1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
|
// Copyright (c) 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/browser_watcher/watcher_metrics_provider_win.h"
#include <limits>
#include <vector>
#include "base/metrics/sparse_histogram.h"
#include "base/process/process_handle.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_piece.h"
#include "base/strings/utf_string_conversions.h"
#include "base/win/registry.h"
namespace browser_watcher {
namespace {
void CompileAsserts() {
// Process ID APIs on Windows talk in DWORDs, whereas for string formatting
// and parsing, this code uses int. In practice there are no process IDs with
// the high bit set on Windows, so there's no danger of overflow if this is
// done consistently.
static_assert(sizeof(DWORD) == sizeof(int),
"process ids are expected to be no larger than int");
}
// This function does soft matching on the PID recorded in the key only.
// Due to PID reuse, the possibility exists that the process that's now live
// with the given PID is not the same process the data was recorded for.
// This doesn't matter for the purpose, as eventually the data will be
// scavenged and reported.
bool IsDeadProcess(base::StringPiece16 key_or_value_name) {
// Truncate the input string to the first occurrence of '-', if one exists.
size_t num_end = key_or_value_name.find(L'-');
if (num_end != base::StringPiece16::npos)
key_or_value_name = key_or_value_name.substr(0, num_end);
// Convert to the numeric PID.
int pid = 0;
if (!base::StringToInt(key_or_value_name, &pid) || pid == 0)
return true;
// This is a very inexpensive check for the common case of our own PID.
if (static_cast<base::ProcessId>(pid) == base::GetCurrentProcId())
return false;
// The process is not our own - see whether a process with this PID exists.
// This is more expensive than the above check, but should also be very rare,
// as this only happens more than once for a given PID if a user is running
// multiple Chrome instances concurrently.
base::ProcessHandle process = base::kNullProcessHandle;
if (base::OpenProcessHandle(static_cast<base::ProcessId>(pid), &process)) {
base::CloseProcessHandle(process);
// The fact that it was possible to open the process says it's live.
return false;
}
return true;
}
void RecordExitCodes(const base::string16& registry_path) {
base::win::RegKey regkey(HKEY_CURRENT_USER,
registry_path.c_str(),
KEY_QUERY_VALUE | KEY_SET_VALUE);
if (!regkey.Valid())
return;
size_t num = regkey.GetValueCount();
if (num == 0)
return;
std::vector<base::string16> to_delete;
// Record the exit codes in a sparse stability histogram, as the range of
// values used to report failures is large.
base::HistogramBase* exit_code_histogram =
base::SparseHistogram::FactoryGet(
WatcherMetricsProviderWin::kBrowserExitCodeHistogramName,
base::HistogramBase::kUmaStabilityHistogramFlag);
for (size_t i = 0; i < num; ++i) {
base::string16 name;
if (regkey.GetValueNameAt(static_cast<int>(i), &name) == ERROR_SUCCESS) {
DWORD exit_code = 0;
if (regkey.ReadValueDW(name.c_str(), &exit_code) == ERROR_SUCCESS) {
// Do not report exit codes for processes that are still live,
// notably for our own process.
if (exit_code != STILL_ACTIVE || IsDeadProcess(name)) {
to_delete.push_back(name);
exit_code_histogram->Add(exit_code);
}
}
}
}
// Delete the values reported above.
for (size_t i = 0; i < to_delete.size(); ++i)
regkey.DeleteValue(to_delete[i].c_str());
}
void ReadSingleExitFunnel(
base::win::RegKey* parent_key, const base::char16* name,
std::vector<std::pair<base::string16, int64>>* events_out) {
DCHECK(parent_key);
DCHECK(name);
DCHECK(events_out);
base::win::RegKey regkey(parent_key->Handle(), name, KEY_READ | KEY_WRITE);
if (!regkey.Valid())
return;
// Exit early if no work to do.
size_t num = regkey.GetValueCount();
if (num == 0)
return;
// Enumerate the recorded events for this process for processing.
std::vector<std::pair<base::string16, int64>> events;
for (size_t i = 0; i < num; ++i) {
base::string16 event_name;
LONG res = regkey.GetValueNameAt(static_cast<int>(i), &event_name);
if (res == ERROR_SUCCESS) {
int64 event_time = 0;
res = regkey.ReadInt64(event_name.c_str(), &event_time);
if (res == ERROR_SUCCESS)
events.push_back(std::make_pair(event_name, event_time));
}
}
// Attempt to delete the values before reporting anything.
