1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
|
/*
* libjingle
* Copyright 2004--2005, Google Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "talk/p2p/base/p2ptransportchannel.h"
#include <set>
#include "talk/base/common.h"
#include "talk/base/crc32.h"
#include "talk/base/logging.h"
#include "talk/base/stringencode.h"
#include "talk/p2p/base/common.h"
#include "talk/p2p/base/relayport.h" // For RELAY_PORT_TYPE.
#include "talk/p2p/base/stunport.h" // For STUN_PORT_TYPE.
namespace {
// messages for queuing up work for ourselves
enum {
MSG_SORT = 1,
MSG_PING,
};
// When the socket is unwritable, we will use 10 Kbps (ignoring IP+UDP headers)
// for pinging. When the socket is writable, we will use only 1 Kbps because
// we don't want to degrade the quality on a modem. These numbers should work
// well on a 28.8K modem, which is the slowest connection on which the voice
// quality is reasonable at all.
static const uint32 PING_PACKET_SIZE = 60 * 8;
static const uint32 WRITABLE_DELAY = 1000 * PING_PACKET_SIZE / 1000; // 480ms
static const uint32 UNWRITABLE_DELAY = 1000 * PING_PACKET_SIZE / 10000; // 50ms
// If there is a current writable connection, then we will also try hard to
// make sure it is pinged at this rate.
static const uint32 MAX_CURRENT_WRITABLE_DELAY = 900; // 2*WRITABLE_DELAY - bit
// The minimum improvement in RTT that justifies a switch.
static const double kMinImprovement = 10;
cricket::PortInterface::CandidateOrigin GetOrigin(cricket::PortInterface* port,
cricket::PortInterface* origin_port) {
if (!origin_port)
return cricket::PortInterface::ORIGIN_MESSAGE;
else if (port == origin_port)
return cricket::PortInterface::ORIGIN_THIS_PORT;
else
return cricket::PortInterface::ORIGIN_OTHER_PORT;
}
// Compares two connections based only on static information about them.
int CompareConnectionCandidates(cricket::Connection* a,
cricket::Connection* b) {
// Compare connection priority. Lower values get sorted last.
if (a->priority() > b->priority())
return 1;
if (a->priority() < b->priority())
return -1;
// If we're still tied at this point, prefer a younger generation.
return (a->remote_candidate().generation() + a->port()->generation()) -
(b->remote_candidate().generation() + b->port()->generation());
}
// Compare two connections based on their writability and static preferences.
int CompareConnections(cricket::Connection *a, cricket::Connection *b) {
// Sort based on write-state. Better states have lower values.
if (a->write_state() < b->write_state())
return 1;
if (a->write_state() > b->write_state())
return -1;
// Compare the candidate information.
return CompareConnectionCandidates(a, b);
}
// Wraps the comparison connection into a less than operator that puts higher
// priority writable connections first.
class ConnectionCompare {
public:
bool operator()(const cricket::Connection *ca,
const cricket::Connection *cb) {
cricket::Connection* a = const_cast<cricket::Connection*>(ca);
cricket::Connection* b = const_cast<cricket::Connection*>(cb);
ASSERT(a->port()->IceProtocol() == b->port()->IceProtocol());
// Compare first on writability and static preferences.
int cmp = CompareConnections(a, b);
if (cmp > 0)
return true;
if (cmp < 0)
return false;
// Otherwise, sort based on latency estimate.
return a->rtt() < b->rtt();
// Should we bother checking for the last connection that last received
// data? It would help rendezvous on the connection that is also receiving
// packets.
//
// TODO: Yes we should definitely do this. The TCP protocol gains
// efficiency by being used bidirectionally, as opposed to two separate
// unidirectional streams. This test should probably occur before
// comparison of local prefs (assuming combined prefs are the same). We
// need to be careful though, not to bounce back and forth with both sides
// trying to rendevous with the other.
}
};
// Determines whether we should switch between two connections, based first on
// static preferences and then (if those are equal) on latency estimates.
bool ShouldSwitch(cricket::Connection* a_conn, cricket::Connection* b_conn) {
if (a_conn == b_conn)
return false;
if (!a_conn || !b_conn) // don't think the latter should happen
return true;
int prefs_cmp = CompareConnections(a_conn, b_conn);
if (prefs_cmp < 0)
return true;
if (prefs_cmp > 0)
return false;
return b_conn->rtt() <= a_conn->rtt() + kMinImprovement;
}
} // unnamed namespace
namespace cricket {
P2PTransportChannel::P2PTransportChannel(const std::string& content_name,
int component,
P2PTransport* transport,
PortAllocator *allocator) :
TransportChannelImpl(content_name, component),
transport_(transport),
allocator_(allocator),
worker_thread_(talk_base::Thread::Current()),
incoming_only_(false),
waiting_for_signaling_(false),
error_(0),
best_connection_(NULL),
pending_best_connection_(NULL),
sort_dirty_(false),
was_writable_(false),
protocol_type_(ICEPROTO_HYBRID),
remote_ice_mode_(ICEMODE_FULL),
ice_role_(ICEROLE_UNKNOWN),
tiebreaker_(0),
remote_candidate_generation_(0) {
}
P2PTransportChannel::~P2PTransportChannel() {
ASSERT(worker_thread_ == talk_base::Thread::Current());
for (uint32 i = 0; i < allocator_sessions_.size(); ++i)
delete allocator_sessions_[i];
}
// Add the allocator session to our list so that we know which sessions
// are still active.
