1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
|
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <map>
#include <vector>
#include "base/basictypes.h"
#include "base/command_line.h"
#if defined(OS_MACOSX)
#include "base/mac/mac_util.h"
#endif
#include "base/strings/stringprintf.h"
#include "base/test/trace_event_analyzer.h"
#include "base/time/default_tick_clock.h"
#include "base/win/windows_version.h"
#include "chrome/browser/extensions/extension_apitest.h"
#include "chrome/browser/extensions/extension_service.h"
#include "chrome/browser/extensions/extension_test_message_listener.h"
#include "chrome/browser/extensions/tab_helper.h"
#include "chrome/browser/profiles/profile.h"
#include "chrome/browser/ui/fullscreen/fullscreen_controller.h"
#include "chrome/common/chrome_switches.h"
#include "chrome/common/chrome_version_info.h"
#include "chrome/test/base/test_launcher_utils.h"
#include "chrome/test/base/test_switches.h"
#include "chrome/test/base/tracing.h"
#include "content/public/browser/render_process_host.h"
#include "content/public/browser/render_view_host.h"
#include "content/public/common/content_switches.h"
#include "extensions/common/feature_switch.h"
#include "extensions/common/features/base_feature_provider.h"
#include "extensions/common/features/complex_feature.h"
#include "extensions/common/features/feature.h"
#include "extensions/common/features/simple_feature.h"
#include "extensions/common/switches.h"
#include "media/base/audio_bus.h"
#include "media/base/video_frame.h"
#include "media/cast/cast_config.h"
#include "media/cast/cast_environment.h"
#include "media/cast/test/utility/audio_utility.h"
#include "media/cast/test/utility/barcode.h"
#include "media/cast/test/utility/default_config.h"
#include "media/cast/test/utility/in_process_receiver.h"
#include "media/cast/test/utility/standalone_cast_environment.h"
#include "media/cast/test/utility/udp_proxy.h"
#include "net/base/ip_endpoint.h"
#include "net/base/net_errors.h"
#include "net/base/net_util.h"
#include "net/base/rand_callback.h"
#include "net/udp/udp_socket.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "testing/perf/perf_test.h"
#include "ui/compositor/compositor_switches.h"
#include "ui/gl/gl_switches.h"
namespace {
const char kExtensionId[] = "ddchlicdkolnonkihahngkmmmjnjlkkf";
// Skip a few events from the beginning.
static const size_t kSkipEvents = 3;
enum TestFlags {
kUseGpu = 1 << 0, // Only execute test if --enable-gpu was given
// on the command line. This is required for
// tests that run on GPU.
kDisableVsync = 1 << 1, // Do not limit framerate to vertical refresh.
// when on GPU, nor to 60hz when not on GPU.
kSmallWindow = 1 << 2, // 1 = 800x600, 0 = 2000x1000
k24fps = 1 << 3, // use 24 fps video
k30fps = 1 << 4, // use 30 fps video
k60fps = 1 << 5, // use 60 fps video
kProxyWifi = 1 << 6, // Run UDP through UDPProxy wifi profile
kProxyEvil = 1 << 7, // Run UDP through UDPProxy evil profile
kSlowClock = 1 << 8, // Receiver clock is 10 seconds slow
kFastClock = 1 << 9, // Receiver clock is 10 seconds fast
};
class SkewedTickClock : public base::DefaultTickClock {
public:
explicit SkewedTickClock(const base::TimeDelta& delta) : delta_(delta) {
}
virtual base::TimeTicks NowTicks() OVERRIDE {
return DefaultTickClock::NowTicks() + delta_;
}
private:
base::TimeDelta delta_;
};
class SkewedCastEnvironment : public media::cast::StandaloneCastEnvironment {
public:
explicit SkewedCastEnvironment(const base::TimeDelta& delta) :
StandaloneCastEnvironment() {
clock_.reset(new SkewedTickClock(delta));
}
protected:
virtual ~SkewedCastEnvironment() {}
};
// We log one of these for each call to OnAudioFrame/OnVideoFrame.
struct TimeData {
TimeData(uint16 frame_no_, base::TimeTicks render_time_) :
frame_no(frame_no_),
render_time(render_time_) {
}
// The unit here is video frames, for audio data there can be duplicates.
