File: cpumonitor_unittest.cc

package info (click to toggle)
chromium-browser 37.0.2062.120-1~deb7u1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 1,707,260 kB
  • sloc: cpp: 8,976,677; ansic: 3,473,199; python: 586,578; asm: 449,013; xml: 184,195; java: 142,924; sh: 118,496; perl: 81,467; makefile: 27,557; yacc: 10,506; objc: 8,886; tcl: 3,186; cs: 2,252; lex: 2,213; sql: 1,198; pascal: 1,170; lisp: 790; awk: 407; ruby: 155; php: 83; sed: 52; exp: 11
file content (405 lines) | stat: -rw-r--r-- 12,523 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
/*
 * libjingle
 * Copyright 2010 Google Inc.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 *  1. Redistributions of source code must retain the above copyright notice,
 *     this list of conditions and the following disclaimer.
 *  2. Redistributions in binary form must reproduce the above copyright notice,
 *     this list of conditions and the following disclaimer in the documentation
 *     and/or other materials provided with the distribution.
 *  3. The name of the author may not be used to endorse or promote products
 *     derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <iomanip>
#include <iostream>
#include <vector>

#ifdef WIN32
#include "talk/base/win32.h"
#endif

#include "talk/base/cpumonitor.h"
#include "talk/base/flags.h"
#include "talk/base/gunit.h"
#include "talk/base/scoped_ptr.h"
#include "talk/base/thread.h"
#include "talk/base/timeutils.h"
#include "talk/base/timing.h"

namespace talk_base {

static const int kMaxCpus = 1024;
static const int kSettleTime = 100;  // Amount of time to between tests.
static const int kIdleTime = 500;  // Amount of time to be idle in ms.
static const int kBusyTime = 1000;  // Amount of time to be busy in ms.
static const int kLongInterval = 2000;  // Interval longer than busy times

class BusyThread : public talk_base::Thread {
 public:
  BusyThread(double load, double duration, double interval) :
    load_(load), duration_(duration), interval_(interval) {
  }
  virtual ~BusyThread() {
    Stop();
  }
  void Run() {
    Timing time;
    double busy_time = interval_ * load_ / 100.0;
    for (;;) {
      time.BusyWait(busy_time);
      time.IdleWait(interval_ - busy_time);
      if (duration_) {
        duration_ -= interval_;
        if (duration_ <= 0) {
          break;
        }
      }
    }
  }
 private:
  double load_;
  double duration_;
  double interval_;
};

class CpuLoadListener : public sigslot::has_slots<> {
 public:
  CpuLoadListener()
      : current_cpus_(0),
        cpus_(0),
        process_load_(.0f),
        system_load_(.0f),
        count_(0) {
  }

  void OnCpuLoad(int current_cpus, int cpus, float proc_load, float sys_load) {
    current_cpus_ = current_cpus;
    cpus_ = cpus;
    process_load_ = proc_load;
    system_load_ = sys_load;
    ++count_;
  }

  int current_cpus() const { return current_cpus_; }
  int cpus() const { return cpus_; }
  float process_load() const { return process_load_; }
  float system_load() const { return system_load_; }
  int count() const { return count_; }

 private:
  int current_cpus_;
  int cpus_;
  float process_load_;
  float system_load_;
  int count_;
};

// Set affinity (which cpu to run on), but respecting FLAG_affinity:
// -1 means no affinity - run on whatever cpu is available.
// 0 .. N means run on specific cpu.  The tool will create N threads and call
//   SetThreadAffinity on 0 to N - 1 as cpu.  FLAG_affinity sets the first cpu
//   so the range becomes affinity to affinity + N - 1
// Note that this function affects Windows scheduling, effectively giving
//   the thread with affinity for a specified CPU more priority on that CPU.
bool SetThreadAffinity(BusyThread* t, int cpu, int affinity) {
#ifdef WIN32
  if (affinity >= 0) {
    return ::SetThreadAffinityMask(t->GetHandle(),
        1 << (cpu + affinity)) != FALSE;
  }
#endif
  return true;
}

bool SetThreadPriority(BusyThread* t, int prio) {
  if (!prio) {
    return true;
  }
  bool ok = t->SetPriority(static_cast<talk_base::ThreadPriority>(prio));
  if (!ok) {
    std::cout << "Error setting thread priority." << std::endl;
  }
  return ok;
}

int CpuLoad(double cpuload, double duration, int numthreads,
            int priority, double interval, int affinity) {
  int ret = 0;
  std::vector<BusyThread*> threads;
  for (int i = 0; i < numthreads; ++i) {
    threads.push_back(new BusyThread(cpuload, duration, interval));
    // NOTE(fbarchard): Priority must be done before Start.
    if (!SetThreadPriority(threads[i], priority) ||
       !threads[i]->Start() ||
       !SetThreadAffinity(threads[i], i, affinity)) {
      ret = 1;
      break;
    }
  }
  // Wait on each thread
  if (ret == 0) {
    for (int i = 0; i < numthreads; ++i) {
      threads[i]->Stop();
    }
  }

  for (int i = 0; i < numthreads; ++i) {
    delete threads[i];
  }
  return ret;
}