void P2PTransportChannel::AddAllocatorSession(PortAllocatorSession* session) {
session->set_generation(static_cast<uint32>(allocator_sessions_.size()));
allocator_sessions_.push_back(session);
// We now only want to apply new candidates that we receive to the ports
// created by this new session because these are replacing those of the
// previous sessions.
ports_.clear();
session->SignalPortReady.connect(this, &P2PTransportChannel::OnPortReady);
session->SignalCandidatesReady.connect(
this, &P2PTransportChannel::OnCandidatesReady);
session->SignalCandidatesAllocationDone.connect(
this, &P2PTransportChannel::OnCandidatesAllocationDone);
session->StartGettingPorts();
}
void P2PTransportChannel::AddConnection(Connection* connection) {
connections_.push_back(connection);
connection->set_remote_ice_mode(remote_ice_mode_);
connection->SignalReadPacket.connect(
this, &P2PTransportChannel::OnReadPacket);
connection->SignalReadyToSend.connect(
this, &P2PTransportChannel::OnReadyToSend);
connection->SignalStateChange.connect(
this, &P2PTransportChannel::OnConnectionStateChange);
connection->SignalDestroyed.connect(
this, &P2PTransportChannel::OnConnectionDestroyed);
connection->SignalUseCandidate.connect(
this, &P2PTransportChannel::OnUseCandidate);
}
void P2PTransportChannel::SetIceRole(IceRole ice_role) {
ASSERT(worker_thread_ == talk_base::Thread::Current());
if (ice_role_ != ice_role) {
ice_role_ = ice_role;
for (std::vector<PortInterface *>::iterator it = ports_.begin();
it != ports_.end(); ++it) {
(*it)->SetIceRole(ice_role);
}
}
}
void P2PTransportChannel::SetIceTiebreaker(uint64 tiebreaker) {
ASSERT(worker_thread_ == talk_base::Thread::Current());
if (!ports_.empty()) {
LOG(LS_ERROR)
<< "Attempt to change tiebreaker after Port has been allocated.";
return;
}
tiebreaker_ = tiebreaker;
}
bool P2PTransportChannel::GetIceProtocolType(IceProtocolType* type) const {
*type = protocol_type_;
return true;
}
void P2PTransportChannel::SetIceProtocolType(IceProtocolType type) {
ASSERT(worker_thread_ == talk_base::Thread::Current());
protocol_type_ = type;
for (std::vector<PortInterface *>::iterator it = ports_.begin();
it != ports_.end(); ++it) {
(*it)->SetIceProtocolType(protocol_type_);
}
}
void P2PTransportChannel::SetIceCredentials(const std::string& ice_ufrag,
const std::string& ice_pwd) {
ASSERT(worker_thread_ == talk_base::Thread::Current());
bool ice_restart = false;
if (!ice_ufrag_.empty() && !ice_pwd_.empty()) {
// Restart candidate allocation if there is any change in either
// ice ufrag or password.
ice_restart = (ice_ufrag_ != ice_ufrag) || (ice_pwd_!= ice_pwd);
}
ice_ufrag_ = ice_ufrag;
ice_pwd_ = ice_pwd;
if (ice_restart) {
// Restart candidate gathering.
Allocate();
}
}
void P2PTransportChannel::SetRemoteIceCredentials(const std::string& ice_ufrag,
const std::string& ice_pwd) {
ASSERT(worker_thread_ == talk_base::Thread::Current());
bool ice_restart = false;
if (!remote_ice_ufrag_.empty() && !remote_ice_pwd_.empty()) {
ice_restart = (remote_ice_ufrag_ != ice_ufrag) ||
(remote_ice_pwd_!= ice_pwd);
}
remote_ice_ufrag_ = ice_ufrag;
remote_ice_pwd_ = ice_pwd;
if (ice_restart) {
// |candidate.generation()| is not signaled in ICEPROTO_RFC5245.
// Therefore we need to keep track of the remote ice restart so
// newer connections are prioritized over the older.
++remote_candidate_generation_;
}
}
void P2PTransportChannel::SetRemoteIceMode(IceMode mode) {
remote_ice_mode_ = mode;
}
// Go into the state of processing candidates, and running in general
void P2PTransportChannel::Connect() {
ASSERT(worker_thread_ == talk_base::Thread::Current());
if (ice_ufrag_.empty() || ice_pwd_.empty()) {
ASSERT(false);
LOG(LS_ERROR) << "P2PTransportChannel::Connect: The ice_ufrag_ and the "
<< "ice_pwd_ are not set.";
return;
}
// Kick off an allocator session
Allocate();
// Start pinging as the ports come in.
thread()->Post(this, MSG_PING);
}
// Reset the socket, clear up any previous allocations and start over
void P2PTransportChannel::Reset() {
ASSERT(worker_thread_ == talk_base::Thread::Current());
// Get rid of all the old allocators. This should clean up everything.
for (uint32 i = 0; i < allocator_sessions_.size(); ++i)
delete allocator_sessions_[i];
allocator_sessions_.clear();
ports_.clear();
connections_.clear();
best_connection_ = NULL;
// Forget about all of the candidates we got before.
remote_candidates_.clear();
// Revert to the initial state.
set_readable(false);
set_writable(false);
// Reinitialize the rest of our state.
