1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
|
/*
* Copyright (C) 2003, 2006 Apple Computer, Inc. All rights reserved.
* 2006 Rob Buis <buis@kde.org>
* Copyright (C) 2007 Eric Seidel <eric@webkit.org>
* Copyright (C) 2013 Google Inc. All rights reserved.
* Copyright (C) 2013 Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "platform/graphics/Path.h"
#include <math.h>
#include "platform/geometry/FloatPoint.h"
#include "platform/geometry/FloatRect.h"
#include "platform/graphics/GraphicsContext.h"
#include "platform/graphics/skia/SkiaUtils.h"
#include "platform/transforms/AffineTransform.h"
#include "third_party/skia/include/pathops/SkPathOps.h"
#include "wtf/MathExtras.h"
namespace blink {
Path::Path()
: m_path()
{
}
Path::Path(const Path& other)
{
m_path = SkPath(other.m_path);
}
Path::~Path()
{
}
Path& Path::operator=(const Path& other)
{
m_path = SkPath(other.m_path);
return *this;
}
bool Path::operator==(const Path& other) const
{
return m_path == other.m_path;
}
bool Path::contains(const FloatPoint& point, WindRule rule) const
{
return SkPathContainsPoint(m_path, point, static_cast<SkPath::FillType>(rule));
}
bool Path::strokeContains(const FloatPoint& point, const StrokeData& strokeData) const
{
SkPaint paint;
strokeData.setupPaint(&paint);
SkPath strokePath;
paint.getFillPath(m_path, &strokePath);
return SkPathContainsPoint(strokePath, point, SkPath::kWinding_FillType);
}
FloatRect Path::boundingRect() const
{
return m_path.getBounds();
}
FloatRect Path::strokeBoundingRect(const StrokeData& strokeData) const
{
SkPaint paint;
strokeData.setupPaint(&paint);
SkPath boundingPath;
paint.getFillPath(m_path, &boundingPath);
return boundingPath.getBounds();
}
static FloatPoint* convertPathPoints(FloatPoint dst[], const SkPoint src[], int count)
{
for (int i = 0; i < count; i++) {
dst[i].setX(SkScalarToFloat(src[i].fX));
dst[i].setY(SkScalarToFloat(src[i].fY));
}
return dst;
}
void Path::apply(void* info, PathApplierFunction function) const
{
SkPath::RawIter iter(m_path);
SkPoint pts[4];
PathElement pathElement;
FloatPoint pathPoints[3];
for (;;) {
switch (iter.next(pts)) {
case SkPath::kMove_Verb:
pathElement.type = PathElementMoveToPoint;
pathElement.points = convertPathPoints(pathPoints, &pts[0], 1);
break;
case SkPath::kLine_Verb:
pathElement.type = PathElementAddLineToPoint;
pathElement.points = convertPathPoints(pathPoints, &pts[1], 1);
break;
case SkPath::kQuad_Verb:
pathElement.type = PathElementAddQuadCurveToPoint;
pathElement.points = convertPathPoints(pathPoints, &pts[1], 2);
break;
case SkPath::kCubic_Verb:
pathElement.type = PathElementAddCurveToPoint;
pathElement.points = convertPathPoints(pathPoints, &pts[1], 3);
break;
case SkPath::kClose_Verb:
pathElement.type = PathElementCloseSubpath;
pathElement.points = convertPathPoints(pathPoints, 0, 0);
break;
case SkPath::kDone_Verb:
return;
default: // place-holder for kConic_Verb, when that lands from skia
break;
}
function(info, &pathElement);
}
}
void Path::transform(const AffineTransform& xform)
{
m_path.transform(affineTransformToSkMatrix(xform));
}
float Path::length() const
{
SkScalar length = 0;
SkPathMeasure measure(m_path, false);
do {
length += measure.getLength();
} while (measure.nextContour());
return SkScalarToFloat(length);
}
FloatPoint Path::pointAtLength(float length, bool& ok) const
{
FloatPoint point;
float normal;
ok = pointAndNormalAtLength(length, point, normal);
return point;
}
float Path::normalAngleAtLength(float length, bool& ok) const
{
FloatPoint point;
float normal;
ok = pointAndNormalAtLength(length, point, normal);
return normal;
}
static bool calculatePointAndNormalOnPath(SkPathMeasure& measure, SkScalar length, FloatPoint& point, float& normalAngle, SkScalar* accumulatedLength = 0)
{
do {
SkScalar contourLength = measure.getLength();
if (length <= contourLength) {
SkVector tangent;
