1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
|
/*
* libjingle
* Copyright 2004--2005, Google Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#if defined(_MSC_VER) && _MSC_VER < 1300
#pragma warning(disable:4786)
#endif
#include <assert.h>
#ifdef POSIX
#include <string.h>
#include <errno.h>
#include <fcntl.h>
#include <sys/time.h>
#include <sys/select.h>
#include <unistd.h>
#include <signal.h>
#endif
#ifdef WIN32
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#include <winsock2.h>
#include <ws2tcpip.h>
#undef SetPort
#endif
#include <algorithm>
#include <map>
#include "talk/base/basictypes.h"
#include "talk/base/byteorder.h"
#include "talk/base/common.h"
#include "talk/base/logging.h"
#include "talk/base/nethelpers.h"
#include "talk/base/physicalsocketserver.h"
#include "talk/base/timeutils.h"
#include "talk/base/winping.h"
#include "talk/base/win32socketinit.h"
// stm: this will tell us if we are on OSX
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#ifdef POSIX
#include <netinet/tcp.h> // for TCP_NODELAY
#define IP_MTU 14 // Until this is integrated from linux/in.h to netinet/in.h
typedef void* SockOptArg;
#endif // POSIX
#ifdef WIN32
typedef char* SockOptArg;
#endif
namespace talk_base {
#if defined(WIN32)
// Standard MTUs, from RFC 1191
const uint16 PACKET_MAXIMUMS[] = {
65535, // Theoretical maximum, Hyperchannel
32000, // Nothing
17914, // 16Mb IBM Token Ring
8166, // IEEE 802.4
//4464, // IEEE 802.5 (4Mb max)
4352, // FDDI
//2048, // Wideband Network
2002, // IEEE 802.5 (4Mb recommended)
//1536, // Expermental Ethernet Networks
//1500, // Ethernet, Point-to-Point (default)
1492, // IEEE 802.3
1006, // SLIP, ARPANET
//576, // X.25 Networks
//544, // DEC IP Portal
//512, // NETBIOS
508, // IEEE 802/Source-Rt Bridge, ARCNET
296, // Point-to-Point (low delay)
68, // Official minimum
0, // End of list marker
};
static const int IP_HEADER_SIZE = 20u;
static const int IPV6_HEADER_SIZE = 40u;
static const int ICMP_HEADER_SIZE = 8u;
static const int ICMP_PING_TIMEOUT_MILLIS = 10000u;
#endif
class PhysicalSocket : public AsyncSocket, public sigslot::has_slots<> {
public:
PhysicalSocket(PhysicalSocketServer* ss, SOCKET s = INVALID_SOCKET)
: ss_(ss), s_(s), enabled_events_(0), error_(0),
state_((s == INVALID_SOCKET) ? CS_CLOSED : CS_CONNECTED),
resolver_(NULL) {
#ifdef WIN32
// EnsureWinsockInit() ensures that winsock is initialized. The default
// version of this function doesn't do anything because winsock is
// initialized by constructor of a static object. If neccessary libjingle
// users can link it with a different version of this function by replacing
// win32socketinit.cc. See win32socketinit.cc for more details.
EnsureWinsockInit();
#endif
if (s_ != INVALID_SOCKET) {
enabled_events_ = DE_READ | DE_WRITE;
int type = SOCK_STREAM;
socklen_t len = sizeof(type);
VERIFY(0 == getsockopt(s_, SOL_SOCKET, SO_TYPE, (SockOptArg)&type, &len));
udp_ = (SOCK_DGRAM == type);
}
}
virtual ~PhysicalSocket() {
Close();
}
// Creates the underlying OS socket (same as the "socket" function).
virtual bool Create(int family, int type) {
Close();
s_ = ::socket(family, type, 0);
udp_ = (SOCK_DGRAM == type);
UpdateLastError();
if (udp_)
enabled_events_ = DE_READ | DE_WRITE;
return s_ != INVALID_SOCKET;
}
SocketAddress GetLocalAddress() const {
sockaddr_storage addr_storage = {0};
socklen_t addrlen = sizeof(addr_storage);
sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
int result = ::getsockname(s_, addr, &addrlen);
SocketAddress address;
if (result >= 0) {
SocketAddressFromSockAddrStorage(addr_storage, &address);
} else {
LOG(LS_WARNING) << "GetLocalAddress: unable to get local addr, socket="
<< s_;
}
return address;
}
SocketAddress GetRemoteAddress() const {
sockaddr_storage addr_storage = {0};
socklen_t addrlen = sizeof(addr_storage);
sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
int result = ::getpeername(s_, addr, &addrlen);
SocketAddress address;
if (result >= 0) {
SocketAddressFromSockAddrStorage(addr_storage, &address);
} else {
LOG(LS_WARNING) << "GetRemoteAddress: unable to get remote addr, socket="
<< s_;
}
return address;
}
int Bind(const SocketAddress& bind_addr) {
sockaddr_storage addr_storage;
size_t len = bind_addr.ToSockAddrStorage(&addr_storage);
sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
int err = ::bind(s_, addr, static_cast<int>(len));
UpdateLastError();
#ifdef _DEBUG
if (0 == err) {
dbg_addr_ = "Bound @ ";
dbg_addr_.append(GetLocalAddress().ToString());
}
#endif // _DEBUG
return err;
}
int Connect(const SocketAddress& addr) {
// TODO: Implicit creation is required to reconnect...