waiting_for_signaling_ = false;
sort_dirty_ = false;
// If we allocated before, start a new one now.
if (transport_->connect_requested())
Allocate();
// Start pinging as the ports come in.
thread()->Clear(this);
thread()->Post(this, MSG_PING);
}
// A new port is available, attempt to make connections for it
void P2PTransportChannel::OnPortReady(PortAllocatorSession *session,
PortInterface* port) {
ASSERT(worker_thread_ == talk_base::Thread::Current());
// Set in-effect options on the new port
for (OptionMap::const_iterator it = options_.begin();
it != options_.end();
++it) {
int val = port->SetOption(it->first, it->second);
if (val < 0) {
LOG_J(LS_WARNING, port) << "SetOption(" << it->first
<< ", " << it->second
<< ") failed: " << port->GetError();
}
}
// Remember the ports and candidates, and signal that candidates are ready.
// The session will handle this, and send an initiate/accept/modify message
// if one is pending.
port->SetIceProtocolType(protocol_type_);
port->SetIceRole(ice_role_);
port->SetIceTiebreaker(tiebreaker_);
ports_.push_back(port);
port->SignalUnknownAddress.connect(
this, &P2PTransportChannel::OnUnknownAddress);
port->SignalDestroyed.connect(this, &P2PTransportChannel::OnPortDestroyed);
port->SignalRoleConflict.connect(
this, &P2PTransportChannel::OnRoleConflict);
// Attempt to create a connection from this new port to all of the remote
// candidates that we were given so far.
std::vector<RemoteCandidate>::iterator iter;
for (iter = remote_candidates_.begin(); iter != remote_candidates_.end();
++iter) {
CreateConnection(port, *iter, iter->origin_port(), false);
}
SortConnections();
}
// A new candidate is available, let listeners know
void P2PTransportChannel::OnCandidatesReady(
PortAllocatorSession *session, const std::vector<Candidate>& candidates) {
ASSERT(worker_thread_ == talk_base::Thread::Current());
for (size_t i = 0; i < candidates.size(); ++i) {
SignalCandidateReady(this, candidates[i]);
}
}
void P2PTransportChannel::OnCandidatesAllocationDone(
PortAllocatorSession* session) {
ASSERT(worker_thread_ == talk_base::Thread::Current());
SignalCandidatesAllocationDone(this);
}
// Handle stun packets
void P2PTransportChannel::OnUnknownAddress(
PortInterface* port,
const talk_base::SocketAddress& address, ProtocolType proto,
IceMessage* stun_msg, const std::string &remote_username,
bool port_muxed) {
ASSERT(worker_thread_ == talk_base::Thread::Current());
// Port has received a valid stun packet from an address that no Connection
// is currently available for. See if we already have a candidate with the
// address. If it isn't we need to create new candidate for it.
// Determine if the remote candidates use shared ufrag.
bool ufrag_per_port = false;
std::vector<RemoteCandidate>::iterator it;
if (remote_candidates_.size() > 0) {
it = remote_candidates_.begin();
std::string username = it->username();
for (; it != remote_candidates_.end(); ++it) {
if (it->username() != username) {
ufrag_per_port = true;
break;
}
}
}
const Candidate* candidate = NULL;
bool known_username = false;
std::string remote_password;
for (it = remote_candidates_.begin(); it != remote_candidates_.end(); ++it) {
if (it->username() == remote_username) {
remote_password = it->password();
known_username = true;
if (ufrag_per_port ||
(it->address() == address &&
it->protocol() == ProtoToString(proto))) {
candidate = &(*it);
break;
}
// We don't want to break here because we may find a match of the address
// later.
}
}
if (!known_username) {
if (port_muxed) {
// When Ports are muxed, SignalUnknownAddress is delivered to all
// P2PTransportChannel belong to a session. Return from here will
// save us from sending stun binding error message from incorrect channel.
return;
}
// Don't know about this username, the request is bogus
// This sometimes happens if a binding response comes in before the ACCEPT
// message. It is totally valid; the retry state machine will try again.
port->SendBindingErrorResponse(stun_msg, address,
STUN_ERROR_STALE_CREDENTIALS, STUN_ERROR_REASON_STALE_CREDENTIALS);
return;
}
Candidate new_remote_candidate;
if (candidate != NULL) {
new_remote_candidate = *candidate;
if (ufrag_per_port) {
new_remote_candidate.set_address(address);
}
} else {
// Create a new candidate with this address.
std::string type;
if (port->IceProtocol() == ICEPROTO_RFC5245) {
type = PRFLX_PORT_TYPE;
} else {
// G-ICE doesn't support prflx candidate.
// We set candidate type to STUN_PORT_TYPE if the binding request comes
// from a relay port or the shared socket is used. Otherwise we use the
// port's type as the candidate type.
if (port->Type() == RELAY_PORT_TYPE || port->SharedSocket()) {
type = STUN_PORT_TYPE;
} else {
type = port->Type();
}
}
std::string id = talk_base::CreateRandomString(8);
new_remote_candidate = Candidate(
id, component(), ProtoToString(proto), address,
0, remote_username, remote_password, type,
port->Network()->name(), 0U,
talk_base::ToString<uint32>(talk_base::ComputeCrc32(id)));
new_remote_candidate.set_priority(
new_remote_candidate.GetPriority(ICE_TYPE_PREFERENCE_SRFLX,
port->Network()->preference()));
}
if (port->IceProtocol() == ICEPROTO_RFC5245) {
// RFC 5245
// If the source transport address of the request does not match any
// existing remote candidates, it represents a new peer reflexive remote
// candidate.