// This was decoded from the actual audio/video data.
uint16 frame_no;
// This is when we should play this data, according to the sender.
base::TimeTicks render_time;
};
// TODO(hubbe): Move to media/cast to use for offline log analysis.
class MeanAndError {
public:
MeanAndError() {}
explicit MeanAndError(const std::vector<double>& values) {
double sum = 0.0;
double sqr_sum = 0.0;
num_values = values.size();
if (num_values) {
for (size_t i = 0; i < num_values; i++) {
sum += values[i];
sqr_sum += values[i] * values[i];
}
mean = sum / num_values;
std_dev = sqrt(std::max(0.0, num_values * sqr_sum - sum * sum)) /
num_values;
}
}
std::string AsString() const {
return base::StringPrintf("%f,%f", mean, std_dev);
}
void Print(const std::string& measurement,
const std::string& modifier,
const std::string& trace,
const std::string& unit) {
if (num_values >= 20) {
perf_test::PrintResultMeanAndError(measurement,
modifier,
trace,
AsString(),
unit,
true);
} else {
LOG(ERROR) << "Not enough events for "
<< measurement << modifier << " " << trace;
}
}
size_t num_values;
double mean;
double std_dev;
};
// This function checks how smooth the data in |data| is.
// It computes the average error of deltas and the average delta.
// If data[x] == x * A + B, then this function returns zero.
// The unit is milliseconds.
static MeanAndError AnalyzeJitter(const std::vector<TimeData>& data) {
CHECK_GT(data.size(), 1UL);
VLOG(0) << "Jitter analyzis on " << data.size() << " values.";
std::vector<double> deltas;
double sum = 0.0;
for (size_t i = 1; i < data.size(); i++) {
double delta = (data[i].render_time -
data[i - 1].render_time).InMillisecondsF();
deltas.push_back(delta);
sum += delta;
}
double mean = sum / deltas.size();
for (size_t i = 0; i < deltas.size(); i++) {
deltas[i] = fabs(mean - deltas[i]);
}
return MeanAndError(deltas);
}
// An in-process Cast receiver that examines the audio/video frames being
// received and logs some data about each received audio/video frame.
class TestPatternReceiver : public media::cast::InProcessReceiver {
public:
explicit TestPatternReceiver(
const scoped_refptr<media::cast::CastEnvironment>& cast_environment,
const net::IPEndPoint& local_end_point)
: InProcessReceiver(cast_environment,
local_end_point,
net::IPEndPoint(),
media::cast::GetDefaultAudioReceiverConfig(),
media::cast::GetDefaultVideoReceiverConfig()) {
}
typedef std::map<uint16, base::TimeTicks> TimeMap;
// Build a map from frame ID (as encoded in the audio and video data)
// to the rtp timestamp for that frame. Note that there will be multiple
// audio frames which all have the same frame ID. When that happens we
// want the minimum rtp timestamp, because that audio frame is supposed
// to play at the same time that the corresponding image is presented.
void MapFrameTimes(const std::vector<TimeData>& events, TimeMap* map) {
for (size_t i = kSkipEvents; i < events.size(); i++) {
base::TimeTicks& frame_tick = (*map)[events[i].frame_no];
if (frame_tick.is_null()) {
frame_tick = events[i].render_time;
} else {
frame_tick = std::min(events[i].render_time, frame_tick);
}
}
}
void Analyze(const std::string& name, const std::string& modifier) {
// First, find the minimum rtp timestamp for each audio and video frame.
// Note that the data encoded in the audio stream contains video frame
// numbers. So in a 30-fps video stream, there will be 1/30s of "1", then
// 1/30s of "2", etc.
TimeMap audio_frame_times, video_frame_times;
MapFrameTimes(audio_events_, &audio_frame_times);
MapFrameTimes(video_events_, &video_frame_times);
std::vector<double> deltas;
for (TimeMap::const_iterator i = audio_frame_times.begin();
i != audio_frame_times.end();
++i) {
TimeMap::const_iterator j = video_frame_times.find(i->first);
if (j != video_frame_times.end()) {
deltas.push_back((i->second - j->second).InMillisecondsF());
}
}
// Close to zero is better. (can be negative)
MeanAndError(deltas).Print(name, modifier, "av_sync", "ms");
// lower is better.