// ...but should we make it more explicit?
if (state_ != CS_CLOSED) {
SetError(EALREADY);
return SOCKET_ERROR;
}
if (addr.IsUnresolved()) {
LOG(LS_VERBOSE) << "Resolving addr in PhysicalSocket::Connect";
resolver_ = new AsyncResolver();
resolver_->SignalDone.connect(this, &PhysicalSocket::OnResolveResult);
resolver_->Start(addr);
state_ = CS_CONNECTING;
return 0;
}
return DoConnect(addr);
}
int DoConnect(const SocketAddress& connect_addr) {
if ((s_ == INVALID_SOCKET) &&
!Create(connect_addr.family(), SOCK_STREAM)) {
return SOCKET_ERROR;
}
sockaddr_storage addr_storage;
size_t len = connect_addr.ToSockAddrStorage(&addr_storage);
sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
int err = ::connect(s_, addr, static_cast<int>(len));
UpdateLastError();
if (err == 0) {
state_ = CS_CONNECTED;
} else if (IsBlockingError(GetError())) {
state_ = CS_CONNECTING;
enabled_events_ |= DE_CONNECT;
} else {
return SOCKET_ERROR;
}
enabled_events_ |= DE_READ | DE_WRITE;
return 0;
}
int GetError() const {
CritScope cs(&crit_);
return error_;
}
void SetError(int error) {
CritScope cs(&crit_);
error_ = error;
}
ConnState GetState() const {
return state_;
}
int GetOption(Option opt, int* value) {
int slevel;
int sopt;
if (TranslateOption(opt, &slevel, &sopt) == -1)
return -1;
socklen_t optlen = sizeof(*value);
int ret = ::getsockopt(s_, slevel, sopt, (SockOptArg)value, &optlen);
if (ret != -1 && opt == OPT_DONTFRAGMENT) {
#ifdef LINUX
*value = (*value != IP_PMTUDISC_DONT) ? 1 : 0;
#endif
}
return ret;
}
int SetOption(Option opt, int value) {
int slevel;
int sopt;
if (TranslateOption(opt, &slevel, &sopt) == -1)
return -1;
if (opt == OPT_DONTFRAGMENT) {
#ifdef LINUX
value = (value) ? IP_PMTUDISC_DO : IP_PMTUDISC_DONT;
#endif
}
return ::setsockopt(s_, slevel, sopt, (SockOptArg)&value, sizeof(value));
}
int Send(const void *pv, size_t cb) {
int sent = ::send(s_, reinterpret_cast<const char *>(pv), (int)cb,
#ifdef LINUX
// Suppress SIGPIPE. Without this, attempting to send on a socket whose
// other end is closed will result in a SIGPIPE signal being raised to
// our process, which by default will terminate the process, which we
// don't want. By specifying this flag, we'll just get the error EPIPE
// instead and can handle the error gracefully.
MSG_NOSIGNAL
#else
0
#endif
);
UpdateLastError();
MaybeRemapSendError();
// We have seen minidumps where this may be false.
ASSERT(sent <= static_cast<int>(cb));
if ((sent < 0) && IsBlockingError(GetError())) {
enabled_events_ |= DE_WRITE;
}
return sent;
}
int SendTo(const void* buffer, size_t length, const SocketAddress& addr) {
sockaddr_storage saddr;
size_t len = addr.ToSockAddrStorage(&saddr);
int sent = ::sendto(
s_, static_cast<const char *>(buffer), static_cast<int>(length),
#ifdef LINUX
// Suppress SIGPIPE. See above for explanation.
MSG_NOSIGNAL,
#else
0,
#endif
reinterpret_cast<sockaddr*>(&saddr), static_cast<int>(len));
UpdateLastError();
MaybeRemapSendError();
// We have seen minidumps where this may be false.
ASSERT(sent <= static_cast<int>(length));
if ((sent < 0) && IsBlockingError(GetError())) {
enabled_events_ |= DE_WRITE;
}
return sent;
}
int Recv(void* buffer, size_t length) {
int received = ::recv(s_, static_cast<char*>(buffer),
static_cast<int>(length), 0);
if ((received == 0) && (length != 0)) {
// Note: on graceful shutdown, recv can return 0. In this case, we
// pretend it is blocking, and then signal close, so that simplifying
// assumptions can be made about Recv.
LOG(LS_WARNING) << "EOF from socket; deferring close event";
// Must turn this back on so that the select() loop will notice the close
// event.
enabled_events_ |= DE_READ;
SetError(EWOULDBLOCK);
return SOCKET_ERROR;
}
UpdateLastError();
int error = GetError();
bool success = (received >= 0) || IsBlockingError(error);
if (udp_ || success) {
enabled_events_ |= DE_READ;
}
if (!success) {
LOG_F(LS_VERBOSE) << "Error = " << error;
}
return received;
}
int RecvFrom(void* buffer, size_t length, SocketAddress *out_addr) {
sockaddr_storage addr_storage;
socklen_t addr_len = sizeof(addr_storage);
sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
int received = ::recvfrom(s_, static_cast<char*>(buffer),
static_cast<int>(length), 0, addr, &addr_len);
UpdateLastError();
if ((received >= 0) && (out_addr != NULL))
SocketAddressFromSockAddrStorage(addr_storage, out_addr);
int error = GetError();
bool success = (received >= 0) || IsBlockingError(error);
if (udp_ || success) {
enabled_events_ |= DE_READ;
}
if (!success) {
LOG_F(LS_VERBOSE) << "Error = " << error;
}
return received;
}
int Listen(int backlog) {
int err = ::listen(s_, backlog);
UpdateLastError();
if (err == 0) {
state_ = CS_CONNECTING;
enabled_events_ |= DE_ACCEPT;
#ifdef _DEBUG
dbg_addr_ = "Listening @ ";
dbg_addr_.append(GetLocalAddress().ToString());
#endif // _DEBUG
}
return err;
}
AsyncSocket* Accept(SocketAddress *out_addr) {
sockaddr_storage addr_storage;
socklen_t addr_len = sizeof(addr_storage);
sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
SOCKET s = ::accept(s_, addr, &addr_len);
UpdateLastError();
if (s == INVALID_SOCKET)
return NULL;
enabled_events_ |= DE_ACCEPT;
if (out_addr != NULL)
SocketAddressFromSockAddrStorage(addr_storage, out_addr);
return ss_->WrapSocket(s);
}
int Close() {
if (s_ == INVALID_SOCKET)
return 0;
int err = ::closesocket(s_);
UpdateLastError();
s_ = INVALID_SOCKET;
state_ = CS_CLOSED;
enabled_events_ = 0;
if (resolver_) {
resolver_->Destroy(false);
resolver_ = NULL;
}
return err;
}
int EstimateMTU(uint16* mtu) {
SocketAddress addr = GetRemoteAddress();
if (addr.IsAny()) {
SetError(ENOTCONN);
return -1;
}
#if defined(WIN32)
// Gets the interface MTU (TTL=1) for the interface used to reach |addr|.