// The priority of the candidate is set to the PRIORITY attribute
// from the request.
const StunUInt32Attribute* priority_attr =
stun_msg->GetUInt32(STUN_ATTR_PRIORITY);
if (!priority_attr) {
LOG(LS_WARNING) << "P2PTransportChannel::OnUnknownAddress - "
<< "No STUN_ATTR_PRIORITY found in the "
<< "stun request message";
port->SendBindingErrorResponse(stun_msg, address,
STUN_ERROR_BAD_REQUEST,
STUN_ERROR_REASON_BAD_REQUEST);
return;
}
new_remote_candidate.set_priority(priority_attr->value());
// RFC5245, the agent constructs a pair whose local candidate is equal to
// the transport address on which the STUN request was received, and a
// remote candidate equal to the source transport address where the
// request came from.
// There shouldn't be an existing connection with this remote address.
// When ports are muxed, this channel might get multiple unknown address
// signals. In that case if the connection is already exists, we should
// simply ignore the signal othewise send server error.
if (port->GetConnection(new_remote_candidate.address())) {
if (port_muxed) {
LOG(LS_INFO) << "Connection already exists for peer reflexive "
<< "candidate: " << new_remote_candidate.ToString();
return;
} else {
ASSERT(false);
port->SendBindingErrorResponse(stun_msg, address,
STUN_ERROR_SERVER_ERROR,
STUN_ERROR_REASON_SERVER_ERROR);
return;
}
}
Connection* connection = port->CreateConnection(
new_remote_candidate, cricket::PortInterface::ORIGIN_THIS_PORT);
if (!connection) {
ASSERT(false);
port->SendBindingErrorResponse(stun_msg, address,
STUN_ERROR_SERVER_ERROR,
STUN_ERROR_REASON_SERVER_ERROR);
return;
}
AddConnection(connection);
connection->ReceivedPing();
// Send the pinger a successful stun response.
port->SendBindingResponse(stun_msg, address);
// Update the list of connections since we just added another. We do this
// after sending the response since it could (in principle) delete the
// connection in question.
SortConnections();
} else {
// Check for connectivity to this address. Create connections
// to this address across all local ports. First, add this as a new remote
// address
if (!CreateConnections(new_remote_candidate, port, true)) {
// Hopefully this won't occur, because changing a destination address
// shouldn't cause a new connection to fail
ASSERT(false);
port->SendBindingErrorResponse(stun_msg, address, STUN_ERROR_SERVER_ERROR,
STUN_ERROR_REASON_SERVER_ERROR);
return;
}
// Send the pinger a successful stun response.
port->SendBindingResponse(stun_msg, address);
// Update the list of connections since we just added another. We do this
// after sending the response since it could (in principle) delete the
// connection in question.
SortConnections();
}
}
void P2PTransportChannel::OnRoleConflict(PortInterface* port) {
SignalRoleConflict(this); // STUN ping will be sent when SetRole is called
// from Transport.
}
// When the signalling channel is ready, we can really kick off the allocator
void P2PTransportChannel::OnSignalingReady() {
ASSERT(worker_thread_ == talk_base::Thread::Current());
if (waiting_for_signaling_) {
waiting_for_signaling_ = false;
AddAllocatorSession(allocator_->CreateSession(
SessionId(), content_name(), component(), ice_ufrag_, ice_pwd_));
}
}
void P2PTransportChannel::OnUseCandidate(Connection* conn) {
ASSERT(worker_thread_ == talk_base::Thread::Current());
ASSERT(ice_role_ == ICEROLE_CONTROLLED);
ASSERT(protocol_type_ == ICEPROTO_RFC5245);
if (conn->write_state() == Connection::STATE_WRITABLE) {
if (best_connection_ != conn) {
pending_best_connection_ = NULL;
SwitchBestConnectionTo(conn);
// Now we have selected the best connection, time to prune other existing
// connections and update the read/write state of the channel.
RequestSort();
}
} else {
pending_best_connection_ = conn;
}
}
void P2PTransportChannel::OnCandidate(const Candidate& candidate) {
ASSERT(worker_thread_ == talk_base::Thread::Current());
// Create connections to this remote candidate.
CreateConnections(candidate, NULL, false);
// Resort the connections list, which may have new elements.
SortConnections();
}
// Creates connections from all of the ports that we care about to the given
// remote candidate. The return value is true if we created a connection from
// the origin port.
bool P2PTransportChannel::CreateConnections(const Candidate& remote_candidate,
PortInterface* origin_port,
bool readable) {
ASSERT(worker_thread_ == talk_base::Thread::Current());
Candidate new_remote_candidate(remote_candidate);
new_remote_candidate.set_generation(
GetRemoteCandidateGeneration(remote_candidate));
// ICE candidates don't need to have username and password set, but
// the code below this (specifically, ConnectionRequest::Prepare in
// port.cc) uses the remote candidates's username. So, we set it
// here.
if (remote_candidate.username().empty()) {
new_remote_candidate.set_username(remote_ice_ufrag_);
}
if (remote_candidate.password().empty()) {
new_remote_candidate.set_password(remote_ice_pwd_);
}
// If we've already seen the new remote candidate (in the current candidate
// generation), then we shouldn't try creating connections for it.