AnalyzeJitter(audio_events_).Print(name, modifier, "audio_jitter", "ms");
// lower is better.
AnalyzeJitter(video_events_).Print(name, modifier, "video_jitter", "ms");
}
private:
// Invoked by InProcessReceiver for each received audio frame.
virtual void OnAudioFrame(scoped_ptr<media::AudioBus> audio_frame,
const base::TimeTicks& playout_time,
bool is_continuous) OVERRIDE {
CHECK(cast_env()->CurrentlyOn(media::cast::CastEnvironment::MAIN));
if (audio_frame->frames() <= 0) {
NOTREACHED() << "OnAudioFrame called with no samples?!?";
return;
}
// Note: This is the number of the video frame that this audio belongs to.
uint16 frame_no;
if (media::cast::DecodeTimestamp(audio_frame->channel(0),
audio_frame->frames(),
&frame_no)) {
audio_events_.push_back(TimeData(frame_no, playout_time));
} else {
VLOG(0) << "Failed to decode audio timestamp!";
}
}
virtual void OnVideoFrame(const scoped_refptr<media::VideoFrame>& video_frame,
const base::TimeTicks& render_time,
bool is_continuous) OVERRIDE {
CHECK(cast_env()->CurrentlyOn(media::cast::CastEnvironment::MAIN));
TRACE_EVENT_INSTANT1(
"mirroring", "TestPatternReceiver::OnVideoFrame",
TRACE_EVENT_SCOPE_THREAD,
"render_time", render_time.ToInternalValue());
uint16 frame_no;
if (media::cast::test::DecodeBarcode(video_frame, &frame_no)) {
video_events_.push_back(TimeData(frame_no, render_time));
} else {
VLOG(0) << "Failed to decode barcode!";
}
}
std::vector<TimeData> audio_events_;
std::vector<TimeData> video_events_;
DISALLOW_COPY_AND_ASSIGN(TestPatternReceiver);
};
class CastV2PerformanceTest
: public ExtensionApiTest,
public testing::WithParamInterface<int> {
public:
CastV2PerformanceTest() {}
bool HasFlag(TestFlags flag) const {
return (GetParam() & flag) == flag;
}
bool IsGpuAvailable() const {
return CommandLine::ForCurrentProcess()->HasSwitch("enable-gpu");
}
std::string GetSuffixForTestFlags() {
std::string suffix;
if (HasFlag(kUseGpu))
suffix += "_gpu";
if (HasFlag(kDisableVsync))
suffix += "_novsync";
if (HasFlag(kSmallWindow))
suffix += "_small";
if (HasFlag(k24fps))
suffix += "_24fps";
if (HasFlag(k30fps))
suffix += "_30fps";
if (HasFlag(k60fps))
suffix += "_60fps";
if (HasFlag(kProxyWifi))
suffix += "_wifi";
if (HasFlag(kProxyEvil))
suffix += "_evil";
if (HasFlag(kSlowClock))
suffix += "_slow";
if (HasFlag(kFastClock))
suffix += "_fast";
return suffix;
}
int getfps() {
if (HasFlag(k24fps))
return 24;
if (HasFlag(k30fps))
return 30;
if (HasFlag(k60fps))
return 60;
NOTREACHED();
return 0;
}
net::IPEndPoint GetFreeLocalPort() {
// Determine a unused UDP port for the in-process receiver to listen on.
// Method: Bind a UDP socket on port 0, and then check which port the
// operating system assigned to it.
net::IPAddressNumber localhost;
localhost.push_back(127);
localhost.push_back(0);
localhost.push_back(0);
localhost.push_back(1);
scoped_ptr<net::UDPSocket> receive_socket(
new net::UDPSocket(net::DatagramSocket::DEFAULT_BIND,
net::RandIntCallback(),
NULL,
net::NetLog::Source()));
receive_socket->AllowAddressReuse();
CHECK_EQ(net::OK, receive_socket->Bind(net::IPEndPoint(localhost, 0)));
net::IPEndPoint endpoint;
CHECK_EQ(net::OK, receive_socket->GetLocalAddress(&endpoint));
return endpoint;
}
virtual void SetUp() OVERRIDE {
EnablePixelOutput();
ExtensionApiTest::SetUp();
}
virtual void SetUpCommandLine(CommandLine* command_line) OVERRIDE {
// Some of the tests may launch http requests through JSON or AJAX
// which causes a security error (cross domain request) when the page
// is loaded from the local file system ( file:// ). The following switch
// fixes that error.