WinPing ping;
if (!ping.IsValid()) {
SetError(EINVAL); // can't think of a better error ID
return -1;
}
int header_size = ICMP_HEADER_SIZE;
if (addr.family() == AF_INET6) {
header_size += IPV6_HEADER_SIZE;
} else if (addr.family() == AF_INET) {
header_size += IP_HEADER_SIZE;
}
for (int level = 0; PACKET_MAXIMUMS[level + 1] > 0; ++level) {
int32 size = PACKET_MAXIMUMS[level] - header_size;
WinPing::PingResult result = ping.Ping(addr.ipaddr(), size,
ICMP_PING_TIMEOUT_MILLIS,
1, false);
if (result == WinPing::PING_FAIL) {
SetError(EINVAL); // can't think of a better error ID
return -1;
} else if (result != WinPing::PING_TOO_LARGE) {
*mtu = PACKET_MAXIMUMS[level];
return 0;
}
}
ASSERT(false);
return -1;
#elif defined(IOS) || defined(OSX)
// No simple way to do this on Mac OS X.
// SIOCGIFMTU would work if we knew which interface would be used, but
// figuring that out is pretty complicated. For now we'll return an error
// and let the caller pick a default MTU.
SetError(EINVAL);
return -1;
#elif defined(LINUX) || defined(ANDROID)
// Gets the path MTU.
int value;
socklen_t vlen = sizeof(value);
int err = getsockopt(s_, IPPROTO_IP, IP_MTU, &value, &vlen);
if (err < 0) {
UpdateLastError();
return err;
}
ASSERT((0 <= value) && (value <= 65536));
*mtu = value;
return 0;
#elif defined(__native_client__)
// Most socket operations, including this, will fail in NaCl's sandbox.
error_ = EACCES;
return -1;
#endif
}
SocketServer* socketserver() { return ss_; }
protected:
void OnResolveResult(AsyncResolverInterface* resolver) {
if (resolver != resolver_) {
return;
}
int error = resolver_->GetError();
if (error == 0) {
error = DoConnect(resolver_->address());
} else {
Close();
}
if (error) {
SetError(error);
SignalCloseEvent(this, error);
}
}
void UpdateLastError() {
SetError(LAST_SYSTEM_ERROR);
}
void MaybeRemapSendError() {
#if defined(OSX) || defined(IOS)
// https://developer.apple.com/library/mac/documentation/Darwin/
// Reference/ManPages/man2/sendto.2.html
// ENOBUFS - The output queue for a network interface is full.
// This generally indicates that the interface has stopped sending,
// but may be caused by transient congestion.
if (GetError() == ENOBUFS) {
SetError(EWOULDBLOCK);
}
#endif
}
static int TranslateOption(Option opt, int* slevel, int* sopt) {
switch (opt) {
case OPT_DONTFRAGMENT:
#ifdef WIN32
*slevel = IPPROTO_IP;
*sopt = IP_DONTFRAGMENT;
break;
#elif defined(IOS) || defined(OSX) || defined(BSD) || defined(__native_client__)
LOG(LS_WARNING) << "Socket::OPT_DONTFRAGMENT not supported.";
return -1;
#elif defined(POSIX)
*slevel = IPPROTO_IP;
*sopt = IP_MTU_DISCOVER;
break;
#endif
case OPT_RCVBUF:
*slevel = SOL_SOCKET;
*sopt = SO_RCVBUF;
break;
case OPT_SNDBUF:
*slevel = SOL_SOCKET;
*sopt = SO_SNDBUF;
break;
case OPT_NODELAY:
*slevel = IPPROTO_TCP;
*sopt = TCP_NODELAY;
break;
case OPT_DSCP:
LOG(LS_WARNING) << "Socket::OPT_DSCP not supported.";
return -1;
case OPT_RTP_SENDTIME_EXTN_ID:
return -1; // No logging is necessary as this not a OS socket option.
default:
ASSERT(false);
return -1;
}
return 0;
}
PhysicalSocketServer* ss_;
SOCKET s_;
uint8 enabled_events_;
bool udp_;
int error_;
// Protects |error_| that is accessed from different threads.
mutable CriticalSection crit_;
ConnState state_;
AsyncResolver* resolver_;
#ifdef _DEBUG
std::string dbg_addr_;
#endif // _DEBUG;
};
#ifdef POSIX
class EventDispatcher : public Dispatcher {
public:
EventDispatcher(PhysicalSocketServer* ss) : ss_(ss), fSignaled_(false) {
if (pipe(afd_) < 0)
LOG(LERROR) << "pipe failed";
ss_->Add(this);
}
virtual ~EventDispatcher() {
ss_->Remove(this);
close(afd_[0]);
close(afd_[1]);
}
virtual void Signal() {
CritScope cs(&crit_);
if (!fSignaled_) {
const uint8 b[1] = { 0 };
if (VERIFY(1 == write(afd_[1], b, sizeof(b)))) {
fSignaled_ = true;
}
}
}
virtual uint32 GetRequestedEvents() {
return DE_READ;
}
virtual void OnPreEvent(uint32 ff) {
// It is not possible to perfectly emulate an auto-resetting event with
// pipes. This simulates it by resetting before the event is handled.
CritScope cs(&crit_);
if (fSignaled_) {
uint8 b[4]; // Allow for reading more than 1 byte, but expect 1.
VERIFY(1 == read(afd_[0], b, sizeof(b)));
fSignaled_ = false;
}
}
virtual void OnEvent(uint32 ff, int err) {
ASSERT(false);
}
virtual int GetDescriptor() {
return afd_[0];
}
virtual bool IsDescriptorClosed() {
return false;
}
private:
PhysicalSocketServer *ss_;
int afd_[2];
bool fSignaled_;
CriticalSection crit_;
};
// These two classes use the self-pipe trick to deliver POSIX signals to our
// select loop. This is the only safe, reliable, cross-platform way to do
// non-trivial things with a POSIX signal in an event-driven program (until
// proper pselect() implementations become ubiquitous).
class PosixSignalHandler {
public:
// POSIX only specifies 32 signals, but in principle the system might have
// more and the programmer might choose to use them, so we size our array
// for 128.
static const int kNumPosixSignals = 128;
// There is just a single global instance. (Signal handlers do not get any
// sort of user-defined void * parameter, so they can't access anything that
// isn't global.)
