1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
|
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef MOJO_EDK_SYSTEM_MEMORY_H_
#define MOJO_EDK_SYSTEM_MEMORY_H_
#include <stddef.h>
#include <stdint.h>
#include <string.h> // For |memcpy()|.
#include "base/macros.h"
#include "base/memory/scoped_ptr.h"
#include "mojo/edk/system/system_impl_export.h"
#include "mojo/public/c/system/macros.h"
namespace mojo {
namespace system {
namespace internal {
// Removes |const| from |T| (available as |remove_const<T>::type|):
// TODO(vtl): Remove these once we have the C++11 |remove_const|.
template <typename T>
struct remove_const {
typedef T type;
};
template <typename T>
struct remove_const<const T> {
typedef T type;
};
// Yields |(const) char| if |T| is |(const) void|, else |T|:
template <typename T>
struct VoidToChar {
typedef T type;
};
template <>
struct VoidToChar<void> {
typedef char type;
};
template <>
struct VoidToChar<const void> {
typedef const char type;
};
// Checks (insofar as appropriate/possible) that |pointer| is a valid pointer to
// a buffer of the given size and alignment (both in bytes).
template <size_t size, size_t alignment>
void MOJO_SYSTEM_IMPL_EXPORT CheckUserPointer(const void* pointer);
// Checks (insofar as appropriate/possible) that |pointer| is a valid pointer to
// a buffer of |count| elements of the given size and alignment (both in bytes).
template <size_t size, size_t alignment>
void MOJO_SYSTEM_IMPL_EXPORT
CheckUserPointerWithCount(const void* pointer, size_t count);
// Checks (insofar as appropriate/possible) that |pointer| is a valid pointer to
// a buffer of the given size and alignment (both in bytes).
template <size_t alignment>
void MOJO_SYSTEM_IMPL_EXPORT
CheckUserPointerWithSize(const void* pointer, size_t size);
} // namespace internal
// Forward declarations so that they can be friended.
template <typename Type>
class UserPointerReader;
template <typename Type>
class UserPointerWriter;
template <typename Type>
class UserPointerReaderWriter;
template <class Options>
class UserOptionsReader;
// Provides a convenient way to implicitly get null |UserPointer<Type>|s.
struct NullUserPointer {};
// Represents a user pointer to a single |Type| (which must be POD), for Mojo
// primitive parameters.
//
// Use a const |Type| for in parameters, and non-const |Type|s for out and
// in-out parameters (in which case the |Put()| method is available).
template <typename Type>
class UserPointer {
private:
typedef typename internal::VoidToChar<Type>::type NonVoidType;
public:
// Instead of explicitly using these constructors, you can often use
// |MakeUserPointer()| (or |NullUserPointer()| for null pointers). (The common
// exception is when you have, e.g., a |char*| and want to get a
// |UserPointer<void>|.)
UserPointer() : pointer_(nullptr) {}
explicit UserPointer(Type* pointer) : pointer_(pointer) {}
// Allow implicit conversion from the "null user pointer".
UserPointer(NullUserPointer) : pointer_(nullptr) {}
~UserPointer() {}
// Allow assignment from the "null user pointer".
UserPointer<Type>& operator=(NullUserPointer) {
pointer_ = nullptr;
return *this;
}
// Allow conversion to a "non-const" |UserPointer|.
operator UserPointer<const Type>() const {
return UserPointer<const Type>(pointer_);
}
bool IsNull() const { return !pointer_; }
// "Reinterpret casts" to a |UserPointer<ToType>|.
template <typename ToType>
UserPointer<ToType> ReinterpretCast() const {
return UserPointer<ToType>(reinterpret_cast<ToType*>(pointer_));
}
// Checks that this pointer points to a valid |Type| in the same way as
// |Get()| and |Put()|.
// TODO(vtl): Logically, there should be separate read checks and write
// checks.
void Check() const {
internal::CheckUserPointer<sizeof(NonVoidType), MOJO_ALIGNOF(NonVoidType)>(
pointer_);
}
// Checks that this pointer points to a valid array (of type |Type|, or just a
// buffer if |Type| is |void| or |const void|) of |count| elements (or bytes
// if |Type| is |void| or |const void|) in the same way as |GetArray()| and
// |PutArray()|.
// TODO(vtl): Logically, there should be separate read checks and write
// checks.
