1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
|
// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "content/browser/media/capture/video_capture_oracle.h"
#include <algorithm>
#include "base/debug/trace_event.h"
#include "base/format_macros.h"
#include "base/strings/stringprintf.h"
namespace content {
namespace {
// This value controls how many redundant, timer-base captures occur when the
// content is static. Redundantly capturing the same frame allows iterative
// quality enhancement, and also allows the buffer to fill in "buffered mode".
//
// TODO(nick): Controlling this here is a hack and a layering violation, since
// it's a strategy specific to the WebRTC consumer, and probably just papers
// over some frame dropping and quality bugs. It should either be controlled at
// a higher level, or else redundant frame generation should be pushed down
// further into the WebRTC encoding stack.
const int kNumRedundantCapturesOfStaticContent = 200;
// These specify the minimum/maximum amount of recent event history to examine
// to detect animated content. If the values are too low, there is a greater
// risk of false-positive detections and low accuracy. If they are too high,
// the the implementation will be slow to lock-in/out, and also will not react
// well to mildly-variable frame rate content (e.g., 25 +/- 1 FPS).
//
// These values were established by experimenting with a wide variety of
// scenarios, including 24/25/30 FPS videos, 60 FPS WebGL demos, and the
// transitions between static and animated content.
const int kMinObservationWindowMillis = 1000;
const int kMaxObservationWindowMillis = 2000;
// The maximum amount of time that can elapse before declaring two subsequent
// events as "not animating." This is the same value found in
// cc::FrameRateCounter.
const int kNonAnimatingThresholdMillis = 250; // 4 FPS
// The slowest that content can be animating in order for AnimatedContentSampler
// to lock-in. This is the threshold at which the "smoothness" problem is no
// longer relevant.
const int kMaxLockInPeriodMicros = 83333; // 12 FPS
// The amount of time over which to fully correct the drift of the rewritten
// frame timestamps from the presentation event timestamps. The lower the
// value, the higher the variance in frame timestamps.
const int kDriftCorrectionMillis = 2000;
// Given the amount of time between frames, compare to the expected amount of
// time between frames at |frame_rate| and return the fractional difference.
double FractionFromExpectedFrameRate(base::TimeDelta delta, int frame_rate) {
DCHECK_GT(frame_rate, 0);
const base::TimeDelta expected_delta =
base::TimeDelta::FromSeconds(1) / frame_rate;
return (delta - expected_delta).InMillisecondsF() /
expected_delta.InMillisecondsF();
}
} // anonymous namespace
VideoCaptureOracle::VideoCaptureOracle(base::TimeDelta min_capture_period,
bool events_are_reliable)
: frame_number_(0),
last_delivered_frame_number_(-1),
smoothing_sampler_(min_capture_period,
events_are_reliable,
kNumRedundantCapturesOfStaticContent),
content_sampler_(min_capture_period) {
}
VideoCaptureOracle::~VideoCaptureOracle() {}
bool VideoCaptureOracle::ObserveEventAndDecideCapture(
Event event,
const gfx::Rect& damage_rect,
base::TimeTicks event_time) {
DCHECK_GE(event, 0);
DCHECK_LT(event, kNumEvents);
if (event_time < last_event_time_[event]) {
LOG(WARNING) << "Event time is not monotonically non-decreasing. "
<< "Deciding not to capture this frame.";
return false;
}
last_event_time_[event] = event_time;
bool should_sample;
switch (event) {
case kCompositorUpdate:
case kSoftwarePaint:
smoothing_sampler_.ConsiderPresentationEvent(event_time);
content_sampler_.ConsiderPresentationEvent(damage_rect, event_time);
if (content_sampler_.HasProposal()) {
should_sample = content_sampler_.ShouldSample();
if (should_sample)
event_time = content_sampler_.frame_timestamp();
} else {
should_sample = smoothing_sampler_.ShouldSample();
}
break;
default:
should_sample = smoothing_sampler_.IsOverdueForSamplingAt(event_time);
break;
}
SetFrameTimestamp(frame_number_, event_time);
return should_sample;
}
int VideoCaptureOracle::RecordCapture() {
smoothing_sampler_.RecordSample();
content_sampler_.RecordSample(GetFrameTimestamp(frame_number_));
return frame_number_++;
}
bool VideoCaptureOracle::CompleteCapture(int frame_number,
base::TimeTicks* frame_timestamp) {
// Drop frame if previous frame number is higher.