static PosixSignalHandler* Instance() {
LIBJINGLE_DEFINE_STATIC_LOCAL(PosixSignalHandler, instance, ());
return &instance;
}
// Returns true if the given signal number is set.
bool IsSignalSet(int signum) const {
ASSERT(signum < ARRAY_SIZE(received_signal_));
if (signum < ARRAY_SIZE(received_signal_)) {
return received_signal_[signum];
} else {
return false;
}
}
// Clears the given signal number.
void ClearSignal(int signum) {
ASSERT(signum < ARRAY_SIZE(received_signal_));
if (signum < ARRAY_SIZE(received_signal_)) {
received_signal_[signum] = false;
}
}
// Returns the file descriptor to monitor for signal events.
int GetDescriptor() const {
return afd_[0];
}
// This is called directly from our real signal handler, so it must be
// signal-handler-safe. That means it cannot assume anything about the
// user-level state of the process, since the handler could be executed at any
// time on any thread.
void OnPosixSignalReceived(int signum) {
if (signum >= ARRAY_SIZE(received_signal_)) {
// We don't have space in our array for this.
return;
}
// Set a flag saying we've seen this signal.
received_signal_[signum] = true;
// Notify application code that we got a signal.
const uint8 b[1] = { 0 };
if (-1 == write(afd_[1], b, sizeof(b))) {
// Nothing we can do here. If there's an error somehow then there's
// nothing we can safely do from a signal handler.
// No, we can't even safely log it.
// But, we still have to check the return value here. Otherwise,
// GCC 4.4.1 complains ignoring return value. Even (void) doesn't help.
return;
}
}
private:
PosixSignalHandler() {
if (pipe(afd_) < 0) {
LOG_ERR(LS_ERROR) << "pipe failed";
return;
}
if (fcntl(afd_[0], F_SETFL, O_NONBLOCK) < 0) {
LOG_ERR(LS_WARNING) << "fcntl #1 failed";
}
if (fcntl(afd_[1], F_SETFL, O_NONBLOCK) < 0) {
LOG_ERR(LS_WARNING) << "fcntl #2 failed";
}
memset(const_cast<void *>(static_cast<volatile void *>(received_signal_)),
0,
sizeof(received_signal_));
}
~PosixSignalHandler() {
int fd1 = afd_[0];
int fd2 = afd_[1];
// We clobber the stored file descriptor numbers here or else in principle
// a signal that happens to be delivered during application termination
// could erroneously write a zero byte to an unrelated file handle in
// OnPosixSignalReceived() if some other file happens to be opened later
// during shutdown and happens to be given the same file descriptor number
// as our pipe had. Unfortunately even with this precaution there is still a
// race where that could occur if said signal happens to be handled
// concurrently with this code and happens to have already read the value of
// afd_[1] from memory before we clobber it, but that's unlikely.
afd_[0] = -1;
afd_[1] = -1;
close(fd1);
close(fd2);
}
int afd_[2];
// These are boolean flags that will be set in our signal handler and read
// and cleared from Wait(). There is a race involved in this, but it is
// benign. The signal handler sets the flag before signaling the pipe, so
// we'll never end up blocking in select() while a flag is still true.
// However, if two of the same signal arrive close to each other then it's
// possible that the second time the handler may set the flag while it's still
// true, meaning that signal will be missed. But the first occurrence of it
// will still be handled, so this isn't a problem.
// Volatile is not necessary here for correctness, but this data _is_ volatile
// so I've marked it as such.
volatile uint8 received_signal_[kNumPosixSignals];
};
class PosixSignalDispatcher : public Dispatcher {
public:
PosixSignalDispatcher(PhysicalSocketServer *owner) : owner_(owner) {
owner_->Add(this);
}
virtual ~PosixSignalDispatcher() {
owner_->Remove(this);
}
virtual uint32 GetRequestedEvents() {
return DE_READ;
}
virtual void OnPreEvent(uint32 ff) {
// Events might get grouped if signals come very fast, so we read out up to
// 16 bytes to make sure we keep the pipe empty.
uint8 b[16];
ssize_t ret = read(GetDescriptor(), b, sizeof(b));
if (ret < 0) {
LOG_ERR(LS_WARNING) << "Error in read()";
} else if (ret == 0) {
LOG(LS_WARNING) << "Should have read at least one byte";
}
}
virtual void OnEvent(uint32 ff, int err) {
for (int signum = 0; signum < PosixSignalHandler::kNumPosixSignals;
++signum) {
if (PosixSignalHandler::Instance()->IsSignalSet(signum)) {
PosixSignalHandler::Instance()->ClearSignal(signum);
HandlerMap::iterator i = handlers_.find(signum);
if (i == handlers_.end()) {
// This can happen if a signal is delivered to our process at around
// the same time as we unset our handler for it. It is not an error
// condition, but it's unusual enough to be worth logging.
LOG(LS_INFO) << "Received signal with no handler: " << signum;
} else {
// Otherwise, execute our handler.
(*i->second)(signum);
}
}
}
}
virtual int GetDescriptor() {
return PosixSignalHandler::Instance()->GetDescriptor();
}
virtual bool IsDescriptorClosed() {
return false;
}
void SetHandler(int signum, void (*handler)(int)) {
handlers_[signum] = handler;
}
void ClearHandler(int signum) {
handlers_.erase(signum);
}
bool HasHandlers() {
return !handlers_.empty();
}
private:
typedef std::map<int, void (*)(int)> HandlerMap;
HandlerMap handlers_;
// Our owner.