// We either already have a connection for it, or we previously created one
// and then later pruned it. If we don't return, the channel will again
// re-create any connections that were previously pruned, which will then
// immediately be re-pruned, churning the network for no purpose.
// This only applies to candidates received over signaling (i.e. origin_port
// is NULL).
if (!origin_port && IsDuplicateRemoteCandidate(new_remote_candidate)) {
// return true to indicate success, without creating any new connections.
return true;
}
// Add a new connection for this candidate to every port that allows such a
// connection (i.e., if they have compatible protocols) and that does not
// already have a connection to an equivalent candidate. We must be careful
// to make sure that the origin port is included, even if it was pruned,
// since that may be the only port that can create this connection.
bool created = false;
std::vector<PortInterface *>::reverse_iterator it;
for (it = ports_.rbegin(); it != ports_.rend(); ++it) {
if (CreateConnection(*it, new_remote_candidate, origin_port, readable)) {
if (*it == origin_port)
created = true;
}
}
if ((origin_port != NULL) &&
std::find(ports_.begin(), ports_.end(), origin_port) == ports_.end()) {
if (CreateConnection(
origin_port, new_remote_candidate, origin_port, readable))
created = true;
}
// Remember this remote candidate so that we can add it to future ports.
RememberRemoteCandidate(new_remote_candidate, origin_port);
return created;
}
// Setup a connection object for the local and remote candidate combination.
// And then listen to connection object for changes.
bool P2PTransportChannel::CreateConnection(PortInterface* port,
const Candidate& remote_candidate,
PortInterface* origin_port,
bool readable) {
// Look for an existing connection with this remote address. If one is not
// found, then we can create a new connection for this address.
Connection* connection = port->GetConnection(remote_candidate.address());
if (connection != NULL) {
// It is not legal to try to change any of the parameters of an existing
// connection; however, the other side can send a duplicate candidate.
if (!remote_candidate.IsEquivalent(connection->remote_candidate())) {
LOG(INFO) << "Attempt to change a remote candidate."
<< " Existing remote candidate: "
<< connection->remote_candidate().ToString()
<< "New remote candidate: "
<< remote_candidate.ToString();
return false;
}
} else {
PortInterface::CandidateOrigin origin = GetOrigin(port, origin_port);
// Don't create connection if this is a candidate we received in a
// message and we are not allowed to make outgoing connections.
if (origin == cricket::PortInterface::ORIGIN_MESSAGE && incoming_only_)
return false;
connection = port->CreateConnection(remote_candidate, origin);
if (!connection)
return false;
AddConnection(connection);
LOG_J(LS_INFO, this) << "Created connection with origin=" << origin << ", ("
<< connections_.size() << " total)";
}
// If we are readable, it is because we are creating this in response to a
// ping from the other side. This will cause the state to become readable.
if (readable)
connection->ReceivedPing();
return true;
}
bool P2PTransportChannel::FindConnection(
cricket::Connection* connection) const {
std::vector<Connection*>::const_iterator citer =
std::find(connections_.begin(), connections_.end(), connection);
return citer != connections_.end();
}
uint32 P2PTransportChannel::GetRemoteCandidateGeneration(
const Candidate& candidate) {
if (protocol_type_ == ICEPROTO_GOOGLE) {
// The Candidate.generation() can be trusted. Nothing needs to be done.
return candidate.generation();
}
// |candidate.generation()| is not signaled in ICEPROTO_RFC5245.
// Therefore we need to keep track of the remote ice restart so
// newer connections are prioritized over the older.
ASSERT(candidate.generation() == 0 ||
candidate.generation() == remote_candidate_generation_);
return remote_candidate_generation_;
}
// Check if remote candidate is already cached.
bool P2PTransportChannel::IsDuplicateRemoteCandidate(
const Candidate& candidate) {
for (uint32 i = 0; i < remote_candidates_.size(); ++i) {
if (remote_candidates_[i].IsEquivalent(candidate)) {
return true;
}
}
return false;
}
// Maintain our remote candidate list, adding this new remote one.
void P2PTransportChannel::RememberRemoteCandidate(
const Candidate& remote_candidate, PortInterface* origin_port) {
// Remove any candidates whose generation is older than this one. The
// presence of a new generation indicates that the old ones are not useful.
uint32 i = 0;
while (i < remote_candidates_.size()) {
if (remote_candidates_[i].generation() < remote_candidate.generation()) {
LOG(INFO) << "Pruning candidate from old generation: "
<< remote_candidates_[i].address().ToSensitiveString();
remote_candidates_.erase(remote_candidates_.begin() + i);
} else {
i += 1;
}
}
// Make sure this candidate is not a duplicate.
if (IsDuplicateRemoteCandidate(remote_candidate)) {
LOG(INFO) << "Duplicate candidate: " << remote_candidate.ToString();
return;
}
// Try this candidate for all future ports.
remote_candidates_.push_back(RemoteCandidate(remote_candidate, origin_port));
}
// Set options on ourselves is simply setting options on all of our available
// port objects.
int P2PTransportChannel::SetOption(talk_base::Socket::Option opt, int value) {
OptionMap::iterator it = options_.find(opt);
if (it == options_.end()) {
options_.insert(std::make_pair(opt, value));
} else if (it->second == value) {
return 0;
} else {
it->second = value;
}
for (uint32 i = 0; i < ports_.size(); ++i) {
int val = ports_[i]->SetOption(opt, value);
if (val < 0) {
// Because this also occurs deferred, probably no point in reporting an
// error
LOG(WARNING) << "SetOption(" << opt << ", " << value << ") failed: "
<< ports_[i]->GetError();
}
}
return 0;
}
// Send data to the other side, using our best connection.