command_line->AppendSwitch(switches::kAllowFileAccessFromFiles);
if (HasFlag(kSmallWindow)) {
command_line->AppendSwitchASCII(switches::kWindowSize, "800,600");
} else {
command_line->AppendSwitchASCII(switches::kWindowSize, "2000,1500");
}
if (!HasFlag(kUseGpu))
command_line->AppendSwitch(switches::kDisableGpu);
if (HasFlag(kDisableVsync))
command_line->AppendSwitch(switches::kDisableGpuVsync);
command_line->AppendSwitchASCII(
extensions::switches::kWhitelistedExtensionID,
kExtensionId);
ExtensionApiTest::SetUpCommandLine(command_line);
}
void GetTraceEvents(trace_analyzer::TraceAnalyzer* analyzer,
const std::string& event_name,
trace_analyzer::TraceEventVector* events) {
trace_analyzer::Query query =
trace_analyzer::Query::EventNameIs(event_name) &&
(trace_analyzer::Query::EventPhaseIs(TRACE_EVENT_PHASE_BEGIN) ||
trace_analyzer::Query::EventPhaseIs(TRACE_EVENT_PHASE_ASYNC_BEGIN) ||
trace_analyzer::Query::EventPhaseIs(TRACE_EVENT_PHASE_FLOW_BEGIN) ||
trace_analyzer::Query::EventPhaseIs(TRACE_EVENT_PHASE_INSTANT) ||
trace_analyzer::Query::EventPhaseIs(TRACE_EVENT_PHASE_COMPLETE));
analyzer->FindEvents(query, events);
}
// The key contains the name of the argument and the argument.
typedef std::pair<std::string, double> EventMapKey;
typedef std::map<EventMapKey, const trace_analyzer::TraceEvent*> EventMap;
// Make events findable by their arguments, for instance, if an
// event has a "timestamp": 238724 argument, the map will contain
// pair<"timestamp", 238724> -> &event. All arguments are indexed.
void IndexEvents(trace_analyzer::TraceAnalyzer* analyzer,
const std::string& event_name,
EventMap* event_map) {
trace_analyzer::TraceEventVector events;
GetTraceEvents(analyzer, event_name, &events);
for (size_t i = 0; i < events.size(); i++) {
std::map<std::string, double>::const_iterator j;
for (j = events[i]->arg_numbers.begin();
j != events[i]->arg_numbers.end();
++j) {
(*event_map)[*j] = events[i];
}
}
}
// Look up an event in |event_map|. The return event will have the same
// value for the argument |key_name| as |prev_event|. Note that if
// the |key_name| is "time_delta", then we allow some fuzzy logic since
// the time deltas are truncated to milliseconds in the code.
const trace_analyzer::TraceEvent* FindNextEvent(
const EventMap& event_map,
std::vector<const trace_analyzer::TraceEvent*> prev_events,
std::string key_name) {
EventMapKey key;
for (size_t i = prev_events.size(); i;) {
--i;
std::map<std::string, double>::const_iterator j =
prev_events[i]->arg_numbers.find(key_name);
if (j != prev_events[i]->arg_numbers.end()) {
key = *j;
break;
}
}
EventMap::const_iterator i = event_map.lower_bound(key);
if (i == event_map.end())
return NULL;
if (i->first.second == key.second)
return i->second;
if (key_name != "time_delta")
return NULL;
if (fabs(i->first.second - key.second) < 1000)
return i->second;
if (i == event_map.begin())
return NULL;
i--;
if (fabs(i->first.second - key.second) < 1000)
return i->second;
return NULL;
}
// Given a vector of vector of data, extract the difference between
// two columns (|col_a| and |col_b|) and output the result as a
// performance metric.
void OutputMeasurement(const std::string& test_name,
const std::vector<std::vector<double> > data,
const std::string& measurement_name,
int col_a,
int col_b) {
std::vector<double> tmp;
for (size_t i = 0; i < data.size(); i++) {
tmp.push_back((data[i][col_b] - data[i][col_a]) / 1000.0);
}
return MeanAndError(tmp).Print(test_name,
GetSuffixForTestFlags(),
measurement_name,
"ms");
}
// Analyzing latency is hard, because there is no unifying identifier for
// frames throughout the code. At first, we have a capture timestamp, which
// gets converted to a time delta, then back to a timestamp. Once it enters
// the cast library it gets converted to an rtp_timestamp, and when it leaves
// the cast library, all we have is the render_time.