// Exit if this fails to make sure there is no double-reporting on e.g.
// permission problems or other corruption.
for (size_t i = 0; i < events.size(); ++i) {
const base::string16& event_name = events[i].first;
LONG res = regkey.DeleteValue(event_name.c_str());
if (res != ERROR_SUCCESS) {
LOG(ERROR) << "Failed to delete value " << event_name;
return;
}
}
events_out->swap(events);
}
void MaybeRecordSingleExitFunnel(base::win::RegKey* parent_key,
const base::char16* name,
bool report) {
std::vector<std::pair<base::string16, int64>> events;
ReadSingleExitFunnel(parent_key, name, &events);
if (!report)
return;
// Find the earliest event time.
int64 min_time = std::numeric_limits<int64>::max();
for (size_t i = 0; i < events.size(); ++i)
min_time = std::min(min_time, events[i].second);
// Record the exit funnel event times in a sparse stability histogram.
for (size_t i = 0; i < events.size(); ++i) {
std::string histogram_name(
WatcherMetricsProviderWin::kExitFunnelHistogramPrefix);
histogram_name.append(base::WideToUTF8(events[i].first));
base::TimeDelta event_time =
base::Time::FromInternalValue(events[i].second) -
base::Time::FromInternalValue(min_time);
base::HistogramBase* histogram =
base::SparseHistogram::FactoryGet(
histogram_name.c_str(),
base::HistogramBase::kUmaStabilityHistogramFlag);
// Record the time rounded up to the nearest millisecond.
histogram->Add(event_time.InMillisecondsRoundedUp());
}
}
void MaybeRecordExitFunnels(const base::string16& registry_path, bool report) {
base::win::RegistryKeyIterator it(HKEY_CURRENT_USER, registry_path.c_str());
if (!it.Valid())
return;
// Exit early if no work to do.
if (it.SubkeyCount() == 0)
return;
// Open the key we use for deletion preemptively to prevent reporting
// multiple times on permission problems.
base::win::RegKey key(HKEY_CURRENT_USER,
registry_path.c_str(),
KEY_QUERY_VALUE);
if (!key.Valid()) {
LOG(ERROR) << "Failed to open " << registry_path << " for writing.";
return;
}
std::vector<base::string16> to_delete;
for (; it.Valid(); ++it) {
// Defer reporting on still-live processes.
if (IsDeadProcess(it.Name())) {
MaybeRecordSingleExitFunnel(&key, it.Name(), report);
to_delete.push_back(it.Name());
}
}
for (size_t i = 0; i < to_delete.size(); ++i) {
LONG res = key.DeleteEmptyKey(to_delete[i].c_str());
if (res != ERROR_SUCCESS)
LOG(ERROR) << "Failed to delete key " << to_delete[i];
}
}
} // namespace
const char WatcherMetricsProviderWin::kBrowserExitCodeHistogramName[] =
"Stability.BrowserExitCodes";
const char WatcherMetricsProviderWin::kExitFunnelHistogramPrefix[] =
"Stability.ExitFunnel.";
WatcherMetricsProviderWin::WatcherMetricsProviderWin(
const base::char16* registry_path, bool report_exit_funnels) :
registry_path_(registry_path),
report_exit_funnels_(report_exit_funnels) {
}
WatcherMetricsProviderWin::~WatcherMetricsProviderWin() {
}
void WatcherMetricsProviderWin::ProvideStabilityMetrics(
metrics::SystemProfileProto* /* system_profile_proto */) {
// Note that if there are multiple instances of Chrome running in the same
// user account, there's a small race that will double-report the exit codes
// from both/multiple instances. This ought to be vanishingly rare and will
// only manifest as low-level "random" noise. To work around this it would be
// necessary to implement some form of global locking, which is not worth it
// here.
RecordExitCodes(registry_path_);
MaybeRecordExitFunnels(registry_path_, report_exit_funnels_);
}
} // namespace browser_watcher
|