1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
|
// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "content/browser/media/capture/video_capture_oracle.h"
#include "base/strings/stringprintf.h"
#include "base/time/time.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace content {
namespace {
void SteadyStateSampleAndAdvance(base::TimeDelta vsync,
SmoothEventSampler* sampler,
base::TimeTicks* t) {
ASSERT_TRUE(sampler->AddEventAndConsiderSampling(*t));
ASSERT_TRUE(sampler->HasUnrecordedEvent());
sampler->RecordSample();
ASSERT_FALSE(sampler->HasUnrecordedEvent());
ASSERT_FALSE(sampler->IsOverdueForSamplingAt(*t));
*t += vsync;
ASSERT_FALSE(sampler->IsOverdueForSamplingAt(*t));
}
void SteadyStateNoSampleAndAdvance(base::TimeDelta vsync,
SmoothEventSampler* sampler,
base::TimeTicks* t) {
ASSERT_FALSE(sampler->AddEventAndConsiderSampling(*t));
ASSERT_TRUE(sampler->HasUnrecordedEvent());
ASSERT_FALSE(sampler->IsOverdueForSamplingAt(*t));
*t += vsync;
ASSERT_FALSE(sampler->IsOverdueForSamplingAt(*t));
}
void TimeTicksFromString(const char* string, base::TimeTicks* t) {
base::Time time;
ASSERT_TRUE(base::Time::FromString(string, &time));
*t = base::TimeTicks::UnixEpoch() + (time - base::Time::UnixEpoch());
}
void TestRedundantCaptureStrategy(base::TimeDelta capture_period,
int redundant_capture_goal,
SmoothEventSampler* sampler,
base::TimeTicks* t) {
// Before any events have been considered, we're overdue for sampling.
ASSERT_TRUE(sampler->IsOverdueForSamplingAt(*t));
// Consider the first event. We want to sample that.
ASSERT_FALSE(sampler->HasUnrecordedEvent());
ASSERT_TRUE(sampler->AddEventAndConsiderSampling(*t));
ASSERT_TRUE(sampler->HasUnrecordedEvent());
sampler->RecordSample();
ASSERT_FALSE(sampler->HasUnrecordedEvent());
// After more than one capture period has passed without considering an event,
// we should repeatedly be overdue for sampling. However, once the redundant
// capture goal is achieved, we should no longer be overdue for sampling.
*t += capture_period * 4;
for (int i = 0; i < redundant_capture_goal; i++) {
SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
ASSERT_FALSE(sampler->HasUnrecordedEvent());
ASSERT_TRUE(sampler->IsOverdueForSamplingAt(*t))
<< "Should sample until redundant capture goal is hit";
sampler->RecordSample();
*t += capture_period; // Timer fires once every capture period.
}
ASSERT_FALSE(sampler->IsOverdueForSamplingAt(*t))
<< "Should not be overdue once redundant capture goal achieved.";
}
// 60Hz sampled at 30Hz should produce 30Hz. In addition, this test contains
// much more comprehensive before/after/edge-case scenarios than the others.
TEST(SmoothEventSamplerTest, Sample60HertzAt30Hertz) {
const base::TimeDelta capture_period = base::TimeDelta::FromSeconds(1) / 30;
const int redundant_capture_goal = 200;
const base::TimeDelta vsync = base::TimeDelta::FromSeconds(1) / 60;
SmoothEventSampler sampler(capture_period, true, redundant_capture_goal);
base::TimeTicks t;
TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t);
TestRedundantCaptureStrategy(capture_period, redundant_capture_goal,
&sampler, &t);
// Steady state, we should capture every other vsync, indefinitely.
for (int i = 0; i < 100; i++) {
SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
SteadyStateSampleAndAdvance(vsync, &sampler, &t);
SteadyStateNoSampleAndAdvance(vsync, &sampler, &t);
}
// Now pretend we're limited by backpressure in the pipeline. In this scenario
// case we are adding events but not sampling them.
for (int i = 0; i < 20; i++) {
SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
ASSERT_EQ(i >= 7, sampler.IsOverdueForSamplingAt(t));
ASSERT_TRUE(sampler.AddEventAndConsiderSampling(t));
ASSERT_TRUE(sampler.HasUnrecordedEvent());
t += vsync;
}
// Now suppose we can sample again. We should be back in the steady state,
// but at a different phase.
