1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
|
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/base_switches.h"
#include "base/bind.h"
#include "base/command_line.h"
#include "base/memory/scoped_vector.h"
#include "base/synchronization/condition_variable.h"
#include "base/synchronization/lock.h"
#include "base/synchronization/waitable_event.h"
#include "base/threading/thread.h"
#include "base/time/time.h"
#include "build/build_config.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "testing/perf/perf_test.h"
#if defined(OS_POSIX)
#include <pthread.h>
#endif
namespace base {
namespace {
const int kNumRuns = 100000;
// Base class for a threading perf-test. This sets up some threads for the
// test and measures the clock-time in addition to time spent on each thread.
class ThreadPerfTest : public testing::Test {
public:
ThreadPerfTest()
: done_(false, false) {
// Disable the task profiler as it adds significant cost!
CommandLine::Init(0, NULL);
CommandLine::ForCurrentProcess()->AppendSwitchASCII(
switches::kProfilerTiming,
switches::kProfilerTimingDisabledValue);
}
// To be implemented by each test. Subclass must uses threads_ such that
// their cpu-time can be measured. Test must return from PingPong() _and_
// call FinishMeasurement from any thread to complete the test.
virtual void Init() {}
virtual void PingPong(int hops) = 0;
virtual void Reset() {}
void TimeOnThread(base::TimeTicks* ticks, base::WaitableEvent* done) {
*ticks = base::TimeTicks::ThreadNow();
done->Signal();
}
base::TimeTicks ThreadNow(base::Thread* thread) {
base::WaitableEvent done(false, false);
base::TimeTicks ticks;
thread->message_loop_proxy()->PostTask(
FROM_HERE,
base::Bind(&ThreadPerfTest::TimeOnThread,
base::Unretained(this),
&ticks,
&done));
done.Wait();
return ticks;
}
void RunPingPongTest(const std::string& name, unsigned num_threads) {
// Create threads and collect starting cpu-time for each thread.
std::vector<base::TimeTicks> thread_starts;
while (threads_.size() < num_threads) {
threads_.push_back(new base::Thread("PingPonger"));
threads_.back()->Start();
if (base::TimeTicks::IsThreadNowSupported())
thread_starts.push_back(ThreadNow(threads_.back()));
}
Init();
base::TimeTicks start = base::TimeTicks::HighResNow();
PingPong(kNumRuns);
done_.Wait();
base::TimeTicks end = base::TimeTicks::HighResNow();
// Gather the cpu-time spent on each thread. This does one extra tasks,
// but that should be in the noise given enough runs.
base::TimeDelta thread_time;
while (threads_.size()) {
if (base::TimeTicks::IsThreadNowSupported()) {
thread_time += ThreadNow(threads_.back()) - thread_starts.back();
thread_starts.pop_back();
}
threads_.pop_back();
}
Reset();
double num_runs = static_cast<double>(kNumRuns);
double us_per_task_clock = (end - start).InMicroseconds() / num_runs;
double us_per_task_cpu = thread_time.InMicroseconds() / num_runs;
// Clock time per task.
perf_test::PrintResult(
"task", "", name + "_time ", us_per_task_clock, "us/hop", true);
// Total utilization across threads if available (likely higher).
if (base::TimeTicks::IsThreadNowSupported()) {
perf_test::PrintResult(
"task", "", name + "_cpu ", us_per_task_cpu, "us/hop", true);
}
}
protected:
void FinishMeasurement() { done_.Signal(); }
ScopedVector<base::Thread> threads_;
private:
base::WaitableEvent done_;
};
// Class to test task performance by posting empty tasks back and forth.
class TaskPerfTest : public ThreadPerfTest {
base::Thread* NextThread(int count) {
return threads_[count % threads_.size()];
}
virtual void PingPong(int hops) OVERRIDE {
if (!hops) {
FinishMeasurement();
return;
}
NextThread(hops)->message_loop_proxy()->PostTask(
FROM_HERE,
base::Bind(
&ThreadPerfTest::PingPong, base::Unretained(this), hops - 1));
}
};
// This tries to test the 'best-case' as well as the 'worst-case' task posting
// performance. The best-case keeps one thread alive such that it never yeilds,
// while the worse-case forces a context switch for every task. Four threads are
// used to ensure the threads do yeild (with just two it might be possible for
// both threads to stay awake if they can signal each other fast enough).