SkPoint position;
if (measure.getPosTan(length, &position, &tangent)) {
normalAngle = rad2deg(SkScalarToFloat(SkScalarATan2(tangent.fY, tangent.fX)));
point = FloatPoint(SkScalarToFloat(position.fX), SkScalarToFloat(position.fY));
return true;
}
}
length -= contourLength;
if (accumulatedLength)
*accumulatedLength += contourLength;
} while (measure.nextContour());
return false;
}
bool Path::pointAndNormalAtLength(float length, FloatPoint& point, float& normal) const
{
SkPathMeasure measure(m_path, false);
if (calculatePointAndNormalOnPath(measure, WebCoreFloatToSkScalar(length), point, normal))
return true;
normal = 0;
point = FloatPoint(0, 0);
return false;
}
Path::PositionCalculator::PositionCalculator(const Path& path)
: m_path(path.skPath())
, m_pathMeasure(path.skPath(), false)
, m_accumulatedLength(0)
{
}
bool Path::PositionCalculator::pointAndNormalAtLength(float length, FloatPoint& point, float& normalAngle)
{
SkScalar skLength = WebCoreFloatToSkScalar(length);
if (skLength >= 0) {
if (skLength < m_accumulatedLength) {
// Reset path measurer to rewind (and restart from 0).
m_pathMeasure.setPath(&m_path, false);
m_accumulatedLength = 0;
} else {
skLength -= m_accumulatedLength;
}
if (calculatePointAndNormalOnPath(m_pathMeasure, skLength, point, normalAngle, &m_accumulatedLength))
return true;
}
normalAngle = 0;
point = FloatPoint(0, 0);
return false;
}
void Path::clear()
{
m_path.reset();
}
bool Path::isEmpty() const
{
return m_path.isEmpty();
}
void Path::setIsVolatile(bool isVolatile)
{
m_path.setIsVolatile(isVolatile);
}
bool Path::hasCurrentPoint() const
{
return m_path.getPoints(0, 0);
}
FloatPoint Path::currentPoint() const
{
if (m_path.countPoints() > 0) {
SkPoint skResult;
m_path.getLastPt(&skResult);
FloatPoint result;
result.setX(SkScalarToFloat(skResult.fX));
result.setY(SkScalarToFloat(skResult.fY));
return result;
}
// FIXME: Why does this return quietNaN? Other ports return 0,0.
float quietNaN = std::numeric_limits<float>::quiet_NaN();
return FloatPoint(quietNaN, quietNaN);
}
WindRule Path::windRule() const
{
return m_path.getFillType() == SkPath::kEvenOdd_FillType
? RULE_EVENODD
: RULE_NONZERO;
}
void Path::setWindRule(const WindRule rule)
{
m_path.setFillType(WebCoreWindRuleToSkFillType(rule));
}
void Path::moveTo(const FloatPoint& point)
{
m_path.moveTo(point.data());
}
void Path::addLineTo(const FloatPoint& point)
{
m_path.lineTo(point.data());
}
void Path::addQuadCurveTo(const FloatPoint& cp, const FloatPoint& ep)
{
m_path.quadTo(cp.data(), ep.data());
}
void Path::addBezierCurveTo(const FloatPoint& p1, const FloatPoint& p2, const FloatPoint& ep)
{
m_path.cubicTo(p1.data(), p2.data(), ep.data());
}
void Path::addArcTo(const FloatPoint& p1, const FloatPoint& p2, float radius)
{
m_path.arcTo(p1.data(), p2.data(), WebCoreFloatToSkScalar(radius));
}
void Path::closeSubpath()
{
m_path.close();
}
void Path::addEllipse(const FloatPoint& p, float radiusX, float radiusY, float startAngle, float endAngle, bool anticlockwise)
{
ASSERT(ellipseIsRenderable(startAngle, endAngle));
ASSERT(startAngle >= 0 && startAngle < twoPiFloat);
ASSERT((anticlockwise && (startAngle - endAngle) >= 0) || (!anticlockwise && (endAngle - startAngle) >= 0));
SkScalar cx = WebCoreFloatToSkScalar(p.x());
SkScalar cy = WebCoreFloatToSkScalar(p.y());
SkScalar radiusXScalar = WebCoreFloatToSkScalar(radiusX);
SkScalar radiusYScalar = WebCoreFloatToSkScalar(radiusY);
SkRect oval;
oval.set(cx - radiusXScalar, cy - radiusYScalar, cx + radiusXScalar, cy + radiusYScalar);
float sweep = endAngle - startAngle;
SkScalar startDegrees = WebCoreFloatToSkScalar(startAngle * 180 / piFloat);
SkScalar sweepDegrees = WebCoreFloatToSkScalar(sweep * 180 / piFloat);
SkScalar s360 = SkIntToScalar(360);
// We can't use SkPath::addOval(), because addOval() makes new sub-path. addOval() calls moveTo() and close() internally.