ASSERT_TRUE(sampler.IsOverdueForSamplingAt(t));
for (int i = 0; i < 100; i++) {
SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
SteadyStateSampleAndAdvance(vsync, &sampler, &t);
SteadyStateNoSampleAndAdvance(vsync, &sampler, &t);
}
}
// 50Hz sampled at 30Hz should produce a sequence where some frames are skipped.
TEST(SmoothEventSamplerTest, Sample50HertzAt30Hertz) {
const base::TimeDelta capture_period = base::TimeDelta::FromSeconds(1) / 30;
const int redundant_capture_goal = 2;
const base::TimeDelta vsync = base::TimeDelta::FromSeconds(1) / 50;
SmoothEventSampler sampler(capture_period, true, redundant_capture_goal);
base::TimeTicks t;
TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t);
TestRedundantCaptureStrategy(capture_period, redundant_capture_goal,
&sampler, &t);
// Steady state, we should capture 1st, 2nd and 4th frames out of every five
// frames, indefinitely.
for (int i = 0; i < 100; i++) {
SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
SteadyStateSampleAndAdvance(vsync, &sampler, &t);
SteadyStateSampleAndAdvance(vsync, &sampler, &t);
SteadyStateNoSampleAndAdvance(vsync, &sampler, &t);
SteadyStateSampleAndAdvance(vsync, &sampler, &t);
SteadyStateNoSampleAndAdvance(vsync, &sampler, &t);
}
// Now pretend we're limited by backpressure in the pipeline. In this scenario
// case we are adding events but not sampling them.
for (int i = 0; i < 12; i++) {
SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
ASSERT_EQ(i >= 5, sampler.IsOverdueForSamplingAt(t));
ASSERT_TRUE(sampler.AddEventAndConsiderSampling(t));
t += vsync;
}
// Now suppose we can sample again. We should be back in the steady state
// again.
ASSERT_TRUE(sampler.IsOverdueForSamplingAt(t));
for (int i = 0; i < 100; i++) {
SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
SteadyStateSampleAndAdvance(vsync, &sampler, &t);
SteadyStateSampleAndAdvance(vsync, &sampler, &t);
SteadyStateNoSampleAndAdvance(vsync, &sampler, &t);
SteadyStateSampleAndAdvance(vsync, &sampler, &t);
SteadyStateNoSampleAndAdvance(vsync, &sampler, &t);
}
}
// 75Hz sampled at 30Hz should produce a sequence where some frames are skipped.
TEST(SmoothEventSamplerTest, Sample75HertzAt30Hertz) {
const base::TimeDelta capture_period = base::TimeDelta::FromSeconds(1) / 30;
const int redundant_capture_goal = 32;
const base::TimeDelta vsync = base::TimeDelta::FromSeconds(1) / 75;
SmoothEventSampler sampler(capture_period, true, redundant_capture_goal);
base::TimeTicks t;
TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t);
TestRedundantCaptureStrategy(capture_period, redundant_capture_goal,
&sampler, &t);
// Steady state, we should capture 1st and 3rd frames out of every five
// frames, indefinitely.
SteadyStateSampleAndAdvance(vsync, &sampler, &t);
SteadyStateNoSampleAndAdvance(vsync, &sampler, &t);
for (int i = 0; i < 100; i++) {
SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
SteadyStateSampleAndAdvance(vsync, &sampler, &t);
SteadyStateNoSampleAndAdvance(vsync, &sampler, &t);
SteadyStateSampleAndAdvance(vsync, &sampler, &t);
SteadyStateNoSampleAndAdvance(vsync, &sampler, &t);
SteadyStateNoSampleAndAdvance(vsync, &sampler, &t);
}
// Now pretend we're limited by backpressure in the pipeline. In this scenario
// case we are adding events but not sampling them.
for (int i = 0; i < 20; i++) {
SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
ASSERT_EQ(i >= 8, sampler.IsOverdueForSamplingAt(t));
ASSERT_TRUE(sampler.AddEventAndConsiderSampling(t));
t += vsync;
}
// Now suppose we can sample again. We capture the next frame, and not the one
// after that, and then we're back in the steady state again.