int P2PTransportChannel::SendPacket(const char *data, size_t len,
const talk_base::PacketOptions& options,
int flags) {
ASSERT(worker_thread_ == talk_base::Thread::Current());
if (flags != 0) {
error_ = EINVAL;
return -1;
}
if (best_connection_ == NULL) {
error_ = EWOULDBLOCK;
return -1;
}
int sent = best_connection_->Send(data, len, options);
if (sent <= 0) {
ASSERT(sent < 0);
error_ = best_connection_->GetError();
}
return sent;
}
bool P2PTransportChannel::GetStats(ConnectionInfos *infos) {
ASSERT(worker_thread_ == talk_base::Thread::Current());
// Gather connection infos.
infos->clear();
std::vector<Connection *>::const_iterator it;
for (it = connections_.begin(); it != connections_.end(); ++it) {
Connection *connection = *it;
ConnectionInfo info;
info.best_connection = (best_connection_ == connection);
info.readable =
(connection->read_state() == Connection::STATE_READABLE);
info.writable =
(connection->write_state() == Connection::STATE_WRITABLE);
info.timeout =
(connection->write_state() == Connection::STATE_WRITE_TIMEOUT);
info.new_connection = !connection->reported();
connection->set_reported(true);
info.rtt = connection->rtt();
info.sent_total_bytes = connection->sent_total_bytes();
info.sent_bytes_second = connection->sent_bytes_second();
info.recv_total_bytes = connection->recv_total_bytes();
info.recv_bytes_second = connection->recv_bytes_second();
info.local_candidate = connection->local_candidate();
info.remote_candidate = connection->remote_candidate();
info.key = connection;
infos->push_back(info);
}
return true;
}
talk_base::DiffServCodePoint P2PTransportChannel::DefaultDscpValue() const {
OptionMap::const_iterator it = options_.find(talk_base::Socket::OPT_DSCP);
if (it == options_.end()) {
return talk_base::DSCP_NO_CHANGE;
}
return static_cast<talk_base::DiffServCodePoint> (it->second);
}
// Begin allocate (or immediately re-allocate, if MSG_ALLOCATE pending)
void P2PTransportChannel::Allocate() {
// Time for a new allocator, lets make sure we have a signalling channel
// to communicate candidates through first.
waiting_for_signaling_ = true;
SignalRequestSignaling(this);
}
// Monitor connection states.
void P2PTransportChannel::UpdateConnectionStates() {
uint32 now = talk_base::Time();
// We need to copy the list of connections since some may delete themselves
// when we call UpdateState.
for (uint32 i = 0; i < connections_.size(); ++i)
connections_[i]->UpdateState(now);
}
// Prepare for best candidate sorting.
void P2PTransportChannel::RequestSort() {
if (!sort_dirty_) {
worker_thread_->Post(this, MSG_SORT);
sort_dirty_ = true;
}
}
// Sort the available connections to find the best one. We also monitor
// the number of available connections and the current state.
void P2PTransportChannel::SortConnections() {
ASSERT(worker_thread_ == talk_base::Thread::Current());
// Make sure the connection states are up-to-date since this affects how they
// will be sorted.
UpdateConnectionStates();
if (protocol_type_ == ICEPROTO_HYBRID) {
// If we are in hybrid mode, we are not sending any ping requests, so there
// is no point in sorting the connections. In hybrid state, ports can have
// different protocol than hybrid and protocol may differ from one another.
// Instead just update the state of this channel
UpdateChannelState();
return;
}
// Any changes after this point will require a re-sort.
sort_dirty_ = false;
// Get a list of the networks that we are using.
std::set<talk_base::Network*> networks;
for (uint32 i = 0; i < connections_.size(); ++i)
networks.insert(connections_[i]->port()->Network());
// Find the best alternative connection by sorting. It is important to note
// that amongst equal preference, writable connections, this will choose the
// one whose estimated latency is lowest. So it is the only one that we
// need to consider switching to.
ConnectionCompare cmp;
std::stable_sort(connections_.begin(), connections_.end(), cmp);
LOG(LS_VERBOSE) << "Sorting available connections:";
for (uint32 i = 0; i < connections_.size(); ++i) {
LOG(LS_VERBOSE) << connections_[i]->ToString();
}
Connection* top_connection = NULL;
if (connections_.size() > 0)
top_connection = connections_[0];
// We don't want to pick the best connections if channel is using RFC5245
// and it's mode is CONTROLLED, as connections will be selected by the
// CONTROLLING agent.