TEST_F(TaskPerfTest, TaskPingPong) {
RunPingPongTest("1_Task_Threads", 1);
RunPingPongTest("4_Task_Threads", 4);
}
// Same as above, but add observers to test their perf impact.
class MessageLoopObserver : public base::MessageLoop::TaskObserver {
public:
virtual void WillProcessTask(const base::PendingTask& pending_task) OVERRIDE {
}
virtual void DidProcessTask(const base::PendingTask& pending_task) OVERRIDE {
}
};
MessageLoopObserver message_loop_observer;
class TaskObserverPerfTest : public TaskPerfTest {
public:
virtual void Init() OVERRIDE {
TaskPerfTest::Init();
for (size_t i = 0; i < threads_.size(); i++) {
threads_[i]->message_loop()->AddTaskObserver(&message_loop_observer);
}
}
};
TEST_F(TaskObserverPerfTest, TaskPingPong) {
RunPingPongTest("1_Task_Threads_With_Observer", 1);
RunPingPongTest("4_Task_Threads_With_Observer", 4);
}
// Class to test our WaitableEvent performance by signaling back and fort.
// WaitableEvent is templated so we can also compare with other versions.
template <typename WaitableEventType>
class EventPerfTest : public ThreadPerfTest {
public:
virtual void Init() OVERRIDE {
for (size_t i = 0; i < threads_.size(); i++)
events_.push_back(new WaitableEventType(false, false));
}
virtual void Reset() OVERRIDE { events_.clear(); }
void WaitAndSignalOnThread(size_t event) {
size_t next_event = (event + 1) % events_.size();
int my_hops = 0;
do {
events_[event]->Wait();
my_hops = --remaining_hops_; // We own 'hops' between Wait and Signal.
events_[next_event]->Signal();
} while (my_hops > 0);
// Once we are done, all threads will signal as hops passes zero.
// We only signal completion once, on the thread that reaches zero.
if (!my_hops)
FinishMeasurement();
}
virtual void PingPong(int hops) OVERRIDE {
remaining_hops_ = hops;
for (size_t i = 0; i < threads_.size(); i++) {
threads_[i]->message_loop_proxy()->PostTask(
FROM_HERE,
base::Bind(&EventPerfTest::WaitAndSignalOnThread,
base::Unretained(this),
i));
}
// Kick off the Signal ping-ponging.
events_.front()->Signal();
}
int remaining_hops_;
ScopedVector<WaitableEventType> events_;
};
// Similar to the task posting test, this just tests similar functionality
// using WaitableEvents. We only test four threads (worst-case), but we
// might want to craft a way to test the best-case (where the thread doesn't
// end up blocking because the event is already signalled).
typedef EventPerfTest<base::WaitableEvent> WaitableEventPerfTest;
TEST_F(WaitableEventPerfTest, EventPingPong) {
RunPingPongTest("4_WaitableEvent_Threads", 4);
}
// Build a minimal event using ConditionVariable.
class ConditionVariableEvent {
public:
ConditionVariableEvent(bool manual_reset, bool initially_signaled)
: cond_(&lock_), signaled_(false) {
DCHECK(!manual_reset);
DCHECK(!initially_signaled);
}
void Signal() {
{
base::AutoLock scoped_lock(lock_);
signaled_ = true;
}
cond_.Signal();
}
void Wait() {
base::AutoLock scoped_lock(lock_);
while (!signaled_)
cond_.Wait();
signaled_ = false;
}
private:
base::Lock lock_;
base::ConditionVariable cond_;
bool signaled_;
};
// This is meant to test the absolute minimal context switching time
// using our own base synchronization code.
typedef EventPerfTest<ConditionVariableEvent> ConditionVariablePerfTest;
TEST_F(ConditionVariablePerfTest, EventPingPong) {
RunPingPongTest("4_ConditionVariable_Threads", 4);
}
#if defined(OS_POSIX)
// Absolutely 100% minimal posix waitable event. If there is a better/faster
// way to force a context switch, we should use that instead.
class PthreadEvent {
public:
PthreadEvent(bool manual_reset, bool initially_signaled) {
DCHECK(!manual_reset);
DCHECK(!initially_signaled);
pthread_mutex_init(&mutex_, 0);
pthread_cond_init(&cond_, 0);
signaled_ = false;
}
~PthreadEvent() {
pthread_cond_destroy(&cond_);
pthread_mutex_destroy(&mutex_);
}
void Signal() {
pthread_mutex_lock(&mutex_);
signaled_ = true;
pthread_mutex_unlock(&mutex_);
pthread_cond_signal(&cond_);
}
void Wait() {
pthread_mutex_lock(&mutex_);
while (!signaled_)
pthread_cond_wait(&cond_, &mutex_);
signaled_ = false;
pthread_mutex_unlock(&mutex_);
}
private:
bool signaled_;
pthread_mutex_t mutex_;
pthread_cond_t cond_;
};
// This is meant to test the absolute minimal context switching time.
// If there is any faster way to do this we should substitute it in.
typedef EventPerfTest<PthreadEvent> PthreadEventPerfTest;
TEST_F(PthreadEventPerfTest, EventPingPong) {
RunPingPongTest("4_PthreadCondVar_Threads", 4);
}
#endif
} // namespace
} // namespace base
|