PhysicalSocketServer *owner_;
};
class SocketDispatcher : public Dispatcher, public PhysicalSocket {
public:
explicit SocketDispatcher(PhysicalSocketServer *ss) : PhysicalSocket(ss) {
}
SocketDispatcher(SOCKET s, PhysicalSocketServer *ss) : PhysicalSocket(ss, s) {
}
virtual ~SocketDispatcher() {
Close();
}
bool Initialize() {
ss_->Add(this);
fcntl(s_, F_SETFL, fcntl(s_, F_GETFL, 0) | O_NONBLOCK);
return true;
}
virtual bool Create(int type) {
return Create(AF_INET, type);
}
virtual bool Create(int family, int type) {
// Change the socket to be non-blocking.
if (!PhysicalSocket::Create(family, type))
return false;
return Initialize();
}
virtual int GetDescriptor() {
return s_;
}
virtual bool IsDescriptorClosed() {
// We don't have a reliable way of distinguishing end-of-stream
// from readability. So test on each readable call. Is this
// inefficient? Probably.
char ch;
ssize_t res = ::recv(s_, &ch, 1, MSG_PEEK);
if (res > 0) {
// Data available, so not closed.
return false;
} else if (res == 0) {
// EOF, so closed.
return true;
} else { // error
switch (errno) {
// Returned if we've already closed s_.
case EBADF:
// Returned during ungraceful peer shutdown.
case ECONNRESET:
return true;
default:
// Assume that all other errors are just blocking errors, meaning the
// connection is still good but we just can't read from it right now.
// This should only happen when connecting (and at most once), because
// in all other cases this function is only called if the file
// descriptor is already known to be in the readable state. However,
// it's not necessary a problem if we spuriously interpret a
// "connection lost"-type error as a blocking error, because typically
// the next recv() will get EOF, so we'll still eventually notice that
// the socket is closed.
LOG_ERR(LS_WARNING) << "Assuming benign blocking error";
return false;
}
}
}
virtual uint32 GetRequestedEvents() {
return enabled_events_;
}
virtual void OnPreEvent(uint32 ff) {
if ((ff & DE_CONNECT) != 0)
state_ = CS_CONNECTED;
if ((ff & DE_CLOSE) != 0)
state_ = CS_CLOSED;
}
virtual void OnEvent(uint32 ff, int err) {
// Make sure we deliver connect/accept first. Otherwise, consumers may see
// something like a READ followed by a CONNECT, which would be odd.
if ((ff & DE_CONNECT) != 0) {
enabled_events_ &= ~DE_CONNECT;
SignalConnectEvent(this);
}
if ((ff & DE_ACCEPT) != 0) {
enabled_events_ &= ~DE_ACCEPT;
SignalReadEvent(this);
}
if ((ff & DE_READ) != 0) {
enabled_events_ &= ~DE_READ;
SignalReadEvent(this);
}
if ((ff & DE_WRITE) != 0) {
enabled_events_ &= ~DE_WRITE;
SignalWriteEvent(this);
}
if ((ff & DE_CLOSE) != 0) {
// The socket is now dead to us, so stop checking it.
enabled_events_ = 0;
SignalCloseEvent(this, err);
}
}
virtual int Close() {
if (s_ == INVALID_SOCKET)
return 0;
ss_->Remove(this);
return PhysicalSocket::Close();
}
};
class FileDispatcher: public Dispatcher, public AsyncFile {
public:
FileDispatcher(int fd, PhysicalSocketServer *ss) : ss_(ss), fd_(fd) {
set_readable(true);
ss_->Add(this);
fcntl(fd_, F_SETFL, fcntl(fd_, F_GETFL, 0) | O_NONBLOCK);
}
virtual ~FileDispatcher() {
ss_->Remove(this);
}
SocketServer* socketserver() { return ss_; }
virtual int GetDescriptor() {
return fd_;
}
virtual bool IsDescriptorClosed() {
return false;
}
virtual uint32 GetRequestedEvents() {
return flags_;
}
virtual void OnPreEvent(uint32 ff) {
}
virtual void OnEvent(uint32 ff, int err) {
if ((ff & DE_READ) != 0)
SignalReadEvent(this);
if ((ff & DE_WRITE) != 0)
SignalWriteEvent(this);
if ((ff & DE_CLOSE) != 0)
SignalCloseEvent(this, err);
}
virtual bool readable() {
return (flags_ & DE_READ) != 0;
}
virtual void set_readable(bool value) {
flags_ = value ? (flags_ | DE_READ) : (flags_ & ~DE_READ);
}
virtual bool writable() {
return (flags_ & DE_WRITE) != 0;
}
virtual void set_writable(bool value) {
flags_ = value ? (flags_ | DE_WRITE) : (flags_ & ~DE_WRITE);
}
private:
PhysicalSocketServer* ss_;
int fd_;
int flags_;
};
AsyncFile* PhysicalSocketServer::CreateFile(int fd) {
return new FileDispatcher(fd, this);
}
#endif // POSIX
#ifdef WIN32
static uint32 FlagsToEvents(uint32 events) {
uint32 ffFD = FD_CLOSE;
if (events & DE_READ)
ffFD |= FD_READ;
if (events & DE_WRITE)
ffFD |= FD_WRITE;
if (events & DE_CONNECT)
ffFD |= FD_CONNECT;
if (events & DE_ACCEPT)
ffFD |= FD_ACCEPT;
return ffFD;
}
class EventDispatcher : public Dispatcher {
public:
EventDispatcher(PhysicalSocketServer *ss) : ss_(ss) {
hev_ = WSACreateEvent();
if (hev_) {
ss_->Add(this);
}
}
~EventDispatcher() {
if (hev_ != NULL) {
ss_->Remove(this);
WSACloseEvent(hev_);
hev_ = NULL;
}
}
virtual void Signal() {
if (hev_ != NULL)
WSASetEvent(hev_);
}
virtual uint32 GetRequestedEvents() {
return 0;
}
virtual void OnPreEvent(uint32 ff) {
WSAResetEvent(hev_);
}
virtual void OnEvent(uint32 ff, int err) {
}
virtual WSAEVENT GetWSAEvent() {
return hev_;
}
virtual SOCKET GetSocket() {
return INVALID_SOCKET;
}
virtual bool CheckSignalClose() { return false; }
private:
PhysicalSocketServer* ss_;
WSAEVENT hev_;
};
class SocketDispatcher : public Dispatcher, public PhysicalSocket {
public:
static int next_id_;
int id_;
bool signal_close_;
int signal_err_;
SocketDispatcher(PhysicalSocketServer* ss)
: PhysicalSocket(ss),
id_(0),
signal_close_(false) {
}
SocketDispatcher(SOCKET s, PhysicalSocketServer* ss)
: PhysicalSocket(ss, s),
id_(0),
signal_close_(false) {
}
virtual ~SocketDispatcher() {
Close();
}
bool Initialize() {
ASSERT(s_ != INVALID_SOCKET);
// Must be a non-blocking
u_long argp = 1;
ioctlsocket(s_, FIONBIO, &argp);
ss_->Add(this);
return true;
}
virtual bool Create(int type) {
return Create(AF_INET, type);
}
virtual bool Create(int family, int type) {
// Create socket
if (!PhysicalSocket::Create(family, type))
return false;
if (!Initialize())
return false;
do { id_ = ++next_id_; } while (id_ == 0);
return true;
}
virtual int Close() {
if (s_ == INVALID_SOCKET)
return 0;
id_ = 0;
signal_close_ = false;
ss_->Remove(this);
return PhysicalSocket::Close();
}
virtual uint32 GetRequestedEvents() {
return enabled_events_;
}
virtual void OnPreEvent(uint32 ff) {
if ((ff & DE_CONNECT) != 0)
state_ = CS_CONNECTED;
// We set CS_CLOSED from CheckSignalClose.