// TODO(vtl): Switch more things to use this.
void CheckArray(size_t count) const {
internal::CheckUserPointerWithCount<sizeof(NonVoidType),
MOJO_ALIGNOF(NonVoidType)>(pointer_,
count);
}
// Gets the value (of type |Type|, or a |char| if |Type| is |void|) pointed to
// by this user pointer. Use this when you'd use the rvalue |*user_pointer|,
// but be aware that this may be costly -- so if the value will be used
// multiple times, you should save it.
//
// (We want to force a copy here, so return |Type| not |const Type&|.)
NonVoidType Get() const {
Check();
internal::CheckUserPointer<sizeof(NonVoidType), MOJO_ALIGNOF(NonVoidType)>(
pointer_);
return *pointer_;
}
// Gets an array (of type |Type|, or just a buffer if |Type| is |void| or
// |const void|) of |count| elements (or bytes if |Type| is |void| or |const
// void|) from the location pointed to by this user pointer. Use this when
// you'd do something like |memcpy(destination, user_pointer, count *
// sizeof(Type)|.
void GetArray(typename internal::remove_const<Type>::type* destination,
size_t count) const {
CheckArray(count);
memcpy(destination, pointer_, count * sizeof(NonVoidType));
}
// Puts a value (of type |Type|, or of type |char| if |Type| is |void|) to the
// location pointed to by this user pointer. Use this when you'd use the
// lvalue |*user_pointer|. Since this may be costly, you should avoid using
// this (for the same user pointer) more than once.
//
// Note: This |Put()| method is not valid when |T| is const, e.g., |const
// uint32_t|, but it's okay to include them so long as this template is only
// implicitly instantiated (see 14.7.1 of the C++11 standard) and not
// explicitly instantiated. (On implicit instantiation, only the declarations
// need be valid, not the definitions.)
//
// In C++11, we could do something like:
// template <typename _Type = Type>
// typename enable_if<!is_const<_Type>::value &&
// !is_void<_Type>::value>::type Put(
// const _Type& value) { ... }
// (which obviously be correct), but C++03 doesn't allow default function
// template arguments.
void Put(const NonVoidType& value) {
Check();
*pointer_ = value;
}
// Puts an array (of type |Type|, or just a buffer if |Type| is |void|) with
// |count| elements (or bytes |Type| is |void|) to the location pointed to by
// this user pointer. Use this when you'd do something like
// |memcpy(user_pointer, source, count * sizeof(Type))|.
//
// Note: The same comments about the validity of |Put()| (except for the part
// about |void|) apply here.
void PutArray(const Type* source, size_t count) {
CheckArray(count);
memcpy(pointer_, source, count * sizeof(NonVoidType));
}
// Gets a |UserPointer| at offset |i| (in |Type|s) relative to this.
UserPointer At(size_t i) const {
return UserPointer(
static_cast<Type*>(static_cast<NonVoidType*>(pointer_) + i));
}
// Gets the value of the |UserPointer| as a |uintptr_t|. This should not be
// casted back to a pointer (and dereferenced), but may be used as a key for
// lookup or passed back to the user.
uintptr_t GetPointerValue() const {
return reinterpret_cast<uintptr_t>(pointer_);
}
// These provides safe (read-only/write-only/read-and-write) access to a
// |UserPointer<Type>| (probably pointing to an array) using just an ordinary
// pointer (obtained via |GetPointer()|).
//
// The memory returned by |GetPointer()| may be a copy of the original user
// memory, but should be modified only if the user is intended to eventually
// see the change.) If any changes are made, |Commit()| should be called to
// guarantee that the changes are written back to user memory (it may be
// called multiple times).
//
// Note: These classes are designed to allow fast, unsafe implementations (in
// which |GetPointer()| just returns the user pointer) if desired. Thus if
// |Commit()| is *not* called, changes may or may not be made visible to the
// user.
//
// Use these classes in the following way:
//
// MojoResult Core::PutFoos(UserPointer<const uint32_t> foos,
// uint32_t num_foos) {
// UserPointer<const uint32_t>::Reader foos_reader(foos, num_foos);
// return PutFoosImpl(foos_reader.GetPointer(), num_foos);
// }
//
// MojoResult Core::GetFoos(UserPointer<uint32_t> foos,
// uint32_t num_foos) {
// UserPointer<uint32_t>::Writer foos_writer(foos, num_foos);
// MojoResult rv = GetFoosImpl(foos.GetPointer(), num_foos);
// foos_writer.Commit();
// return rv;
// }
//
// TODO(vtl): Possibly, since we're not really being safe, we should just not
// copy for Release builds.
typedef UserPointerReader<Type> Reader;
typedef UserPointerWriter<Type> Writer;
typedef UserPointerReaderWriter<Type> ReaderWriter;
private:
friend class UserPointerReader<Type>;
friend class UserPointerReader<const Type>;
friend class UserPointerWriter<Type>;
friend class UserPointerReaderWriter<Type>;
template <class Options>
friend class UserOptionsReader;
Type* pointer_;
// Allow copy and assignment.