ASSERT_TRUE(sampler.IsOverdueForSamplingAt(t));
SteadyStateSampleAndAdvance(vsync, &sampler, &t);
SteadyStateNoSampleAndAdvance(vsync, &sampler, &t);
for (int i = 0; i < 100; i++) {
SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
SteadyStateSampleAndAdvance(vsync, &sampler, &t);
SteadyStateNoSampleAndAdvance(vsync, &sampler, &t);
SteadyStateSampleAndAdvance(vsync, &sampler, &t);
SteadyStateNoSampleAndAdvance(vsync, &sampler, &t);
SteadyStateNoSampleAndAdvance(vsync, &sampler, &t);
}
}
// 30Hz sampled at 30Hz should produce 30Hz.
TEST(SmoothEventSamplerTest, Sample30HertzAt30Hertz) {
const base::TimeDelta capture_period = base::TimeDelta::FromSeconds(1) / 30;
const int redundant_capture_goal = 1;
const base::TimeDelta vsync = base::TimeDelta::FromSeconds(1) / 30;
SmoothEventSampler sampler(capture_period, true, redundant_capture_goal);
base::TimeTicks t;
TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t);
TestRedundantCaptureStrategy(capture_period, redundant_capture_goal,
&sampler, &t);
// Steady state, we should capture every vsync, indefinitely.
for (int i = 0; i < 200; i++) {
SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
SteadyStateSampleAndAdvance(vsync, &sampler, &t);
}
// Now pretend we're limited by backpressure in the pipeline. In this scenario
// case we are adding events but not sampling them.
for (int i = 0; i < 7; i++) {
SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
ASSERT_EQ(i >= 3, sampler.IsOverdueForSamplingAt(t));
ASSERT_TRUE(sampler.AddEventAndConsiderSampling(t));
t += vsync;
}
// Now suppose we can sample again. We should be back in the steady state.
ASSERT_TRUE(sampler.IsOverdueForSamplingAt(t));
for (int i = 0; i < 100; i++) {
SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
SteadyStateSampleAndAdvance(vsync, &sampler, &t);
}
}
// 24Hz sampled at 30Hz should produce 24Hz.
TEST(SmoothEventSamplerTest, Sample24HertzAt30Hertz) {
const base::TimeDelta capture_period = base::TimeDelta::FromSeconds(1) / 30;
const int redundant_capture_goal = 333;
const base::TimeDelta vsync = base::TimeDelta::FromSeconds(1) / 24;
SmoothEventSampler sampler(capture_period, true, redundant_capture_goal);
base::TimeTicks t;
TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t);
TestRedundantCaptureStrategy(capture_period, redundant_capture_goal,
&sampler, &t);
// Steady state, we should capture every vsync, indefinitely.
for (int i = 0; i < 200; i++) {
SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
SteadyStateSampleAndAdvance(vsync, &sampler, &t);
}
// Now pretend we're limited by backpressure in the pipeline. In this scenario
// case we are adding events but not sampling them.
for (int i = 0; i < 7; i++) {
SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
ASSERT_EQ(i >= 3, sampler.IsOverdueForSamplingAt(t));
ASSERT_TRUE(sampler.AddEventAndConsiderSampling(t));
t += vsync;
}
// Now suppose we can sample again. We should be back in the steady state.
ASSERT_TRUE(sampler.IsOverdueForSamplingAt(t));
for (int i = 0; i < 100; i++) {
SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
SteadyStateSampleAndAdvance(vsync, &sampler, &t);
}
}
TEST(SmoothEventSamplerTest, DoubleDrawAtOneTimeStillDirties) {
const base::TimeDelta capture_period = base::TimeDelta::FromSeconds(1) / 30;
const base::TimeDelta overdue_period = base::TimeDelta::FromSeconds(1);
SmoothEventSampler sampler(capture_period, true, 1);
base::TimeTicks t;
TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t);
ASSERT_TRUE(sampler.AddEventAndConsiderSampling(t));
sampler.RecordSample();
ASSERT_FALSE(sampler.IsOverdueForSamplingAt(t))
<< "Sampled last event; should not be dirty.";
t += overdue_period;
// Now simulate 2 events with the same clock value.
