.Pass();
}
// Makes the chunk identified with the provided arguments free and possibly
// merges this chunk with the previous and next contiguous ones.
// If the provided chunk is the only one used (and going to be freed) in the
// region then the internal ashmem region is closed so that the underlying
// physical pages are immediately released.
// Note that free chunks are unlocked therefore they can be reclaimed by the
// kernel if needed (under memory pressure) but they are not immediately
// released unfortunately since madvise(MADV_REMOVE) and
// fallocate(FALLOC_FL_PUNCH_HOLE) don't seem to work on ashmem. This might
// change in versions of kernel >=3.5 though. The fact that free chunks are
// not immediately released is the reason why we are trying to minimize
// fragmentation in order not to cause "artificial" memory pressure.
void MergeAndAddFreeChunk_Locked(void* chunk, size_t size) {
allocator_->lock_.AssertAcquired();
size_t new_free_chunk_size = size;
// Merge with the previous chunk.
void* first_free_chunk = chunk;
DCHECK(!used_to_previous_chunk_map_.empty());
const hash_map<void*, void*>::iterator previous_chunk_it =
used_to_previous_chunk_map_.find(chunk);
DCHECK(previous_chunk_it != used_to_previous_chunk_map_.end());
void* previous_chunk = previous_chunk_it->second;
used_to_previous_chunk_map_.erase(previous_chunk_it);
if (previous_chunk) {
const FreeChunk free_chunk = RemoveFreeChunk_Locked(previous_chunk);
if (!free_chunk.is_null()) {
new_free_chunk_size += free_chunk.size;
first_free_chunk = previous_chunk;
if (chunk == highest_allocated_chunk_)
highest_allocated_chunk_ = previous_chunk;
// There should not be more contiguous previous free chunks.
previous_chunk = free_chunk.previous_chunk;
DCHECK(!address_to_free_chunk_map_.count(previous_chunk));
}
}
// Merge with the next chunk if free and present.
void* next_chunk = static_cast<char*>(chunk) + size;
const FreeChunk next_free_chunk = RemoveFreeChunk_Locked(next_chunk);
if (!next_free_chunk.is_null()) {
new_free_chunk_size += next_free_chunk.size;
if (next_free_chunk.start == highest_allocated_chunk_)
highest_allocated_chunk_ = first_free_chunk;
// Same as above.
DCHECK(!address_to_free_chunk_map_.count(static_cast<char*>(next_chunk) +
next_free_chunk.size));
}
const bool whole_ashmem_region_is_free =
used_to_previous_chunk_map_.empty();
if (!whole_ashmem_region_is_free) {
AddFreeChunk_Locked(
FreeChunk(previous_chunk, first_free_chunk, new_free_chunk_size));
return;
}
// The whole ashmem region is free thus it can be deleted.
DCHECK_EQ(base_, first_free_chunk);
DCHECK_EQ(base_, highest_allocated_chunk_);
DCHECK(free_chunks_.empty());
DCHECK(address_to_free_chunk_map_.empty());
DCHECK(used_to_previous_chunk_map_.empty());
highest_allocated_chunk_ = NULL;
allocator_->DeleteAshmemRegion_Locked(this); // Deletes |this|.
}
void AddFreeChunk_Locked(const FreeChunk& free_chunk) {
allocator_->lock_.AssertAcquired();
const std::multiset<FreeChunk>::iterator it = free_chunks_.insert(
free_chunk);
address_to_free_chunk_map_.insert(std::make_pair(free_chunk.start, it));
// Update the next used contiguous chunk, if any, since its previous chunk
// may have changed due to free chunks merging/splitting.
void* const next_used_contiguous_chunk =
static_cast<char*>(free_chunk.start) + free_chunk.size;
hash_map<void*, void*>::iterator previous_it =
used_to_previous_chunk_map_.find(next_used_contiguous_chunk);
if (previous_it != used_to_previous_chunk_map_.end())
previous_it->second = free_chunk.start;
}
// Finds and removes the free chunk, if any, whose start address is
// |chunk_start|. Returns a copy of the unlinked free chunk or a free chunk
// whose content is null if it was not found.
FreeChunk RemoveFreeChunk_Locked(void* chunk_start) {
allocator_->lock_.AssertAcquired();
const hash_map<
void*, std::multiset<FreeChunk>::iterator>::iterator it =
address_to_free_chunk_map_.find(chunk_start);
if (it == address_to_free_chunk_map_.end())
return FreeChunk();
return RemoveFreeChunkFromIterator_Locked(it->second);
}
// Same as above but takes an iterator in.
FreeChunk RemoveFreeChunkFromIterator_Locked(
std::multiset<FreeChunk>::iterator free_chunk_it) {
allocator_->lock_.AssertAcquired();
if (free_chunk_it == free_chunks_.end())
return FreeChunk();
DCHECK(free_chunk_it != free_chunks_.end());
const FreeChunk free_chunk(*free_chunk_it);
address_to_free_chunk_map_.erase(free_chunk_it->start);
free_chunks_.erase(free_chunk_it);
return free_chunk;
}
const int fd_;
const size_t size_;
void* const base_;
DiscardableMemoryAshmemAllocator* const allocator_;
// Points to the chunk with the highest address in the region. This pointer
// needs to be carefully updated when chunks are merged/split.
void* highest_allocated_chunk_;
// Points to the end of |highest_allocated_chunk_|.
size_t offset_;
// Allows free chunks recycling (lookup, insertion and removal) in O(log N).