// Make 2 CPUs busy
static void CpuTwoBusyLoop(int busytime) {
  CpuLoad(100.0, busytime / 1000.0, 2, 1, 0.050, -1);
}

// Make 1 CPUs busy
static void CpuBusyLoop(int busytime) {
  CpuLoad(100.0, busytime / 1000.0, 1, 1, 0.050, -1);
}

// Make 1 use half CPU time.
static void CpuHalfBusyLoop(int busytime) {
  CpuLoad(50.0, busytime / 1000.0, 1, 1, 0.050, -1);
}

void TestCpuSampler(bool test_proc, bool test_sys, bool force_fallback) {
  CpuSampler sampler;
  sampler.set_force_fallback(force_fallback);
  EXPECT_TRUE(sampler.Init());
  sampler.set_load_interval(100);
  int cpus = sampler.GetMaxCpus();

  // Test1: CpuSampler under idle situation.
  Thread::SleepMs(kSettleTime);
  sampler.GetProcessLoad();
  sampler.GetSystemLoad();

  Thread::SleepMs(kIdleTime);

  float proc_idle = 0.f, sys_idle = 0.f;
  if (test_proc) {
    proc_idle = sampler.GetProcessLoad();
  }
  if (test_sys) {
      sys_idle = sampler.GetSystemLoad();
  }
  if (test_proc) {
    LOG(LS_INFO) << "ProcessLoad Idle:      "
                 << std::setiosflags(std::ios_base::fixed)
                 << std::setprecision(2) << std::setw(6) << proc_idle;
    EXPECT_GE(proc_idle, 0.f);
    EXPECT_LE(proc_idle, static_cast<float>(cpus));
  }
  if (test_sys) {
    LOG(LS_INFO) << "SystemLoad Idle:       "
                 << std::setiosflags(std::ios_base::fixed)
                 << std::setprecision(2) << std::setw(6) << sys_idle;
    EXPECT_GE(sys_idle, 0.f);
    EXPECT_LE(sys_idle, static_cast<float>(cpus));
  }

  // Test2: CpuSampler with main process at 50% busy.
  Thread::SleepMs(kSettleTime);
  sampler.GetProcessLoad();
  sampler.GetSystemLoad();

  CpuHalfBusyLoop(kBusyTime);

  float proc_halfbusy = 0.f, sys_halfbusy = 0.f;
  if (test_proc) {
    proc_halfbusy = sampler.GetProcessLoad();
  }
  if (test_sys) {
    sys_halfbusy = sampler.GetSystemLoad();
  }
  if (test_proc) {
    LOG(LS_INFO) << "ProcessLoad Halfbusy:  "
                 << std::setiosflags(std::ios_base::fixed)
                 << std::setprecision(2) << std::setw(6) << proc_halfbusy;
    EXPECT_GE(proc_halfbusy, 0.f);
    EXPECT_LE(proc_halfbusy, static_cast<float>(cpus));
  }
  if (test_sys) {
    LOG(LS_INFO) << "SystemLoad Halfbusy:   "
                 << std::setiosflags(std::ios_base::fixed)
                 << std::setprecision(2) << std::setw(6) << sys_halfbusy;
    EXPECT_GE(sys_halfbusy, 0.f);
    EXPECT_LE(sys_halfbusy, static_cast<float>(cpus));
  }

  // Test3: CpuSampler with main process busy.
  Thread::SleepMs(kSettleTime);
  sampler.GetProcessLoad();
  sampler.GetSystemLoad();

  CpuBusyLoop(kBusyTime);

  float proc_busy = 0.f, sys_busy = 0.f;
  if (test_proc) {
    proc_busy = sampler.GetProcessLoad();
  }
  if (test_sys) {
    sys_busy = sampler.GetSystemLoad();
  }
  if (test_proc) {
    LOG(LS_INFO) << "ProcessLoad Busy:      "
                 << std::setiosflags(std::ios_base::fixed)
                 << std::setprecision(2) << std::setw(6) << proc_busy;
    EXPECT_GE(proc_busy, 0.f);
    EXPECT_LE(proc_busy, static_cast<float>(cpus));
  }
  if (test_sys) {
    LOG(LS_INFO) << "SystemLoad Busy:       "
                 << std::setiosflags(std::ios_base::fixed)
                 << std::setprecision(2) << std::setw(6) << sys_busy;
    EXPECT_GE(sys_busy, 0.f);
    EXPECT_LE(sys_busy, static_cast<float>(cpus));
  }

  // Test4: CpuSampler with 2 cpus process busy.
  if (cpus >= 2) {
    Thread::SleepMs(kSettleTime);
    sampler.GetProcessLoad();
    sampler.GetSystemLoad();