};
// Provides a convenient way to make a |UserPointer<Type>|.
template <typename Type>
inline UserPointer<Type> MakeUserPointer(Type* pointer) {
return UserPointer<Type>(pointer);
}
// Implementation of |UserPointer<Type>::Reader|.
template <typename Type>
class UserPointerReader {
private:
typedef typename internal::remove_const<Type>::type TypeNoConst;
public:
// Note: If |count| is zero, |GetPointer()| will always return null.
UserPointerReader(UserPointer<const Type> user_pointer, size_t count) {
Init(user_pointer.pointer_, count, true);
}
UserPointerReader(UserPointer<TypeNoConst> user_pointer, size_t count) {
Init(user_pointer.pointer_, count, true);
}
const Type* GetPointer() const { return buffer_.get(); }
private:
template <class Options>
friend class UserOptionsReader;
struct NoCheck {};
UserPointerReader(NoCheck,
UserPointer<const Type> user_pointer,
size_t count) {
Init(user_pointer.pointer_, count, false);
}
void Init(const Type* user_pointer, size_t count, bool check) {
if (count == 0)
return;
if (check) {
internal::CheckUserPointerWithCount<sizeof(Type), MOJO_ALIGNOF(Type)>(
user_pointer, count);
}
buffer_.reset(new TypeNoConst[count]);
memcpy(buffer_.get(), user_pointer, count * sizeof(Type));
}
scoped_ptr<TypeNoConst[]> buffer_;
DISALLOW_COPY_AND_ASSIGN(UserPointerReader);
};
// Implementation of |UserPointer<Type>::Writer|.
template <typename Type>
class UserPointerWriter {
public:
// Note: If |count| is zero, |GetPointer()| will always return null.
UserPointerWriter(UserPointer<Type> user_pointer, size_t count)
: user_pointer_(user_pointer), count_(count) {
if (count_ > 0) {
buffer_.reset(new Type[count_]);
memset(buffer_.get(), 0, count_ * sizeof(Type));
}
}
Type* GetPointer() const { return buffer_.get(); }
void Commit() {
internal::CheckUserPointerWithCount<sizeof(Type), MOJO_ALIGNOF(Type)>(
user_pointer_.pointer_, count_);
memcpy(user_pointer_.pointer_, buffer_.get(), count_ * sizeof(Type));
}
private:
UserPointer<Type> user_pointer_;
size_t count_;
scoped_ptr<Type[]> buffer_;
DISALLOW_COPY_AND_ASSIGN(UserPointerWriter);
};
// Implementation of |UserPointer<Type>::ReaderWriter|.
template <typename Type>
class UserPointerReaderWriter {
public:
// Note: If |count| is zero, |GetPointer()| will always return null.
UserPointerReaderWriter(UserPointer<Type> user_pointer, size_t count)
: user_pointer_(user_pointer), count_(count) {
if (count_ > 0) {
internal::CheckUserPointerWithCount<sizeof(Type), MOJO_ALIGNOF(Type)>(
user_pointer_.pointer_, count_);
buffer_.reset(new Type[count]);
memcpy(buffer_.get(), user_pointer.pointer_, count * sizeof(Type));
}
}
Type* GetPointer() const { return buffer_.get(); }
size_t GetCount() const { return count_; }
void Commit() {
internal::CheckUserPointerWithCount<sizeof(Type), MOJO_ALIGNOF(Type)>(
user_pointer_.pointer_, count_);
memcpy(user_pointer_.pointer_, buffer_.get(), count_ * sizeof(Type));
}
private:
UserPointer<Type> user_pointer_;
size_t count_;
scoped_ptr<Type[]> buffer_;
DISALLOW_COPY_AND_ASSIGN(UserPointerReaderWriter);
};
} // namespace system
} // namespace mojo
#endif // MOJO_EDK_SYSTEM_MEMORY_H_
|