if (last_delivered_frame_number_ > frame_number) {
LOG(WARNING) << "Out of order frame delivery detected. Dropping frame.";
return false;
}
last_delivered_frame_number_ = frame_number;
*frame_timestamp = GetFrameTimestamp(frame_number);
// If enabled, log a measurement of how this frame timestamp has incremented
// in relation to an ideal increment.
if (VLOG_IS_ON(2) && frame_number > 0) {
const base::TimeDelta delta =
*frame_timestamp - GetFrameTimestamp(frame_number - 1);
if (content_sampler_.HasProposal()) {
const double estimated_frame_rate =
1000000.0 / content_sampler_.detected_period().InMicroseconds();
const int rounded_frame_rate =
static_cast<int>(estimated_frame_rate + 0.5);
VLOG(2) << base::StringPrintf(
"Captured #%d: delta=%" PRId64 " usec"
", now locked into {%s}, %+0.1f%% slower than %d FPS",
frame_number,
delta.InMicroseconds(),
content_sampler_.detected_region().ToString().c_str(),
100.0 * FractionFromExpectedFrameRate(delta, rounded_frame_rate),
rounded_frame_rate);
} else {
VLOG(2) << base::StringPrintf(
"Captured #%d: delta=%" PRId64 " usec"
", d/30fps=%+0.1f%%, d/25fps=%+0.1f%%, d/24fps=%+0.1f%%",
frame_number,
delta.InMicroseconds(),
100.0 * FractionFromExpectedFrameRate(delta, 30),
100.0 * FractionFromExpectedFrameRate(delta, 25),
100.0 * FractionFromExpectedFrameRate(delta, 24));
}
}
return !frame_timestamp->is_null();
}
base::TimeTicks VideoCaptureOracle::GetFrameTimestamp(int frame_number) const {
DCHECK_LE(frame_number, frame_number_);
DCHECK_LT(frame_number_ - frame_number, kMaxFrameTimestamps);
return frame_timestamps_[frame_number % kMaxFrameTimestamps];
}
void VideoCaptureOracle::SetFrameTimestamp(int frame_number,
base::TimeTicks timestamp) {
frame_timestamps_[frame_number % kMaxFrameTimestamps] = timestamp;
}
SmoothEventSampler::SmoothEventSampler(base::TimeDelta min_capture_period,
bool events_are_reliable,
int redundant_capture_goal)
: events_are_reliable_(events_are_reliable),
min_capture_period_(min_capture_period),
redundant_capture_goal_(redundant_capture_goal),
token_bucket_capacity_(min_capture_period + min_capture_period / 2),
overdue_sample_count_(0),
token_bucket_(token_bucket_capacity_) {
DCHECK_GT(min_capture_period_.InMicroseconds(), 0);
}
void SmoothEventSampler::ConsiderPresentationEvent(base::TimeTicks event_time) {
DCHECK(!event_time.is_null());
// Add tokens to the bucket based on advancement in time. Then, re-bound the
// number of tokens in the bucket. Overflow occurs when there is too much
// time between events (a common case), or when RecordSample() is not being
// called often enough (a bug). On the other hand, if RecordSample() is being
// called too often (e.g., as a reaction to IsOverdueForSamplingAt()), the
// bucket will underflow.
if (!current_event_.is_null()) {
if (current_event_ < event_time) {
token_bucket_ += event_time - current_event_;
if (token_bucket_ > token_bucket_capacity_)
token_bucket_ = token_bucket_capacity_;
}
TRACE_COUNTER1("mirroring",
"MirroringTokenBucketUsec",
std::max<int64>(0, token_bucket_.InMicroseconds()));
}
current_event_ = event_time;
}
bool SmoothEventSampler::ShouldSample() const {
return token_bucket_ >= min_capture_period_;
}
void SmoothEventSampler::RecordSample() {
token_bucket_ -= min_capture_period_;
if (token_bucket_ < base::TimeDelta())
token_bucket_ = base::TimeDelta();
TRACE_COUNTER1("mirroring",
"MirroringTokenBucketUsec",
std::max<int64>(0, token_bucket_.InMicroseconds()));
if (HasUnrecordedEvent()) {
last_sample_ = current_event_;
overdue_sample_count_ = 0;
} else {
++overdue_sample_count_;
}
}
bool SmoothEventSampler::IsOverdueForSamplingAt(base::TimeTicks event_time)
const {
DCHECK(!event_time.is_null());
// If we don't get events on compositor updates on this platform, then we
// don't reliably know whether we're dirty.