}
virtual void OnEvent(uint32 ff, int err) {
int cache_id = id_;
// Make sure we deliver connect/accept first. Otherwise, consumers may see
// something like a READ followed by a CONNECT, which would be odd.
if (((ff & DE_CONNECT) != 0) && (id_ == cache_id)) {
if (ff != DE_CONNECT)
LOG(LS_VERBOSE) << "Signalled with DE_CONNECT: " << ff;
enabled_events_ &= ~DE_CONNECT;
#ifdef _DEBUG
dbg_addr_ = "Connected @ ";
dbg_addr_.append(GetRemoteAddress().ToString());
#endif // _DEBUG
SignalConnectEvent(this);
}
if (((ff & DE_ACCEPT) != 0) && (id_ == cache_id)) {
enabled_events_ &= ~DE_ACCEPT;
SignalReadEvent(this);
}
if ((ff & DE_READ) != 0) {
enabled_events_ &= ~DE_READ;
SignalReadEvent(this);
}
if (((ff & DE_WRITE) != 0) && (id_ == cache_id)) {
enabled_events_ &= ~DE_WRITE;
SignalWriteEvent(this);
}
if (((ff & DE_CLOSE) != 0) && (id_ == cache_id)) {
signal_close_ = true;
signal_err_ = err;
}
}
virtual WSAEVENT GetWSAEvent() {
return WSA_INVALID_EVENT;
}
virtual SOCKET GetSocket() {
return s_;
}
virtual bool CheckSignalClose() {
if (!signal_close_)
return false;
char ch;
if (recv(s_, &ch, 1, MSG_PEEK) > 0)
return false;
state_ = CS_CLOSED;
signal_close_ = false;
SignalCloseEvent(this, signal_err_);
return true;
}
};
int SocketDispatcher::next_id_ = 0;
#endif // WIN32
// Sets the value of a boolean value to false when signaled.
class Signaler : public EventDispatcher {
public:
Signaler(PhysicalSocketServer* ss, bool* pf)
: EventDispatcher(ss), pf_(pf) {
}
virtual ~Signaler() { }
void OnEvent(uint32 ff, int err) {
if (pf_)
*pf_ = false;
}
private:
bool *pf_;
};
PhysicalSocketServer::PhysicalSocketServer()
: fWait_(false) {
signal_wakeup_ = new Signaler(this, &fWait_);
#ifdef WIN32
socket_ev_ = WSACreateEvent();
#endif
}
PhysicalSocketServer::~PhysicalSocketServer() {
#ifdef WIN32
WSACloseEvent(socket_ev_);
#endif
#ifdef POSIX
signal_dispatcher_.reset();
#endif
delete signal_wakeup_;
ASSERT(dispatchers_.empty());
}
void PhysicalSocketServer::WakeUp() {
signal_wakeup_->Signal();
}
Socket* PhysicalSocketServer::CreateSocket(int type) {
return CreateSocket(AF_INET, type);
}
Socket* PhysicalSocketServer::CreateSocket(int family, int type) {
PhysicalSocket* socket = new PhysicalSocket(this);
if (socket->Create(family, type)) {
return socket;
} else {
delete socket;
return 0;
}
}
AsyncSocket* PhysicalSocketServer::CreateAsyncSocket(int type) {
return CreateAsyncSocket(AF_INET, type);
}
AsyncSocket* PhysicalSocketServer::CreateAsyncSocket(int family, int type) {
SocketDispatcher* dispatcher = new SocketDispatcher(this);
if (dispatcher->Create(family, type)) {
return dispatcher;
} else {
delete dispatcher;
return 0;
}
}
AsyncSocket* PhysicalSocketServer::WrapSocket(SOCKET s) {
SocketDispatcher* dispatcher = new SocketDispatcher(s, this);
if (dispatcher->Initialize()) {
return dispatcher;
} else {
delete dispatcher;
return 0;
}
}
void PhysicalSocketServer::Add(Dispatcher *pdispatcher) {
CritScope cs(&crit_);
// Prevent duplicates. This can cause dead dispatchers to stick around.
DispatcherList::iterator pos = std::find(dispatchers_.begin(),
dispatchers_.end(),
pdispatcher);
if (pos != dispatchers_.end())
return;
dispatchers_.push_back(pdispatcher);
}
void PhysicalSocketServer::Remove(Dispatcher *pdispatcher) {
CritScope cs(&crit_);
DispatcherList::iterator pos = std::find(dispatchers_.begin(),
dispatchers_.end(),
pdispatcher);
// We silently ignore duplicate calls to Add, so we should silently ignore
// the (expected) symmetric calls to Remove. Note that this may still hide
// a real issue, so we at least log a warning about it.