//
// To be able to follow the frame throughout all this, we insert TRACE
// calls that tracks each conversion as it happens. Then we extract all
// these events and link them together.
void AnalyzeLatency(const std::string& test_name,
trace_analyzer::TraceAnalyzer* analyzer) {
EventMap onbuffer, sink, inserted, encoded, transmitted, decoded, done;
IndexEvents(analyzer, "OnBufferReceived", &onbuffer);
IndexEvents(analyzer, "MediaStreamVideoSink::OnVideoFrame", &sink);
IndexEvents(analyzer, "InsertRawVideoFrame", &inserted);
IndexEvents(analyzer, "VideoFrameEncoded", &encoded);
IndexEvents(analyzer, "PullEncodedVideoFrame", &transmitted);
IndexEvents(analyzer, "FrameDecoded", &decoded);
IndexEvents(analyzer, "TestPatternReceiver::OnVideoFrame", &done);
std::vector<std::pair<EventMap*, std::string> > event_maps;
event_maps.push_back(std::make_pair(&onbuffer, "timestamp"));
event_maps.push_back(std::make_pair(&sink, "time_delta"));
event_maps.push_back(std::make_pair(&inserted, "timestamp"));
event_maps.push_back(std::make_pair(&encoded, "rtp_timestamp"));
event_maps.push_back(std::make_pair(&transmitted, "rtp_timestamp"));
event_maps.push_back(std::make_pair(&decoded, "rtp_timestamp"));
event_maps.push_back(std::make_pair(&done, "render_time"));
trace_analyzer::TraceEventVector capture_events;
GetTraceEvents(analyzer, "Capture" , &capture_events);
std::vector<std::vector<double> > traced_frames;
for (size_t i = kSkipEvents; i < capture_events.size(); i++) {
std::vector<double> times;
const trace_analyzer::TraceEvent *event = capture_events[i];
times.push_back(event->timestamp); // begin capture
event = event->other_event;
if (!event) {
continue;
}
times.push_back(event->timestamp); // end capture (with timestamp)
std::vector<const trace_analyzer::TraceEvent*> prev_events;
prev_events.push_back(event);
for (size_t j = 0; j < event_maps.size(); j++) {
event = FindNextEvent(*event_maps[j].first,
prev_events,
event_maps[j].second);
if (!event) {
break;
}
prev_events.push_back(event);
times.push_back(event->timestamp);
}
if (event) {
// Successfully traced frame from beginning to end
traced_frames.push_back(times);
}
}
// 0 = capture begin
// 1 = capture end
// 2 = onbuffer
// 3 = sink
// 4 = inserted
// 5 = encoded
// 6 = transmitted
// 7 = decoded
// 8 = done
// Lower is better for all of these.
OutputMeasurement(test_name, traced_frames, "total_latency", 0, 8);
OutputMeasurement(test_name, traced_frames, "capture_duration", 0, 1);
OutputMeasurement(test_name, traced_frames, "send_to_renderer", 1, 3);
OutputMeasurement(test_name, traced_frames, "encode", 3, 5);
OutputMeasurement(test_name, traced_frames, "transmit", 5, 6);
OutputMeasurement(test_name, traced_frames, "decode", 6, 7);
OutputMeasurement(test_name, traced_frames, "cast_latency", 3, 8);
}
MeanAndError AnalyzeTraceDistance(trace_analyzer::TraceAnalyzer* analyzer,
const std::string& event_name) {
trace_analyzer::TraceEventVector events;
GetTraceEvents(analyzer, event_name, &events);
std::vector<double> deltas;
for (size_t i = kSkipEvents + 1; i < events.size(); ++i) {
double delta_micros = events[i]->timestamp - events[i - 1]->timestamp;
deltas.push_back(delta_micros / 1000.0);
}
return MeanAndError(deltas);
}
void RunTest(const std::string& test_name) {
if (HasFlag(kUseGpu) && !IsGpuAvailable()) {
LOG(WARNING) <<
"Test skipped: requires gpu. Pass --enable-gpu on the command "
"line if use of GPU is desired.";
return;
}
ASSERT_EQ(1,
(HasFlag(k24fps) ? 1 : 0) +
(HasFlag(k30fps) ? 1 : 0) +
(HasFlag(k60fps) ? 1 : 0));
net::IPEndPoint receiver_end_point = GetFreeLocalPort();
// Start the in-process receiver that examines audio/video for the expected
// test patterns.