if (events_are_reliable_) {
if (!HasUnrecordedEvent() &&
overdue_sample_count_ >= redundant_capture_goal_) {
return false; // Not dirty.
}
}
if (last_sample_.is_null())
return true;
// If we're dirty but not yet old, then we've recently gotten updates, so we
// won't request a sample just yet.
base::TimeDelta dirty_interval = event_time - last_sample_;
return dirty_interval >=
base::TimeDelta::FromMilliseconds(kNonAnimatingThresholdMillis);
}
bool SmoothEventSampler::HasUnrecordedEvent() const {
return !current_event_.is_null() && current_event_ != last_sample_;
}
AnimatedContentSampler::AnimatedContentSampler(
base::TimeDelta min_capture_period)
: min_capture_period_(min_capture_period) {}
AnimatedContentSampler::~AnimatedContentSampler() {}
void AnimatedContentSampler::ConsiderPresentationEvent(
const gfx::Rect& damage_rect, base::TimeTicks event_time) {
AddObservation(damage_rect, event_time);
if (AnalyzeObservations(event_time, &detected_region_, &detected_period_) &&
detected_period_ > base::TimeDelta() &&
detected_period_ <=
base::TimeDelta::FromMicroseconds(kMaxLockInPeriodMicros)) {
if (damage_rect == detected_region_)
UpdateFrameTimestamp(event_time);
else
frame_timestamp_ = base::TimeTicks();
} else {
detected_region_ = gfx::Rect();
detected_period_ = base::TimeDelta();
frame_timestamp_ = base::TimeTicks();
}
}
bool AnimatedContentSampler::HasProposal() const {
return detected_period_ > base::TimeDelta();
}
bool AnimatedContentSampler::ShouldSample() const {
return !frame_timestamp_.is_null();
}
void AnimatedContentSampler::RecordSample(base::TimeTicks frame_timestamp) {
recorded_frame_timestamp_ =
HasProposal() ? frame_timestamp : base::TimeTicks();
sequence_offset_ = base::TimeDelta();
}
void AnimatedContentSampler::AddObservation(const gfx::Rect& damage_rect,
base::TimeTicks event_time) {
if (damage_rect.IsEmpty())
return; // Useless observation.
// Add the observation to the FIFO queue.
if (!observations_.empty() && observations_.back().event_time > event_time)
return; // The implementation assumes chronological order.
observations_.push_back(Observation(damage_rect, event_time));
// Prune-out old observations.
const base::TimeDelta threshold =
base::TimeDelta::FromMilliseconds(kMaxObservationWindowMillis);
while ((event_time - observations_.front().event_time) > threshold)
observations_.pop_front();
}
gfx::Rect AnimatedContentSampler::ElectMajorityDamageRect() const {
// This is an derivative of the Boyer-Moore Majority Vote Algorithm where each
// pixel in a candidate gets one vote, as opposed to each candidate getting
// one vote.
const gfx::Rect* candidate = NULL;
int64 votes = 0;
for (ObservationFifo::const_iterator i = observations_.begin();
i != observations_.end(); ++i) {
DCHECK_GT(i->damage_rect.size().GetArea(), 0);
if (votes == 0) {
candidate = &(i->damage_rect);
votes = candidate->size().GetArea();
} else if (i->damage_rect == *candidate) {
votes += i->damage_rect.size().GetArea();
} else {
votes -= i->damage_rect.size().GetArea();
if (votes < 0) {
candidate = &(i->damage_rect);
votes = -votes;
}
}
}
return (votes > 0) ? *candidate : gfx::Rect();
}
bool AnimatedContentSampler::AnalyzeObservations(
base::TimeTicks event_time,
gfx::Rect* rect,
base::TimeDelta* period) const {
const gfx::Rect elected_rect = ElectMajorityDamageRect();
if (elected_rect.IsEmpty())
return false; // There is no regular animation present.