    CpuTwoBusyLoop(kBusyTime);

    float proc_twobusy = 0.f, sys_twobusy = 0.f;
    if (test_proc) {
      proc_twobusy = sampler.GetProcessLoad();
    }
    if (test_sys) {
      sys_twobusy = sampler.GetSystemLoad();
    }
    if (test_proc) {
      LOG(LS_INFO) << "ProcessLoad 2 CPU Busy:"
                   << std::setiosflags(std::ios_base::fixed)
                   << std::setprecision(2) << std::setw(6) << proc_twobusy;
      EXPECT_GE(proc_twobusy, 0.f);
      EXPECT_LE(proc_twobusy, static_cast<float>(cpus));
    }
    if (test_sys) {
      LOG(LS_INFO) << "SystemLoad 2 CPU Busy: "
                   << std::setiosflags(std::ios_base::fixed)
                   << std::setprecision(2) << std::setw(6) << sys_twobusy;
      EXPECT_GE(sys_twobusy, 0.f);
      EXPECT_LE(sys_twobusy, static_cast<float>(cpus));
    }
  }

  // Test5: CpuSampler with idle process after being busy.
  Thread::SleepMs(kSettleTime);
  sampler.GetProcessLoad();
  sampler.GetSystemLoad();

  Thread::SleepMs(kIdleTime);

  if (test_proc) {
    proc_idle = sampler.GetProcessLoad();
  }
  if (test_sys) {
    sys_idle = sampler.GetSystemLoad();
  }
  if (test_proc) {
    LOG(LS_INFO) << "ProcessLoad Idle:      "
                 << std::setiosflags(std::ios_base::fixed)
                 << std::setprecision(2) << std::setw(6) << proc_idle;
    EXPECT_GE(proc_idle, 0.f);
    EXPECT_LE(proc_idle, proc_busy);
  }
  if (test_sys) {
    LOG(LS_INFO) << "SystemLoad Idle:       "
                 << std::setiosflags(std::ios_base::fixed)
                 << std::setprecision(2) << std::setw(6) << sys_idle;
    EXPECT_GE(sys_idle, 0.f);
    EXPECT_LE(sys_idle, static_cast<float>(cpus));
  }
}

TEST(CpuMonitorTest, TestCpus) {
  CpuSampler sampler;
  EXPECT_TRUE(sampler.Init());
  int current_cpus = sampler.GetCurrentCpus();
  int cpus = sampler.GetMaxCpus();
  LOG(LS_INFO) << "Current Cpus:     " << std::setw(9) << current_cpus;
  LOG(LS_INFO) << "Maximum Cpus:     " << std::setw(9) << cpus;
  EXPECT_GT(cpus, 0);
  EXPECT_LE(cpus, kMaxCpus);
  EXPECT_GT(current_cpus, 0);
  EXPECT_LE(current_cpus, cpus);
}

#ifdef WIN32
// Tests overall system CpuSampler using legacy OS fallback code if applicable.
TEST(CpuMonitorTest, TestGetSystemLoadForceFallback) {
  TestCpuSampler(false, true, true);
}
#endif

// Tests both process and system functions in use at same time.
TEST(CpuMonitorTest, TestGetBothLoad) {
  TestCpuSampler(true, true, false);
}

// Tests a query less than the interval produces the same value.
TEST(CpuMonitorTest, TestInterval) {
  CpuSampler sampler;
  EXPECT_TRUE(sampler.Init());

  // Test1: Set interval to large value so sampler will not update.
  sampler.set_load_interval(kLongInterval);

  sampler.GetProcessLoad();
  sampler.GetSystemLoad();

  float proc_orig = sampler.GetProcessLoad();
  float sys_orig = sampler.GetSystemLoad();

  Thread::SleepMs(kIdleTime);

  float proc_halftime = sampler.GetProcessLoad();
  float sys_halftime = sampler.GetSystemLoad();

  EXPECT_EQ(proc_orig, proc_halftime);
  EXPECT_EQ(sys_orig, sys_halftime);
}

TEST(CpuMonitorTest, TestCpuMonitor) {
  CpuMonitor monitor(Thread::Current());
  CpuLoadListener listener;
  monitor.SignalUpdate.connect(&listener, &CpuLoadListener::OnCpuLoad);
  EXPECT_TRUE(monitor.Start(10));
  // We have checked cpu load more than twice.
  EXPECT_TRUE_WAIT(listener.count() > 2, 1000);
  EXPECT_GT(listener.current_cpus(), 0);
  EXPECT_GT(listener.cpus(), 0);
  EXPECT_GE(listener.process_load(), .0f);
  EXPECT_GE(listener.system_load(), .0f);

  monitor.Stop();
  // Wait 20 ms to ake sure all signals are delivered.
  Thread::Current()->ProcessMessages(20);
  int old_count = listener.count();
  Thread::Current()->ProcessMessages(20);
  // Verfy no more siganls.
  EXPECT_EQ(old_count, listener.count());
}

}  // namespace talk_base