// Use s180, not s360, because SkPath::arcTo(oval, angle, s360, false) draws nothing.
SkScalar s180 = SkIntToScalar(180);
if (SkScalarNearlyEqual(sweepDegrees, s360)) {
// SkPath::arcTo can't handle the sweepAngle that is equal to or greater than 2Pi.
m_path.arcTo(oval, startDegrees, s180, false);
m_path.arcTo(oval, startDegrees + s180, s180, false);
return;
}
if (SkScalarNearlyEqual(sweepDegrees, -s360)) {
m_path.arcTo(oval, startDegrees, -s180, false);
m_path.arcTo(oval, startDegrees - s180, -s180, false);
return;
}
m_path.arcTo(oval, startDegrees, sweepDegrees, false);
}
void Path::addArc(const FloatPoint& p, float radius, float startAngle, float endAngle, bool anticlockwise)
{
addEllipse(p, radius, radius, startAngle, endAngle, anticlockwise);
}
void Path::addRect(const FloatRect& rect)
{
m_path.addRect(rect);
}
void Path::addEllipse(const FloatPoint& p, float radiusX, float radiusY, float rotation, float startAngle, float endAngle, bool anticlockwise)
{
ASSERT(ellipseIsRenderable(startAngle, endAngle));
ASSERT(startAngle >= 0 && startAngle < twoPiFloat);
ASSERT((anticlockwise && (startAngle - endAngle) >= 0) || (!anticlockwise && (endAngle - startAngle) >= 0));
if (!rotation) {
addEllipse(FloatPoint(p.x(), p.y()), radiusX, radiusY, startAngle, endAngle, anticlockwise);
return;
}
// Add an arc after the relevant transform.
AffineTransform ellipseTransform = AffineTransform::translation(p.x(), p.y()).rotateRadians(rotation);
ASSERT(ellipseTransform.isInvertible());
AffineTransform inverseEllipseTransform = ellipseTransform.inverse();
transform(inverseEllipseTransform);
addEllipse(FloatPoint::zero(), radiusX, radiusY, startAngle, endAngle, anticlockwise);
transform(ellipseTransform);
}
void Path::addEllipse(const FloatRect& rect)
{
m_path.addOval(rect);
}
void Path::addRoundedRect(const FloatRoundedRect& r)
{
addRoundedRect(r.rect(), r.radii().topLeft(), r.radii().topRight(), r.radii().bottomLeft(), r.radii().bottomRight());
}
void Path::addRoundedRect(const FloatRect& rect, const FloatSize& roundingRadii)
{
if (rect.isEmpty())
return;
FloatSize radius(roundingRadii);
FloatSize halfSize(rect.width() / 2, rect.height() / 2);
// Apply the SVG corner radius constraints, per the rect section of the SVG shapes spec: if
// one of rx,ry is negative, then the other corner radius value is used. If both values are
// negative then rx = ry = 0. If rx is greater than half of the width of the rectangle
// then set rx to half of the width; ry is handled similarly.
if (radius.width() < 0)
radius.setWidth((radius.height() < 0) ? 0 : radius.height());
if (radius.height() < 0)
radius.setHeight(radius.width());
if (radius.width() > halfSize.width())
radius.setWidth(halfSize.width());
if (radius.height() > halfSize.height())
radius.setHeight(halfSize.height());
addPathForRoundedRect(rect, radius, radius, radius, radius);
}
void Path::addRoundedRect(const FloatRect& rect, const FloatSize& topLeftRadius, const FloatSize& topRightRadius, const FloatSize& bottomLeftRadius, const FloatSize& bottomRightRadius)
{
if (rect.isEmpty())
return;
if (rect.width() < topLeftRadius.width() + topRightRadius.width()
|| rect.width() < bottomLeftRadius.width() + bottomRightRadius.width()
|| rect.height() < topLeftRadius.height() + bottomLeftRadius.height()
|| rect.height() < topRightRadius.height() + bottomRightRadius.height()) {
// If all the radii cannot be accommodated, return a rect.
