1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
|
/*
* libjingle
* Copyright 2004--2006, Google Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <algorithm>
#include "talk/base/taskrunner.h"
#include "talk/base/common.h"
#include "talk/base/scoped_ptr.h"
#include "talk/base/task.h"
#include "talk/base/logging.h"
namespace talk_base {
TaskRunner::TaskRunner()
: TaskParent(this),
next_timeout_task_(NULL),
tasks_running_(false)
#ifdef _DEBUG
, abort_count_(0),
deleting_task_(NULL)
#endif
{
}
TaskRunner::~TaskRunner() {
// this kills and deletes children silently!
AbortAllChildren();
InternalRunTasks(true);
}
void TaskRunner::StartTask(Task * task) {
tasks_.push_back(task);
// the task we just started could be about to timeout --
// make sure our "next timeout task" is correct
UpdateTaskTimeout(task, 0);
WakeTasks();
}
void TaskRunner::RunTasks() {
InternalRunTasks(false);
}
void TaskRunner::InternalRunTasks(bool in_destructor) {
// This shouldn't run while an abort is happening.
// If that occurs, then tasks may be deleted in this method,
// but pointers to them will still be in the
// "ChildSet copy" in TaskParent::AbortAllChildren.
// Subsequent use of those task may cause data corruption or crashes.
ASSERT(!abort_count_);
// Running continues until all tasks are Blocked (ok for a small # of tasks)
if (tasks_running_) {
return; // don't reenter
}
tasks_running_ = true;
int64 previous_timeout_time = next_task_timeout();
int did_run = true;
while (did_run) {
did_run = false;
// use indexing instead of iterators because tasks_ may grow
for (size_t i = 0; i < tasks_.size(); ++i) {
while (!tasks_[i]->Blocked()) {
tasks_[i]->Step();
did_run = true;
}
}
}
// Tasks are deleted when running has paused
bool need_timeout_recalc = false;
for (size_t i = 0; i < tasks_.size(); ++i) {
if (tasks_[i]->IsDone()) {
Task* task = tasks_[i];
if (next_timeout_task_ &&
task->unique_id() == next_timeout_task_->unique_id()) {
next_timeout_task_ = NULL;
need_timeout_recalc = true;
}
#ifdef _DEBUG
deleting_task_ = task;
#endif
delete task;
#ifdef _DEBUG
deleting_task_ = NULL;
#endif
tasks_[i] = NULL;
}
}
// Finally, remove nulls
std::vector<Task *>::iterator it;
it = std::remove(tasks_.begin(),
tasks_.end(),
reinterpret_cast<Task *>(NULL));
tasks_.erase(it, tasks_.end());
if (need_timeout_recalc)
RecalcNextTimeout(NULL);
// Make sure that adjustments are done to account
// for any timeout changes (but don't call this
// while being destroyed since it calls a pure virtual function).
if (!in_destructor)
CheckForTimeoutChange(previous_timeout_time);
tasks_running_ = false;
}
void TaskRunner::PollTasks() {
// see if our "next potentially timed-out task" has indeed timed out.
// If it has, wake it up, then queue up the next task in line
// Repeat while we have new timed-out tasks.
// TODO: We need to guard against WakeTasks not updating
// next_timeout_task_. Maybe also add documentation in the header file once
// we understand this code better.
Task* old_timeout_task = NULL;
while (next_timeout_task_ &&
old_timeout_task != next_timeout_task_ &&
next_timeout_task_->TimedOut()) {
old_timeout_task = next_timeout_task_;
next_timeout_task_->Wake();
WakeTasks();
}
}
int64 TaskRunner::next_task_timeout() const {
if (next_timeout_task_) {
return next_timeout_task_->timeout_time();
}
return 0;
}
// this function gets called frequently -- when each task changes
// state to something other than DONE, ERROR or BLOCKED, it calls
// ResetTimeout(), which will call this function to make sure that
// the next timeout-able task hasn't changed. The logic in this function
// prevents RecalcNextTimeout() from getting called in most cases,
// effectively making the task scheduler O-1 instead of O-N
void TaskRunner::UpdateTaskTimeout(Task* task,
int64 previous_task_timeout_time) {
ASSERT(task != NULL);
int64 previous_timeout_time = next_task_timeout();
bool task_is_timeout_task = next_timeout_task_ != NULL &&
task->unique_id() == next_timeout_task_->unique_id();
if (task_is_timeout_task) {
previous_timeout_time = previous_task_timeout_time;
}
// if the relevant task has a timeout, then
// check to see if it's closer than the current
// "about to timeout" task
if (task->timeout_time()) {
if (next_timeout_task_ == NULL ||
(task->timeout_time() <= next_timeout_task_->timeout_time())) {
next_timeout_task_ = task;
}
} else if (task_is_timeout_task) {
// otherwise, if the task doesn't have a timeout,
// and it used to be our "about to timeout" task,
// walk through all the tasks looking for the real
// "about to timeout" task
RecalcNextTimeout(task);
}
// Note when task_running_, then the running routine
// (TaskRunner::InternalRunTasks) is responsible for calling
// CheckForTimeoutChange.
if (!tasks_running_) {
CheckForTimeoutChange(previous_timeout_time);
}
}
void TaskRunner::RecalcNextTimeout(Task *exclude_task) {
// walk through all the tasks looking for the one
// which satisfies the following:
// it's not finished already
// we're not excluding it
// it has the closest timeout time
int64 next_timeout_time = 0;
next_timeout_task_ = NULL;
for (size_t i = 0; i < tasks_.size(); ++i) {
Task *task = tasks_[i];
// if the task isn't complete, and it actually has a timeout time
if (!task->IsDone() && (task->timeout_time() > 0))
// if it doesn't match our "exclude" task
if (exclude_task == NULL ||
exclude_task->unique_id() != task->unique_id())
// if its timeout time is sooner than our current timeout time
if (next_timeout_time == 0 ||
task->timeout_time() <= next_timeout_time) {
// set this task as our next-to-timeout
next_timeout_time = task->timeout_time();
next_timeout_task_ = task;
}
}
}
void TaskRunner::CheckForTimeoutChange(int64 previous_timeout_time) {
int64 next_timeout = next_task_timeout();
bool timeout_change = (previous_timeout_time == 0 && next_timeout != 0) ||
next_timeout < previous_timeout_time ||
(previous_timeout_time <= CurrentTime() &&
previous_timeout_time != next_timeout);
if (timeout_change) {
OnTimeoutChange();
}
}
} // namespace talk_base
|