// Note that FreeChunk values are indexed by their size and also note that
// multiple free chunks can have the same size (which is why multiset<> is
// used instead of e.g. set<>).
std::multiset<FreeChunk> free_chunks_;
// Used while merging free contiguous chunks to erase free chunks (from their
// start address) in constant time. Note that multiset<>::{insert,erase}()
// don't invalidate iterators (except the one for the element being removed
// obviously).
hash_map<
void*, std::multiset<FreeChunk>::iterator> address_to_free_chunk_map_;
// Maps the address of *used* chunks to the address of their previous
// contiguous chunk.
hash_map<void*, void*> used_to_previous_chunk_map_;
DISALLOW_COPY_AND_ASSIGN(AshmemRegion);
};
DiscardableAshmemChunk::~DiscardableAshmemChunk() {
if (locked_)
UnlockAshmemRegion(fd_, offset_, size_);
ashmem_region_->OnChunkDeletion(address_, size_);
}
bool DiscardableAshmemChunk::Lock() {
DCHECK(!locked_);
locked_ = true;
return LockAshmemRegion(fd_, offset_, size_);
}
void DiscardableAshmemChunk::Unlock() {
DCHECK(locked_);
locked_ = false;
UnlockAshmemRegion(fd_, offset_, size_);
}
void* DiscardableAshmemChunk::Memory() const {
return address_;
}
// Note that |ashmem_region| must outlive |this|.
DiscardableAshmemChunk::DiscardableAshmemChunk(AshmemRegion* ashmem_region,
int fd,
void* address,
size_t offset,
size_t size)
: ashmem_region_(ashmem_region),
fd_(fd),
address_(address),
offset_(offset),
size_(size),
locked_(true) {
}
DiscardableMemoryAshmemAllocator::DiscardableMemoryAshmemAllocator(
const std::string& name,
size_t ashmem_region_size)
: name_(name),
ashmem_region_size_(
std::max(kMinAshmemRegionSize, AlignToNextPage(ashmem_region_size))),
last_ashmem_region_size_(0) {
DCHECK_GE(ashmem_region_size_, kMinAshmemRegionSize);
}
DiscardableMemoryAshmemAllocator::~DiscardableMemoryAshmemAllocator() {
DCHECK(ashmem_regions_.empty());
}
scoped_ptr<DiscardableAshmemChunk> DiscardableMemoryAshmemAllocator::Allocate(
size_t size) {
const size_t aligned_size = AlignToNextPage(size);
if (!aligned_size)
return scoped_ptr<DiscardableAshmemChunk>();
// TODO(pliard): make this function less naive by e.g. moving the free chunks
// multiset to the allocator itself in order to decrease even more
// fragmentation/speedup allocation. Note that there should not be more than a
// couple (=5) of AshmemRegion instances in practice though.
AutoLock auto_lock(lock_);
DCHECK_LE(ashmem_regions_.size(), 5U);
for (ScopedVector<AshmemRegion>::iterator it = ashmem_regions_.begin();
it != ashmem_regions_.end(); ++it) {
scoped_ptr<DiscardableAshmemChunk> memory(
(*it)->Allocate_Locked(size, aligned_size));
if (memory)
return memory.Pass();
}
// The creation of the (large) ashmem region might fail if the address space
// is too fragmented. In case creation fails the allocator retries by
// repetitively dividing the size by 2.
const size_t min_region_size = std::max(kMinAshmemRegionSize, aligned_size);
for (size_t region_size = std::max(ashmem_region_size_, aligned_size);
region_size >= min_region_size;
region_size = AlignToNextPage(region_size / 2)) {
scoped_ptr<AshmemRegion> new_region(
AshmemRegion::Create(region_size, name_.c_str(), this));
if (!new_region)
continue;
last_ashmem_region_size_ = region_size;
ashmem_regions_.push_back(new_region.release());
return ashmem_regions_.back()->Allocate_Locked(size, aligned_size);
}
// TODO(pliard): consider adding an histogram to see how often this happens.
return scoped_ptr<DiscardableAshmemChunk>();
}
size_t DiscardableMemoryAshmemAllocator::last_ashmem_region_size() const {
AutoLock auto_lock(lock_);
return last_ashmem_region_size_;
}
void DiscardableMemoryAshmemAllocator::DeleteAshmemRegion_Locked(
AshmemRegion* region) {
lock_.AssertAcquired();
// Note that there should not be more than a couple of ashmem region instances
// in |ashmem_regions_|.
DCHECK_LE(ashmem_regions_.size(), 5U);
const ScopedVector<AshmemRegion>::iterator it = std::find(
ashmem_regions_.begin(), ashmem_regions_.end(), region);
DCHECK_NE(ashmem_regions_.end(), it);
std::swap(*it, ashmem_regions_.back());
ashmem_regions_.pop_back();
}
} // namespace internal
} // namespace base
|