ASSERT_TRUE(sampler.AddEventAndConsiderSampling(t));
sampler.RecordSample();
ASSERT_FALSE(sampler.AddEventAndConsiderSampling(t))
<< "Two events at same time -- expected second not to be sampled.";
ASSERT_TRUE(sampler.IsOverdueForSamplingAt(t + overdue_period))
<< "Second event should dirty the capture state.";
sampler.RecordSample();
ASSERT_FALSE(sampler.IsOverdueForSamplingAt(t + overdue_period));
}
TEST(SmoothEventSamplerTest, FallbackToPollingIfUpdatesUnreliable) {
const base::TimeDelta timer_interval = base::TimeDelta::FromSeconds(1) / 30;
SmoothEventSampler should_not_poll(timer_interval, true, 1);
SmoothEventSampler should_poll(timer_interval, false, 1);
base::TimeTicks t;
TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t);
// Do one round of the "happy case" where an event was received and
// RecordSample() was called by the client.
ASSERT_TRUE(should_not_poll.AddEventAndConsiderSampling(t));
ASSERT_TRUE(should_poll.AddEventAndConsiderSampling(t));
should_not_poll.RecordSample();
should_poll.RecordSample();
// One time period ahead, neither sampler says we're overdue.
for (int i = 0; i < 3; i++) {
t += timer_interval;
ASSERT_FALSE(should_not_poll.IsOverdueForSamplingAt(t))
<< "Sampled last event; should not be dirty.";
ASSERT_FALSE(should_poll.IsOverdueForSamplingAt(t))
<< "Dirty interval has not elapsed yet.";
}
// Next time period ahead, both samplers say we're overdue. The non-polling
// sampler is returning true here because it has been configured to allow one
// redundant capture.
t += timer_interval;
ASSERT_TRUE(should_not_poll.IsOverdueForSamplingAt(t))
<< "Sampled last event; is dirty one time only to meet redundancy goal.";
ASSERT_TRUE(should_poll.IsOverdueForSamplingAt(t))
<< "If updates are unreliable, must fall back to polling when idle.";
should_not_poll.RecordSample();
should_poll.RecordSample();
// Forever more, the non-polling sampler returns false while the polling one
// returns true.
for (int i = 0; i < 100; ++i) {
t += timer_interval;
ASSERT_FALSE(should_not_poll.IsOverdueForSamplingAt(t))
<< "Sampled last event; should not be dirty.";
ASSERT_TRUE(should_poll.IsOverdueForSamplingAt(t))
<< "If updates are unreliable, must fall back to polling when idle.";
should_poll.RecordSample();
}
t += timer_interval / 3;
ASSERT_FALSE(should_not_poll.IsOverdueForSamplingAt(t))
<< "Sampled last event; should not be dirty.";
ASSERT_TRUE(should_poll.IsOverdueForSamplingAt(t))
<< "If updates are unreliable, must fall back to polling when idle.";
should_poll.RecordSample();
}
struct DataPoint {
bool should_capture;
double increment_ms;
};
void ReplayCheckingSamplerDecisions(const DataPoint* data_points,
size_t num_data_points,
SmoothEventSampler* sampler) {
base::TimeTicks t;
TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t);
for (size_t i = 0; i < num_data_points; ++i) {
t += base::TimeDelta::FromMicroseconds(
static_cast<int64>(data_points[i].increment_ms * 1000));
ASSERT_EQ(data_points[i].should_capture,
sampler->AddEventAndConsiderSampling(t))
<< "at data_points[" << i << ']';
if (data_points[i].should_capture)
sampler->RecordSample();
}
}
TEST(SmoothEventSamplerTest, DrawingAt24FpsWith60HzVsyncSampledAt30Hertz) {
// Actual capturing of timing data: Initial instability as a 24 FPS video was
// started from a still screen, then clearly followed by steady-state.