// Scan |observations_|, gathering metrics about the ones having a damage Rect
// equivalent to the |elected_rect|. Along the way, break early whenever the
// event times reveal a non-animating period.
int64 num_pixels_damaged_in_all = 0;
int64 num_pixels_damaged_in_chosen = 0;
base::TimeDelta sum_frame_durations;
size_t count_frame_durations = 0;
base::TimeTicks first_event_time;
base::TimeTicks last_event_time;
for (ObservationFifo::const_reverse_iterator i = observations_.rbegin();
i != observations_.rend(); ++i) {
const int area = i->damage_rect.size().GetArea();
num_pixels_damaged_in_all += area;
if (i->damage_rect != elected_rect)
continue;
num_pixels_damaged_in_chosen += area;
if (last_event_time.is_null()) {
last_event_time = i->event_time;
if ((event_time - last_event_time) >=
base::TimeDelta::FromMilliseconds(kNonAnimatingThresholdMillis)) {
return false; // Content animation has recently ended.
}
} else {
const base::TimeDelta frame_duration = first_event_time - i->event_time;
if (frame_duration >=
base::TimeDelta::FromMilliseconds(kNonAnimatingThresholdMillis)) {
break; // Content not animating before this point.
}
sum_frame_durations += frame_duration;
++count_frame_durations;
}
first_event_time = i->event_time;
}
if ((last_event_time - first_event_time) <
base::TimeDelta::FromMilliseconds(kMinObservationWindowMillis)) {
return false; // Content has not animated for long enough for accuracy.
}
if (num_pixels_damaged_in_chosen <= (num_pixels_damaged_in_all * 2 / 3))
return false; // Animation is not damaging a supermajority of pixels.
*rect = elected_rect;
DCHECK_GT(count_frame_durations, 0u);
*period = sum_frame_durations / count_frame_durations;
return true;
}
void AnimatedContentSampler::UpdateFrameTimestamp(base::TimeTicks event_time) {
// This is how much time to advance from the last frame timestamp. Never
// advance by less than |min_capture_period_| because the downstream consumer
// cannot handle the higher frame rate. If |detected_period_| is less than
// |min_capture_period_|, excess frames should be dropped.
const base::TimeDelta advancement =
std::max(detected_period_, min_capture_period_);
// Compute the |timebase| upon which to determine the |frame_timestamp_|.
// Ideally, this would always equal the timestamp of the last recorded frame
// sampling. Determine how much drift from the ideal is present, then adjust
// the timebase by a small amount to spread out the entire correction over
// many frame timestamps.
//
// This accounts for two main sources of drift: 1) The clock drift of the
// system clock relative to the video hardware, which affects the event times;
// and 2) The small error introduced by this frame timestamp rewriting, as it
// is based on averaging over recent events.
base::TimeTicks timebase = event_time - sequence_offset_ - advancement;
if (!recorded_frame_timestamp_.is_null()) {
const base::TimeDelta drift = recorded_frame_timestamp_ - timebase;
const int64 correct_over_num_frames =
base::TimeDelta::FromMilliseconds(kDriftCorrectionMillis) /
detected_period_;
DCHECK_GT(correct_over_num_frames, 0);
timebase = recorded_frame_timestamp_ - (drift / correct_over_num_frames);
}
// Compute |frame_timestamp_|. Whenever |detected_period_| is less than
// |min_capture_period_|, some extra time is "borrowed" to be able to advance
// by the full |min_capture_period_|. Then, whenever the total amount of
// borrowed time reaches a full |min_capture_period_|, drop a frame. Note
// that when |detected_period_| is greater or equal to |min_capture_period_|,
// this logic is effectively disabled.
borrowed_time_ += advancement - detected_period_;
if (borrowed_time_ >= min_capture_period_) {
borrowed_time_ -= min_capture_period_;
frame_timestamp_ = base::TimeTicks();
} else {
sequence_offset_ += advancement;
frame_timestamp_ = timebase + sequence_offset_;
}
}
} // namespace content
|