base::TimeDelta delta = base::TimeDelta::FromSeconds(0);
if (HasFlag(kFastClock)) {
delta = base::TimeDelta::FromSeconds(10);
}
if (HasFlag(kSlowClock)) {
delta = base::TimeDelta::FromSeconds(-10);
}
scoped_refptr<media::cast::StandaloneCastEnvironment> cast_environment(
new SkewedCastEnvironment(delta));
TestPatternReceiver* const receiver =
new TestPatternReceiver(cast_environment, receiver_end_point);
receiver->Start();
scoped_ptr<media::cast::test::UDPProxy> udp_proxy;
if (HasFlag(kProxyWifi) || HasFlag(kProxyEvil)) {
net::IPEndPoint proxy_end_point = GetFreeLocalPort();
if (HasFlag(kProxyWifi)) {
udp_proxy = media::cast::test::UDPProxy::Create(
proxy_end_point,
receiver_end_point,
media::cast::test::WifiNetwork().Pass(),
media::cast::test::WifiNetwork().Pass(),
NULL);
} else if (HasFlag(kProxyEvil)) {
udp_proxy = media::cast::test::UDPProxy::Create(
proxy_end_point,
receiver_end_point,
media::cast::test::EvilNetwork().Pass(),
media::cast::test::EvilNetwork().Pass(),
NULL);
}
receiver_end_point = proxy_end_point;
}
std::string json_events;
ASSERT_TRUE(tracing::BeginTracing("test_fps,mirroring,cast_perf_test"));
const std::string page_url = base::StringPrintf(
"performance%d.html?port=%d",
getfps(),
receiver_end_point.port());
ASSERT_TRUE(RunExtensionSubtest("cast_streaming", page_url)) << message_;
ASSERT_TRUE(tracing::EndTracing(&json_events));
receiver->Stop();
// Stop all threads, removes the need for synchronization when analyzing
// the data.
cast_environment->Shutdown();
scoped_ptr<trace_analyzer::TraceAnalyzer> analyzer;
analyzer.reset(trace_analyzer::TraceAnalyzer::Create(json_events));
analyzer->AssociateAsyncBeginEndEvents();
MeanAndError frame_data = AnalyzeTraceDistance(
analyzer.get(),
TRACE_DISABLED_BY_DEFAULT("OnSwapCompositorFrame"));
EXPECT_GT(frame_data.num_values, 0UL);
// Lower is better.
frame_data.Print(test_name,
GetSuffixForTestFlags(),
"time_between_frames",
"ms");
// This prints out the average time between capture events.
// As the capture frame rate is capped at 30fps, this score
// cannot get any better than (lower) 33.33 ms.
MeanAndError capture_data = AnalyzeTraceDistance(analyzer.get(), "Capture");
// Lower is better.
capture_data.Print(test_name,
GetSuffixForTestFlags(),
"time_between_captures",
"ms");
receiver->Analyze(test_name, GetSuffixForTestFlags());
AnalyzeLatency(test_name, analyzer.get());
}
};
} // namespace
IN_PROC_BROWSER_TEST_P(CastV2PerformanceTest, Performance) {
RunTest("CastV2Performance");
}
// Note: First argument is optional and intentionally left blank.
// (it's a prefix for the generated test cases)
INSTANTIATE_TEST_CASE_P(
,
CastV2PerformanceTest,
testing::Values(
kUseGpu | k24fps,
kUseGpu | k30fps,
kUseGpu | k60fps,
kUseGpu | k24fps | kDisableVsync,
kUseGpu | k30fps | kProxyWifi,
kUseGpu | k30fps | kProxyEvil,
kUseGpu | k30fps | kSlowClock,
kUseGpu | k30fps | kFastClock));
|