// If necessary, switch to the new choice.
if (protocol_type_ != ICEPROTO_RFC5245 || ice_role_ == ICEROLE_CONTROLLING) {
if (ShouldSwitch(best_connection_, top_connection))
SwitchBestConnectionTo(top_connection);
}
// We can prune any connection for which there is a writable connection on
// the same network with better or equal priority. We leave those with
// better priority just in case they become writable later (at which point,
// we would prune out the current best connection). We leave connections on
// other networks because they may not be using the same resources and they
// may represent very distinct paths over which we can switch.
std::set<talk_base::Network*>::iterator network;
for (network = networks.begin(); network != networks.end(); ++network) {
Connection* primier = GetBestConnectionOnNetwork(*network);
if (!primier || (primier->write_state() != Connection::STATE_WRITABLE))
continue;
for (uint32 i = 0; i < connections_.size(); ++i) {
if ((connections_[i] != primier) &&
(connections_[i]->port()->Network() == *network) &&
(CompareConnectionCandidates(primier, connections_[i]) >= 0)) {
connections_[i]->Prune();
}
}
}
// Check if all connections are timedout.
bool all_connections_timedout = true;
for (uint32 i = 0; i < connections_.size(); ++i) {
if (connections_[i]->write_state() != Connection::STATE_WRITE_TIMEOUT) {
all_connections_timedout = false;
break;
}
}
// Now update the writable state of the channel with the information we have
// so far.
if (best_connection_ && best_connection_->writable()) {
HandleWritable();
} else if (all_connections_timedout) {
HandleAllTimedOut();
} else {
HandleNotWritable();
}
// Update the state of this channel. This method is called whenever the
// state of any connection changes, so this is a good place to do this.
UpdateChannelState();
}
// Track the best connection, and let listeners know
void P2PTransportChannel::SwitchBestConnectionTo(Connection* conn) {
// Note: if conn is NULL, the previous best_connection_ has been destroyed,
// so don't use it.
Connection* old_best_connection = best_connection_;
best_connection_ = conn;
if (best_connection_) {
if (old_best_connection) {
LOG_J(LS_INFO, this) << "Previous best connection: "
<< old_best_connection->ToString();
}
LOG_J(LS_INFO, this) << "New best connection: "
<< best_connection_->ToString();
SignalRouteChange(this, best_connection_->remote_candidate());
} else {
LOG_J(LS_INFO, this) << "No best connection";
}
}
void P2PTransportChannel::UpdateChannelState() {
// The Handle* functions already set the writable state. We'll just double-
// check it here.
bool writable = ((best_connection_ != NULL) &&
(best_connection_->write_state() ==
Connection::STATE_WRITABLE));
ASSERT(writable == this->writable());
if (writable != this->writable())
LOG(LS_ERROR) << "UpdateChannelState: writable state mismatch";
bool readable = false;
for (uint32 i = 0; i < connections_.size(); ++i) {
if (connections_[i]->read_state() == Connection::STATE_READABLE) {
readable = true;
break;
}
}
set_readable(readable);
}
// We checked the status of our connections and we had at least one that
// was writable, go into the writable state.
void P2PTransportChannel::HandleWritable() {
ASSERT(worker_thread_ == talk_base::Thread::Current());
if (!writable()) {
for (uint32 i = 0; i < allocator_sessions_.size(); ++i) {
if (allocator_sessions_[i]->IsGettingPorts()) {
allocator_sessions_[i]->StopGettingPorts();
}
}
}
was_writable_ = true;
set_writable(true);
}
// Notify upper layer about channel not writable state, if it was before.
void P2PTransportChannel::HandleNotWritable() {
ASSERT(worker_thread_ == talk_base::Thread::Current());
if (was_writable_) {
was_writable_ = false;
set_writable(false);
}
}
void P2PTransportChannel::HandleAllTimedOut() {
// Currently we are treating this as channel not writable.
HandleNotWritable();
}
// If we have a best connection, return it, otherwise return top one in the
// list (later we will mark it best).
Connection* P2PTransportChannel::GetBestConnectionOnNetwork(
talk_base::Network* network) {
// If the best connection is on this network, then it wins.
if (best_connection_ && (best_connection_->port()->Network() == network))
return best_connection_;
// Otherwise, we return the top-most in sorted order.
for (uint32 i = 0; i < connections_.size(); ++i) {
if (connections_[i]->port()->Network() == network)
return connections_[i];
}
return NULL;
}
// Handle any queued up requests
void P2PTransportChannel::OnMessage(talk_base::Message *pmsg) {
switch (pmsg->message_id) {
case MSG_SORT:
OnSort();
break;
case MSG_PING:
OnPing();
break;
default:
ASSERT(false);
break;
}
}
// Handle queued up sort request
void P2PTransportChannel::OnSort() {
// Resort the connections based on the new statistics.
SortConnections();
}
// Handle queued up ping request
void P2PTransportChannel::OnPing() {
// Make sure the states of the connections are up-to-date (since this affects
// which ones are pingable).
UpdateConnectionStates();
// Find the oldest pingable connection and have it do a ping.
Connection* conn = FindNextPingableConnection();
if (conn)
PingConnection(conn);
// Post ourselves a message to perform the next ping.
uint32 delay = writable() ? WRITABLE_DELAY : UNWRITABLE_DELAY;
thread()->PostDelayed(delay, this, MSG_PING);
}
// Is the connection in a state for us to even consider pinging the other side?
bool P2PTransportChannel::IsPingable(Connection* conn) {
// An unconnected connection cannot be written to at all, so pinging is out
// of the question.
if (!conn->connected())
return false;
if (writable()) {
// If we are writable, then we only want to ping connections that could be
// better than this one, i.e., the ones that were not pruned.
return (conn->write_state() != Connection::STATE_WRITE_TIMEOUT);
} else {
// If we are not writable, then we need to try everything that might work.