if (pos == dispatchers_.end()) {
LOG(LS_WARNING) << "PhysicalSocketServer asked to remove a unknown "
<< "dispatcher, potentially from a duplicate call to Add.";
return;
}
size_t index = pos - dispatchers_.begin();
dispatchers_.erase(pos);
for (IteratorList::iterator it = iterators_.begin(); it != iterators_.end();
++it) {
if (index < **it) {
--**it;
}
}
}
#ifdef POSIX
bool PhysicalSocketServer::Wait(int cmsWait, bool process_io) {
// Calculate timing information
struct timeval *ptvWait = NULL;
struct timeval tvWait;
struct timeval tvStop;
if (cmsWait != kForever) {
// Calculate wait timeval
tvWait.tv_sec = cmsWait / 1000;
tvWait.tv_usec = (cmsWait % 1000) * 1000;
ptvWait = &tvWait;
// Calculate when to return in a timeval
gettimeofday(&tvStop, NULL);
tvStop.tv_sec += tvWait.tv_sec;
tvStop.tv_usec += tvWait.tv_usec;
if (tvStop.tv_usec >= 1000000) {
tvStop.tv_usec -= 1000000;
tvStop.tv_sec += 1;
}
}
// Zero all fd_sets. Don't need to do this inside the loop since
// select() zeros the descriptors not signaled
fd_set fdsRead;
FD_ZERO(&fdsRead);
fd_set fdsWrite;
FD_ZERO(&fdsWrite);
fWait_ = true;
while (fWait_) {
int fdmax = -1;
{
CritScope cr(&crit_);
for (size_t i = 0; i < dispatchers_.size(); ++i) {
// Query dispatchers for read and write wait state
Dispatcher *pdispatcher = dispatchers_[i];
ASSERT(pdispatcher);
if (!process_io && (pdispatcher != signal_wakeup_))
continue;
int fd = pdispatcher->GetDescriptor();
if (fd > fdmax)
fdmax = fd;
uint32 ff = pdispatcher->GetRequestedEvents();
if (ff & (DE_READ | DE_ACCEPT))
FD_SET(fd, &fdsRead);
if (ff & (DE_WRITE | DE_CONNECT))
FD_SET(fd, &fdsWrite);
}
}
// Wait then call handlers as appropriate
// < 0 means error
// 0 means timeout
// > 0 means count of descriptors ready
int n = select(fdmax + 1, &fdsRead, &fdsWrite, NULL, ptvWait);
// If error, return error.
if (n < 0) {
if (errno != EINTR) {
LOG_E(LS_ERROR, EN, errno) << "select";
return false;
}
// Else ignore the error and keep going. If this EINTR was for one of the
// signals managed by this PhysicalSocketServer, the
// PosixSignalDeliveryDispatcher will be in the signaled state in the next
// iteration.
} else if (n == 0) {
// If timeout, return success
return true;
} else {
// We have signaled descriptors
CritScope cr(&crit_);
for (size_t i = 0; i < dispatchers_.size(); ++i) {
Dispatcher *pdispatcher = dispatchers_[i];
int fd = pdispatcher->GetDescriptor();
uint32 ff = 0;
int errcode = 0;
// Reap any error code, which can be signaled through reads or writes.
// TODO: Should we set errcode if getsockopt fails?
if (FD_ISSET(fd, &fdsRead) || FD_ISSET(fd, &fdsWrite)) {
socklen_t len = sizeof(errcode);
::getsockopt(fd, SOL_SOCKET, SO_ERROR, &errcode, &len);
}
// Check readable descriptors. If we're waiting on an accept, signal
// that. Otherwise we're waiting for data, check to see if we're
// readable or really closed.
// TODO: Only peek at TCP descriptors.
if (FD_ISSET(fd, &fdsRead)) {
FD_CLR(fd, &fdsRead);
if (pdispatcher->GetRequestedEvents() & DE_ACCEPT) {
ff |= DE_ACCEPT;
} else if (errcode || pdispatcher->IsDescriptorClosed()) {
ff |= DE_CLOSE;
} else {
ff |= DE_READ;
}
}
// Check writable descriptors. If we're waiting on a connect, detect
// success versus failure by the reaped error code.
if (FD_ISSET(fd, &fdsWrite)) {
FD_CLR(fd, &fdsWrite);
if (pdispatcher->GetRequestedEvents() & DE_CONNECT) {
if (!errcode) {
ff |= DE_CONNECT;
} else {
ff |= DE_CLOSE;
}
} else {
ff |= DE_WRITE;
}
}
// Tell the descriptor about the event.
if (ff != 0) {
pdispatcher->OnPreEvent(ff);
pdispatcher->OnEvent(ff, errcode);
}
}
}
// Recalc the time remaining to wait. Doing it here means it doesn't get
// calced twice the first time through the loop
if (ptvWait) {
ptvWait->tv_sec = 0;
ptvWait->tv_usec = 0;
struct timeval tvT;
gettimeofday(&tvT, NULL);
if ((tvStop.tv_sec > tvT.tv_sec)
|| ((tvStop.tv_sec == tvT.tv_sec)
&& (tvStop.tv_usec > tvT.tv_usec))) {
ptvWait->tv_sec = tvStop.tv_sec - tvT.tv_sec;
ptvWait->tv_usec = tvStop.tv_usec - tvT.tv_usec;
if (ptvWait->tv_usec < 0) {
ASSERT(ptvWait->tv_sec > 0);
ptvWait->tv_usec += 1000000;
ptvWait->tv_sec -= 1;
}
}
}
}
return true;
}
static void GlobalSignalHandler(int signum) {
PosixSignalHandler::Instance()->OnPosixSignalReceived(signum);
}
bool PhysicalSocketServer::SetPosixSignalHandler(int signum,
void (*handler)(int)) {
// If handler is SIG_IGN or SIG_DFL then clear our user-level handler,
// otherwise set one.
if (handler == SIG_IGN || handler == SIG_DFL) {
if (!InstallSignal(signum, handler)) {
return false;
}
if (signal_dispatcher_) {
signal_dispatcher_->ClearHandler(signum);
if (!signal_dispatcher_->HasHandlers()) {
signal_dispatcher_.reset();
}
}
} else {
if (!signal_dispatcher_) {
signal_dispatcher_.reset(new PosixSignalDispatcher(this));
}
signal_dispatcher_->SetHandler(signum, handler);
if (!InstallSignal(signum, &GlobalSignalHandler)) {
return false;
}
}
return true;
}
Dispatcher* PhysicalSocketServer::signal_dispatcher() {
return signal_dispatcher_.get();
}
bool PhysicalSocketServer::InstallSignal(int signum, void (*handler)(int)) {
struct sigaction act;
// It doesn't really matter what we set this mask to.