static const DataPoint data_points[] = {
{ true, 1437.93 }, { true, 150.484 }, { true, 217.362 }, { true, 50.161 },
{ true, 33.44 }, { false, 0 }, { true, 16.721 }, { true, 66.88 },
{ true, 50.161 }, { false, 0 }, { false, 0 }, { true, 50.16 },
{ true, 33.441 }, { true, 16.72 }, { false, 16.72 }, { true, 117.041 },
{ true, 16.72 }, { false, 16.72 }, { true, 50.161 }, { true, 50.16 },
{ true, 33.441 }, { true, 33.44 }, { true, 33.44 }, { true, 16.72 },
{ false, 0 }, { true, 50.161 }, { false, 0 }, { true, 33.44 },
{ true, 16.72 }, { false, 16.721 }, { true, 66.881 }, { false, 0 },
{ true, 33.441 }, { true, 16.72 }, { true, 50.16 }, { true, 16.72 },
{ false, 16.721 }, { true, 50.161 }, { true, 50.16 }, { false, 0 },
{ true, 33.441 }, { true, 50.337 }, { true, 50.183 }, { true, 16.722 },
{ true, 50.161 }, { true, 33.441 }, { true, 50.16 }, { true, 33.441 },
{ true, 50.16 }, { true, 33.441 }, { true, 50.16 }, { true, 33.44 },
{ true, 50.161 }, { true, 50.16 }, { true, 33.44 }, { true, 33.441 },
{ true, 50.16 }, { true, 50.161 }, { true, 33.44 }, { true, 33.441 },
{ true, 50.16 }, { true, 33.44 }, { true, 50.161 }, { true, 33.44 },
{ true, 50.161 }, { true, 33.44 }, { true, 50.161 }, { true, 33.44 },
{ true, 83.601 }, { true, 16.72 }, { true, 33.44 }, { false, 0 }
};
SmoothEventSampler sampler(base::TimeDelta::FromSeconds(1) / 30, true, 3);
ReplayCheckingSamplerDecisions(data_points, arraysize(data_points), &sampler);
}
TEST(SmoothEventSamplerTest, DrawingAt30FpsWith60HzVsyncSampledAt30Hertz) {
// Actual capturing of timing data: Initial instability as a 30 FPS video was
// started from a still screen, then followed by steady-state. Drawing
// framerate from the video rendering was a bit volatile, but averaged 30 FPS.
static const DataPoint data_points[] = {
{ true, 2407.69 }, { true, 16.733 }, { true, 217.362 }, { true, 33.441 },
{ true, 33.44 }, { true, 33.44 }, { true, 33.441 }, { true, 33.44 },
{ true, 33.44 }, { true, 33.441 }, { true, 33.44 }, { true, 33.44 },
{ true, 16.721 }, { true, 33.44 }, { false, 0 }, { true, 50.161 },
{ true, 50.16 }, { false, 0 }, { true, 50.161 }, { true, 33.44 },
{ true, 16.72 }, { false, 0 }, { false, 16.72 }, { true, 66.881 },
{ false, 0 }, { true, 33.44 }, { true, 16.72 }, { true, 50.161 },
{ false, 0 }, { true, 33.538 }, { true, 33.526 }, { true, 33.447 },
{ true, 33.445 }, { true, 33.441 }, { true, 16.721 }, { true, 33.44 },
{ true, 33.44 }, { true, 50.161 }, { true, 16.72 }, { true, 33.44 },
{ true, 33.441 }, { true, 33.44 }, { false, 0 }, { false, 16.72 },
{ true, 66.881 }, { true, 16.72 }, { false, 16.72 }, { true, 50.16 },
{ true, 33.441 }, { true, 33.44 }, { true, 33.44 }, { true, 33.44 },
{ true, 33.441 }, { true, 33.44 }, { true, 50.161 }, { false, 0 },
{ true, 33.44 }, { true, 33.44 }, { true, 50.161 }, { true, 16.72 },
{ true, 33.44 }, { true, 33.441 }, { false, 0 }, { true, 66.88 },
{ true, 33.441 }, { true, 33.44 }, { true, 33.44 }, { false, 0 },
{ true, 33.441 }, { true, 33.44 }, { true, 33.44 }, { false, 0 },
{ true, 16.72 }, { true, 50.161 }, { false, 0 }, { true, 50.16 },
{ false, 0.001 }, { true, 16.721 }, { true, 66.88 }, { true, 33.44 },
{ true, 33.441 }, { true, 33.44 }, { true, 50.161 }, { true, 16.72 },
{ false, 0 }, { true, 33.44 }, { false, 16.72 }, { true, 66.881 },
{ true, 33.44 }, { true, 16.72 }, { true, 33.441 }, { false, 16.72 },
{ true, 66.88 }, { true, 16.721 }, { true, 50.16 }, { true, 33.44 },
{ true, 16.72 }, { true, 33.441 }, { true, 33.44 }, { true, 33.44 }
};
SmoothEventSampler sampler(base::TimeDelta::FromSeconds(1) / 30, true, 3);
ReplayCheckingSamplerDecisions(data_points, arraysize(data_points), &sampler);
}
TEST(SmoothEventSamplerTest, DrawingAt60FpsWith60HzVsyncSampledAt30Hertz) {
// Actual capturing of timing data: WebGL Acquarium demo
// (http://webglsamples.googlecode.com/hg/aquarium/aquarium.html) which ran
// between 55-60 FPS in the steady-state.