// This includes both connections that do not have write timeout as well as
// ones that do not have read timeout. A connection could be readable but
// be in write-timeout if we pruned it before. Since the other side is
// still pinging it, it very well might still work.
return (conn->write_state() != Connection::STATE_WRITE_TIMEOUT) ||
(conn->read_state() != Connection::STATE_READ_TIMEOUT);
}
}
// Returns the next pingable connection to ping. This will be the oldest
// pingable connection unless we have a writable connection that is past the
// maximum acceptable ping delay.
Connection* P2PTransportChannel::FindNextPingableConnection() {
uint32 now = talk_base::Time();
if (best_connection_ &&
(best_connection_->write_state() == Connection::STATE_WRITABLE) &&
(best_connection_->last_ping_sent()
+ MAX_CURRENT_WRITABLE_DELAY <= now)) {
return best_connection_;
}
Connection* oldest_conn = NULL;
uint32 oldest_time = 0xFFFFFFFF;
for (uint32 i = 0; i < connections_.size(); ++i) {
if (IsPingable(connections_[i])) {
if (connections_[i]->last_ping_sent() < oldest_time) {
oldest_time = connections_[i]->last_ping_sent();
oldest_conn = connections_[i];
}
}
}
return oldest_conn;
}
// Apart from sending ping from |conn| this method also updates
// |use_candidate_attr| flag. The criteria to update this flag is
// explained below.
// Set USE-CANDIDATE if doing ICE AND this channel is in CONTROLLING AND
// a) Channel is in FULL ICE AND
// a.1) |conn| is the best connection OR
// a.2) there is no best connection OR
// a.3) the best connection is unwritable OR
// a.4) |conn| has higher priority than best_connection.
// b) we're doing LITE ICE AND
// b.1) |conn| is the best_connection AND
// b.2) |conn| is writable.
void P2PTransportChannel::PingConnection(Connection* conn) {
bool use_candidate = false;
if (protocol_type_ == ICEPROTO_RFC5245) {
if (remote_ice_mode_ == ICEMODE_FULL && ice_role_ == ICEROLE_CONTROLLING) {
use_candidate = (conn == best_connection_) ||
(best_connection_ == NULL) ||
(!best_connection_->writable()) ||
(conn->priority() > best_connection_->priority());
} else if (remote_ice_mode_ == ICEMODE_LITE && conn == best_connection_) {
use_candidate = best_connection_->writable();
}
}
conn->set_use_candidate_attr(use_candidate);
conn->Ping(talk_base::Time());
}
// When a connection's state changes, we need to figure out who to use as
// the best connection again. It could have become usable, or become unusable.
void P2PTransportChannel::OnConnectionStateChange(Connection* connection) {
ASSERT(worker_thread_ == talk_base::Thread::Current());
// Update the best connection if the state change is from pending best
// connection and role is controlled.
if (protocol_type_ == ICEPROTO_RFC5245 && ice_role_ == ICEROLE_CONTROLLED) {
if (connection == pending_best_connection_ && connection->writable()) {
pending_best_connection_ = NULL;
SwitchBestConnectionTo(connection);
}
}
// We have to unroll the stack before doing this because we may be changing
// the state of connections while sorting.
RequestSort();
}
// When a connection is removed, edit it out, and then update our best
// connection.
void P2PTransportChannel::OnConnectionDestroyed(Connection* connection) {
ASSERT(worker_thread_ == talk_base::Thread::Current());
// Note: the previous best_connection_ may be destroyed by now, so don't
// use it.
// Remove this connection from the list.
std::vector<Connection*>::iterator iter =
std::find(connections_.begin(), connections_.end(), connection);
ASSERT(iter != connections_.end());
connections_.erase(iter);
LOG_J(LS_INFO, this) << "Removed connection ("
<< static_cast<int>(connections_.size()) << " remaining)";
if (pending_best_connection_ == connection) {
pending_best_connection_ = NULL;
}
// If this is currently the best connection, then we need to pick a new one.
// The call to SortConnections will pick a new one. It looks at the current
// best connection in order to avoid switching between fairly similar ones.
// Since this connection is no longer an option, we can just set best to NULL
// and re-choose a best assuming that there was no best connection.
if (best_connection_ == connection) {
SwitchBestConnectionTo(NULL);
RequestSort();
}
SignalConnectionRemoved(this);
}
// When a port is destroyed remove it from our list of ports to use for
// connection attempts.
void P2PTransportChannel::OnPortDestroyed(PortInterface* port) {
ASSERT(worker_thread_ == talk_base::Thread::Current());
// Remove this port from the list (if we didn't drop it already).
std::vector<PortInterface*>::iterator iter =
std::find(ports_.begin(), ports_.end(), port);
if (iter != ports_.end())
ports_.erase(iter);
LOG(INFO) << "Removed port from p2p socket: "
<< static_cast<int>(ports_.size()) << " remaining";
}
// We data is available, let listeners know
void P2PTransportChannel::OnReadPacket(
Connection *connection, const char *data, size_t len,
const talk_base::PacketTime& packet_time) {
ASSERT(worker_thread_ == talk_base::Thread::Current());
// Do not deliver, if packet doesn't belong to the correct transport channel.
if (!FindConnection(connection))
return;
// Let the client know of an incoming packet
SignalReadPacket(this, data, len, packet_time, 0);
}
void P2PTransportChannel::OnReadyToSend(Connection* connection) {
if (connection == best_connection_ && writable()) {
SignalReadyToSend(this);
}
}
} // namespace cricket
|