// FIXME: is this an error scenario, given that it appears the code in FloatRoundedRect::constrainRadii()
// should be always called first? Should we assert that this code is not reached?
// This fallback is very bad, since it means that radii that are just barely too big due to rounding or snapping
// will get completely ignored.
addRect(rect);
return;
}
addPathForRoundedRect(rect, topLeftRadius, topRightRadius, bottomLeftRadius, bottomRightRadius);
}
void Path::addPathForRoundedRect(const FloatRect& rect, const FloatSize& topLeftRadius, const FloatSize& topRightRadius, const FloatSize& bottomLeftRadius, const FloatSize& bottomRightRadius)
{
addBeziersForRoundedRect(rect, topLeftRadius, topRightRadius, bottomLeftRadius, bottomRightRadius);
}
// Approximation of control point positions on a bezier to simulate a quarter of a circle.
// This is 1-kappa, where kappa = 4 * (sqrt(2) - 1) / 3
static const float gCircleControlPoint = 0.447715f;
void Path::addBeziersForRoundedRect(const FloatRect& rect, const FloatSize& topLeftRadius, const FloatSize& topRightRadius, const FloatSize& bottomLeftRadius, const FloatSize& bottomRightRadius)
{
moveTo(FloatPoint(rect.x() + topLeftRadius.width(), rect.y()));
addLineTo(FloatPoint(rect.maxX() - topRightRadius.width(), rect.y()));
if (topRightRadius.width() > 0 || topRightRadius.height() > 0)
addBezierCurveTo(FloatPoint(rect.maxX() - topRightRadius.width() * gCircleControlPoint, rect.y()),
FloatPoint(rect.maxX(), rect.y() + topRightRadius.height() * gCircleControlPoint),
FloatPoint(rect.maxX(), rect.y() + topRightRadius.height()));
addLineTo(FloatPoint(rect.maxX(), rect.maxY() - bottomRightRadius.height()));
if (bottomRightRadius.width() > 0 || bottomRightRadius.height() > 0)
addBezierCurveTo(FloatPoint(rect.maxX(), rect.maxY() - bottomRightRadius.height() * gCircleControlPoint),
FloatPoint(rect.maxX() - bottomRightRadius.width() * gCircleControlPoint, rect.maxY()),
FloatPoint(rect.maxX() - bottomRightRadius.width(), rect.maxY()));
addLineTo(FloatPoint(rect.x() + bottomLeftRadius.width(), rect.maxY()));
if (bottomLeftRadius.width() > 0 || bottomLeftRadius.height() > 0)
addBezierCurveTo(FloatPoint(rect.x() + bottomLeftRadius.width() * gCircleControlPoint, rect.maxY()),
FloatPoint(rect.x(), rect.maxY() - bottomLeftRadius.height() * gCircleControlPoint),
FloatPoint(rect.x(), rect.maxY() - bottomLeftRadius.height()));
addLineTo(FloatPoint(rect.x(), rect.y() + topLeftRadius.height()));
if (topLeftRadius.width() > 0 || topLeftRadius.height() > 0)
addBezierCurveTo(FloatPoint(rect.x(), rect.y() + topLeftRadius.height() * gCircleControlPoint),
FloatPoint(rect.x() + topLeftRadius.width() * gCircleControlPoint, rect.y()),
FloatPoint(rect.x() + topLeftRadius.width(), rect.y()));
closeSubpath();
}
void Path::addPath(const Path& src, const AffineTransform& transform)
{
m_path.addPath(src.skPath(), affineTransformToSkMatrix(transform));
}
void Path::translate(const FloatSize& size)
{
m_path.offset(WebCoreFloatToSkScalar(size.width()), WebCoreFloatToSkScalar(size.height()));
}
bool Path::subtractPath(const Path& other)
{
return Op(m_path, other.m_path, kDifference_PathOp, &m_path);
}
bool Path::intersectPath(const Path& other)
{
return Op(m_path, other.m_path, kIntersect_PathOp, &m_path);
}
bool Path::unionPath(const Path& other)
{
return Op(m_path, other.m_path, kUnion_PathOp, &m_path);
}
#if ENABLE(ASSERT)
bool ellipseIsRenderable(float startAngle, float endAngle)
{
return (std::abs(endAngle - startAngle) < twoPiFloat)
|| WebCoreFloatNearlyEqual(std::abs(endAngle - startAngle), twoPiFloat);
}
#endif
} // namespace blink
|