static const DataPoint data_points[] = {
{ true, 16.72 }, { true, 16.72 }, { true, 4163.29 }, { true, 50.193 },
{ true, 117.041 }, { true, 50.161 }, { true, 50.16 }, { true, 33.441 },
{ true, 50.16 }, { true, 33.44 }, { false, 0 }, { false, 0 },
{ true, 50.161 }, { true, 83.601 }, { true, 50.16 }, { true, 16.72 },
{ true, 33.441 }, { false, 16.72 }, { true, 50.16 }, { true, 16.72 },
{ false, 0.001 }, { true, 33.441 }, { false, 16.72 }, { true, 16.72 },
{ true, 50.16 }, { false, 0 }, { true, 16.72 }, { true, 33.441 },
{ false, 0 }, { true, 33.44 }, { false, 16.72 }, { true, 16.72 },
{ true, 50.161 }, { false, 0 }, { true, 16.72 }, { true, 33.44 },
{ false, 0 }, { true, 33.44 }, { false, 16.721 }, { true, 16.721 },
{ true, 50.161 }, { false, 0 }, { true, 16.72 }, { true, 33.441 },
{ false, 0 }, { true, 33.44 }, { false, 16.72 }, { true, 33.44 },
{ false, 0 }, { true, 16.721 }, { true, 50.161 }, { false, 0 },
{ true, 33.44 }, { false, 0 }, { true, 16.72 }, { true, 33.441 },
{ false, 0 }, { true, 33.44 }, { false, 16.72 }, { true, 16.72 },
{ true, 50.16 }, { false, 0 }, { true, 16.721 }, { true, 33.44 },
{ false, 0 }, { true, 33.44 }, { false, 16.721 }, { true, 16.721 },
{ true, 50.161 }, { false, 0 }, { true, 16.72 }, { true, 33.44 },
{ false, 0 }, { true, 33.441 }, { false, 16.72 }, { true, 16.72 },
{ true, 50.16 }, { false, 0 }, { true, 16.72 }, { true, 33.441 },
{ true, 33.44 }, { false, 0 }, { true, 33.44 }, { true, 33.441 },
{ false, 0 }, { true, 33.44 }, { true, 33.441 }, { false, 0 },
{ true, 33.44 }, { false, 0 }, { true, 33.44 }, { false, 16.72 },
{ true, 16.721 }, { true, 50.161 }, { false, 0 }, { true, 16.72 },
{ true, 33.44 }, { true, 33.441 }, { false, 0 }, { true, 33.44 },
{ true, 33.44 }, { false, 0 }, { true, 33.441 }, { false, 16.72 },
{ true, 16.72 }, { true, 50.16 }, { false, 0 }, { true, 16.72 },
{ true, 33.441 }, { false, 0 }, { true, 33.44 }, { false, 16.72 },
{ true, 33.44 }, { false, 0 }, { true, 16.721 }, { true, 50.161 },
{ false, 0 }, { true, 16.72 }, { true, 33.44 }, { false, 0 },
{ true, 33.441 }, { false, 16.72 }, { true, 16.72 }, { true, 50.16 }
};
SmoothEventSampler sampler(base::TimeDelta::FromSeconds(1) / 30, true, 3);
ReplayCheckingSamplerDecisions(data_points, arraysize(data_points), &sampler);
}
} // namespace
} // namespace content
|