if (sigemptyset(&act.sa_mask) != 0) {
LOG_ERR(LS_ERROR) << "Couldn't set mask";
return false;
}
act.sa_handler = handler;
#if !defined(__native_client__)
// Use SA_RESTART so that our syscalls don't get EINTR, since we don't need it
// and it's a nuisance. Though some syscalls still return EINTR and there's no
// real standard for which ones. :(
act.sa_flags = SA_RESTART;
#else
act.sa_flags = 0;
#endif
if (sigaction(signum, &act, NULL) != 0) {
LOG_ERR(LS_ERROR) << "Couldn't set sigaction";
return false;
}
return true;
}
#endif // POSIX
#ifdef WIN32
bool PhysicalSocketServer::Wait(int cmsWait, bool process_io) {
int cmsTotal = cmsWait;
int cmsElapsed = 0;
uint32 msStart = Time();
fWait_ = true;
while (fWait_) {
std::vector<WSAEVENT> events;
std::vector<Dispatcher *> event_owners;
events.push_back(socket_ev_);
{
CritScope cr(&crit_);
size_t i = 0;
iterators_.push_back(&i);
// Don't track dispatchers_.size(), because we want to pick up any new
// dispatchers that were added while processing the loop.
while (i < dispatchers_.size()) {
Dispatcher* disp = dispatchers_[i++];
if (!process_io && (disp != signal_wakeup_))
continue;
SOCKET s = disp->GetSocket();
if (disp->CheckSignalClose()) {
// We just signalled close, don't poll this socket
} else if (s != INVALID_SOCKET) {
WSAEventSelect(s,
events[0],
FlagsToEvents(disp->GetRequestedEvents()));
} else {
events.push_back(disp->GetWSAEvent());
event_owners.push_back(disp);
}
}
ASSERT(iterators_.back() == &i);
iterators_.pop_back();
}
// Which is shorter, the delay wait or the asked wait?
int cmsNext;
if (cmsWait == kForever) {
cmsNext = cmsWait;
} else {
cmsNext = _max(0, cmsTotal - cmsElapsed);
}
// Wait for one of the events to signal
DWORD dw = WSAWaitForMultipleEvents(static_cast<DWORD>(events.size()),
&events[0],
false,
cmsNext,
false);
if (dw == WSA_WAIT_FAILED) {
// Failed?
// TODO: need a better strategy than this!
WSAGetLastError();
ASSERT(false);
return false;
} else if (dw == WSA_WAIT_TIMEOUT) {
// Timeout?
return true;
} else {
// Figure out which one it is and call it
CritScope cr(&crit_);
int index = dw - WSA_WAIT_EVENT_0;
if (index > 0) {
--index; // The first event is the socket event
event_owners[index]->OnPreEvent(0);
event_owners[index]->OnEvent(0, 0);
} else if (process_io) {
size_t i = 0, end = dispatchers_.size();
iterators_.push_back(&i);
iterators_.push_back(&end); // Don't iterate over new dispatchers.
while (i < end) {
Dispatcher* disp = dispatchers_[i++];
SOCKET s = disp->GetSocket();
if (s == INVALID_SOCKET)
continue;
WSANETWORKEVENTS wsaEvents;
int err = WSAEnumNetworkEvents(s, events[0], &wsaEvents);
if (err == 0) {
#if LOGGING
{
if ((wsaEvents.lNetworkEvents & FD_READ) &&
wsaEvents.iErrorCode[FD_READ_BIT] != 0) {
LOG(WARNING) << "PhysicalSocketServer got FD_READ_BIT error "
<< wsaEvents.iErrorCode[FD_READ_BIT];
}
if ((wsaEvents.lNetworkEvents & FD_WRITE) &&
wsaEvents.iErrorCode[FD_WRITE_BIT] != 0) {
LOG(WARNING) << "PhysicalSocketServer got FD_WRITE_BIT error "
<< wsaEvents.iErrorCode[FD_WRITE_BIT];
}
if ((wsaEvents.lNetworkEvents & FD_CONNECT) &&
wsaEvents.iErrorCode[FD_CONNECT_BIT] != 0) {
LOG(WARNING) << "PhysicalSocketServer got FD_CONNECT_BIT error "
<< wsaEvents.iErrorCode[FD_CONNECT_BIT];
}
if ((wsaEvents.lNetworkEvents & FD_ACCEPT) &&
wsaEvents.iErrorCode[FD_ACCEPT_BIT] != 0) {
LOG(WARNING) << "PhysicalSocketServer got FD_ACCEPT_BIT error "
<< wsaEvents.iErrorCode[FD_ACCEPT_BIT];
}
if ((wsaEvents.lNetworkEvents & FD_CLOSE) &&
wsaEvents.iErrorCode[FD_CLOSE_BIT] != 0) {
LOG(WARNING) << "PhysicalSocketServer got FD_CLOSE_BIT error "
<< wsaEvents.iErrorCode[FD_CLOSE_BIT];
}
}
#endif
uint32 ff = 0;
int errcode = 0;
if (wsaEvents.lNetworkEvents & FD_READ)
ff |= DE_READ;
if (wsaEvents.lNetworkEvents & FD_WRITE)
ff |= DE_WRITE;
if (wsaEvents.lNetworkEvents & FD_CONNECT) {
if (wsaEvents.iErrorCode[FD_CONNECT_BIT] == 0) {
ff |= DE_CONNECT;
} else {
ff |= DE_CLOSE;
errcode = wsaEvents.iErrorCode[FD_CONNECT_BIT];
}
}
if (wsaEvents.lNetworkEvents & FD_ACCEPT)
ff |= DE_ACCEPT;
if (wsaEvents.lNetworkEvents & FD_CLOSE) {
ff |= DE_CLOSE;
errcode = wsaEvents.iErrorCode[FD_CLOSE_BIT];
}
if (ff != 0) {
disp->OnPreEvent(ff);
disp->OnEvent(ff, errcode);
}
}
}
ASSERT(iterators_.back() == &end);
iterators_.pop_back();
ASSERT(iterators_.back() == &i);
iterators_.pop_back();
}
// Reset the network event until new activity occurs
WSAResetEvent(socket_ev_);
}
// Break?
if (!fWait_)
break;
cmsElapsed = TimeSince(msStart);
if ((cmsWait != kForever) && (cmsElapsed >= cmsWait)) {
break;
}
}
// Done
return true;
}
#endif // WIN32
} // namespace talk_base
|