1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
|
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "config.h"
#include "platform/animation/TimingFunction.h"
#include "wtf/MathExtras.h"
namespace blink {
String LinearTimingFunction::toString() const
{
return "linear";
}
double LinearTimingFunction::evaluate(double fraction, double) const
{
return fraction;
}
void LinearTimingFunction::range(double* minValue, double* maxValue) const
{
}
String CubicBezierTimingFunction::toString() const
{
switch (this->subType()) {
case CubicBezierTimingFunction::Ease:
return "ease";
case CubicBezierTimingFunction::EaseIn:
return "ease-in";
case CubicBezierTimingFunction::EaseOut:
return "ease-out";
case CubicBezierTimingFunction::EaseInOut:
return "ease-in-out";
case CubicBezierTimingFunction::Custom:
return "cubic-bezier(" + String::numberToStringECMAScript(this->x1()) + ", " +
String::numberToStringECMAScript(this->y1()) + ", " + String::numberToStringECMAScript(this->x2()) +
", " + String::numberToStringECMAScript(this->y2()) + ")";
default:
ASSERT_NOT_REACHED();
}
return "";
}
double CubicBezierTimingFunction::evaluate(double fraction, double accuracy) const
{
if (!m_bezier)
m_bezier = adoptPtr(new UnitBezier(m_x1, m_y1, m_x2, m_y2));
return m_bezier->solve(fraction, accuracy);
}
// This works by taking taking the derivative of the cubic bezier, on the y
// axis. We can then solve for where the derivative is zero to find the min
// and max distace along the line. We the have to solve those in terms of time
// rather than distance on the x-axis
void CubicBezierTimingFunction::range(double* minValue, double* maxValue) const
{
if (0 <= m_y1 && m_y2 < 1 && 0 <= m_y2 && m_y2 <= 1) {
return;
}
double a = 3.0 * (m_y1 - m_y2) + 1.0;
double b = 2.0 * (m_y2 - 2.0 * m_y1);
double c = m_y1;
if (std::abs(a) < std::numeric_limits<double>::epsilon()
&& std::abs(b) < std::numeric_limits<double>::epsilon()) {
return;
}
double t1 = 0.0;
double t2 = 0.0;
if (std::abs(a) < std::numeric_limits<double>::epsilon()) {
t1 = -c / b;
} else {
double discriminant = b * b - 4 * a * c;
if (discriminant < 0)
return;
double discriminantSqrt = sqrt(discriminant);
t1 = (-b + discriminantSqrt) / (2 * a);
t2 = (-b - discriminantSqrt) / (2 * a);
}
double solution1 = 0.0;
double solution2 = 0.0;
// If the solution is in the range [0,1] then we include it, otherwise we
// ignore it.
if (!m_bezier)
m_bezier = adoptPtr(new UnitBezier(m_x1, m_y1, m_x2, m_y2));
// An interesting fact about these beziers is that they are only
// actually evaluated in [0,1]. After that we take the tangent at that point
// and linearly project it out.
if (0 < t1 && t1 < 1)
solution1= m_bezier->sampleCurveY(t1);
if (0 < t2 && t2 < 1)
solution2 = m_bezier->sampleCurveY(t2);
// Since our input values can be out of the range 0->1 so we must also
// consider the minimum and maximum points.
double solutionMin = m_bezier->solve(*minValue, std::numeric_limits<double>::epsilon());
double solutionMax = m_bezier->solve(*maxValue, std::numeric_limits<double>::epsilon());
*minValue = std::min(std::min(solutionMin, solutionMax), 0.0);
*maxValue = std::max(std::max(solutionMin, solutionMax), 1.0);
*minValue = std::min(std::min(*minValue, solution1), solution2);
*maxValue = std::max(std::max(*maxValue, solution1), solution2);
}
String StepsTimingFunction::toString() const
{
const char* positionString = nullptr;
switch (stepAtPosition()) {
case Start:
positionString = "start";
break;
case Middle:
positionString = "middle";
break;
case End:
positionString = "end";
break;
}
StringBuilder builder;
if (this->numberOfSteps() == 1) {
builder.append("step-");
builder.append(positionString);
} else {
builder.append("steps(" + String::numberToStringECMAScript(this->numberOfSteps()) + ", ");
builder.append(positionString);
builder.append(')');
}
return builder.toString();
}
void StepsTimingFunction::range(double* minValue, double* maxValue) const
{
*minValue = 0;
*maxValue = 1;
}
double StepsTimingFunction::evaluate(double fraction, double) const
{
double startOffset = 0;
switch (m_stepAtPosition) {
case Start:
startOffset = 1;
break;
case Middle:
startOffset = 0.5;
break;
case End:
startOffset = 0;
break;
default:
ASSERT_NOT_REACHED();
break;
}
return clampTo(floor((m_steps * fraction) + startOffset) / m_steps, 0.0, 1.0);
}
// Equals operators
bool operator==(const LinearTimingFunction& lhs, const TimingFunction& rhs)
{
return rhs.type() == TimingFunction::LinearFunction;
}
bool operator==(const CubicBezierTimingFunction& lhs, const TimingFunction& rhs)
{
if (rhs.type() != TimingFunction::CubicBezierFunction)
return false;
const CubicBezierTimingFunction& ctf = toCubicBezierTimingFunction(rhs);
if ((lhs.subType() == CubicBezierTimingFunction::Custom) && (ctf.subType() == CubicBezierTimingFunction::Custom))
return (lhs.x1() == ctf.x1()) && (lhs.y1() == ctf.y1()) && (lhs.x2() == ctf.x2()) && (lhs.y2() == ctf.y2());
return lhs.subType() == ctf.subType();
}
bool operator==(const StepsTimingFunction& lhs, const TimingFunction& rhs)
{
if (rhs.type() != TimingFunction::StepsFunction)
return false;
const StepsTimingFunction& stf = toStepsTimingFunction(rhs);
return (lhs.numberOfSteps() == stf.numberOfSteps()) && (lhs.stepAtPosition() == stf.stepAtPosition());
}
// The generic operator== *must* come after the
// non-generic operator== otherwise it will end up calling itself.
bool operator==(const TimingFunction& lhs, const TimingFunction& rhs)
{
switch (lhs.type()) {
case TimingFunction::LinearFunction: {
const LinearTimingFunction& linear = toLinearTimingFunction(lhs);
return (linear == rhs);
}
case TimingFunction::CubicBezierFunction: {
const CubicBezierTimingFunction& cubic = toCubicBezierTimingFunction(lhs);
return (cubic == rhs);
}
case TimingFunction::StepsFunction: {
const StepsTimingFunction& step = toStepsTimingFunction(lhs);
return (step == rhs);
}
default:
ASSERT_NOT_REACHED();
}
return false;
}
// No need to define specific operator!= as they can all come via this function.
bool operator!=(const TimingFunction& lhs, const TimingFunction& rhs)
{
return !(lhs == rhs);
}
} // namespace blink
|