1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
|
/*
* Copyright (C) 2013 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "platform/heap/Heap.h"
#include "platform/ScriptForbiddenScope.h"
#include "platform/Task.h"
#include "platform/TraceEvent.h"
#include "platform/heap/CallbackStack.h"
#include "platform/heap/MarkingVisitorImpl.h"
#include "platform/heap/ThreadState.h"
#include "public/platform/Platform.h"
#include "wtf/AddressSpaceRandomization.h"
#include "wtf/Assertions.h"
#include "wtf/LeakAnnotations.h"
#include "wtf/PassOwnPtr.h"
#if ENABLE(GC_PROFILE_MARKING)
#include "wtf/HashMap.h"
#include "wtf/HashSet.h"
#include "wtf/text/StringBuilder.h"
#include "wtf/text/StringHash.h"
#include <stdio.h>
#include <utility>
#endif
#if ENABLE(GC_PROFILE_HEAP)
#include "platform/TracedValue.h"
#endif
#if OS(POSIX)
#include <sys/mman.h>
#include <unistd.h>
#elif OS(WIN)
#include <windows.h>
#endif
namespace blink {
#if ENABLE(GC_PROFILE_MARKING)
static String classOf(const void* object)
{
if (const GCInfo* gcInfo = Heap::findGCInfo(reinterpret_cast<Address>(const_cast<void*>(object))))
return gcInfo->m_className;
return "unknown";
}
#endif
static bool vTableInitialized(void* objectPointer)
{
return !!(*reinterpret_cast<Address*>(objectPointer));
}
#if OS(WIN)
static bool IsPowerOf2(size_t power)
{
return !((power - 1) & power);
}
#endif
static Address roundToBlinkPageBoundary(void* base)
{
return reinterpret_cast<Address>((reinterpret_cast<uintptr_t>(base) + blinkPageOffsetMask) & blinkPageBaseMask);
}
static size_t roundToOsPageSize(size_t size)
{
return (size + WTF::kSystemPageSize - 1) & ~(WTF::kSystemPageSize - 1);
}
class MemoryRegion {
public:
MemoryRegion(Address base, size_t size)
: m_base(base)
, m_size(size)
{
ASSERT(size > 0);
}
bool contains(Address addr) const
{
return m_base <= addr && addr < (m_base + m_size);
}
bool contains(const MemoryRegion& other) const
{
return contains(other.m_base) && contains(other.m_base + other.m_size - 1);
}
void release()
{
#if OS(POSIX)
int err = munmap(m_base, m_size);
RELEASE_ASSERT(!err);
#else
bool success = VirtualFree(m_base, 0, MEM_RELEASE);
RELEASE_ASSERT(success);
#endif
}
WARN_UNUSED_RETURN bool commit()
{
#if OS(POSIX)
return !mprotect(m_base, m_size, PROT_READ | PROT_WRITE);
#else
void* result = VirtualAlloc(m_base, m_size, MEM_COMMIT, PAGE_READWRITE);
return !!result;
#endif
}
void decommit()
{
#if OS(POSIX)
int err = mprotect(m_base, m_size, PROT_NONE);
RELEASE_ASSERT(!err);
// FIXME: Consider using MADV_FREE on MacOS.
madvise(m_base, m_size, MADV_DONTNEED);
#else
bool success = VirtualFree(m_base, m_size, MEM_DECOMMIT);
RELEASE_ASSERT(success);
#endif
}
Address base() const { return m_base; }
size_t size() const { return m_size; }
private:
Address m_base;
size_t m_size;
};
// A PageMemoryRegion represents a chunk of reserved virtual address
// space containing a number of blink heap pages. On Windows, reserved
// virtual address space can only be given back to the system as a
// whole. The PageMemoryRegion allows us to do that by keeping track
// of the number of pages using it in order to be able to release all
// of the virtual address space when there are no more pages using it.
class PageMemoryRegion : public MemoryRegion {
public:
~PageMemoryRegion()
{
release();
}
void pageDeleted(Address page)
{
markPageUnused(page);
if (!--m_numPages) {
Heap::removePageMemoryRegion(this);
delete this;
}
}
void markPageUsed(Address page)
{
ASSERT(!m_inUse[index(page)]);
m_inUse[index(page)] = true;
}
void markPageUnused(Address page)
{
m_inUse[index(page)] = false;
}
static PageMemoryRegion* allocateLargePage(size_t size)
{
return allocate(size, 1);
}
static PageMemoryRegion* allocateNormalPages()
{
return allocate(blinkPageSize * blinkPagesPerRegion, blinkPagesPerRegion);
}
BaseHeapPage* pageFromAddress(Address address)
{
ASSERT(contains(address));
if (!m_inUse[index(address)])
return nullptr;
if (m_isLargePage)
return pageFromObject(base());
return pageFromObject(address);
}
private:
PageMemoryRegion(Address base, size_t size, unsigned numPages)
: MemoryRegion(base, size)
, m_isLargePage(numPages == 1)
, m_numPages(numPages)
{
for (size_t i = 0; i < blinkPagesPerRegion; ++i)
m_inUse[i] = false;
}
unsigned index(Address address)
{
ASSERT(contains(address));
if (m_isLargePage)
return 0;
size_t offset = blinkPageAddress(address) - base();
ASSERT(offset % blinkPageSize == 0);
return offset / blinkPageSize;
}
static PageMemoryRegion* allocate(size_t size, unsigned numPages)
{
// Compute a random blink page aligned address for the page memory
// region and attempt to get the memory there.
Address randomAddress = reinterpret_cast<Address>(WTF::getRandomPageBase());
Address alignedRandomAddress = roundToBlinkPageBoundary(randomAddress);
#if OS(POSIX)
Address base = static_cast<Address>(mmap(alignedRandomAddress, size, PROT_NONE, MAP_ANON | MAP_PRIVATE, -1, 0));
if (base == roundToBlinkPageBoundary(base))
return new PageMemoryRegion(base, size, numPages);
// We failed to get a blink page aligned chunk of memory.
// Unmap the chunk that we got and fall back to overallocating
// and selecting an aligned sub part of what we allocate.
if (base != MAP_FAILED) {
int error = munmap(base, size);
RELEASE_ASSERT(!error);
}
size_t allocationSize = size + blinkPageSize;
for (int attempt = 0; attempt < 10; ++attempt) {
base = static_cast<Address>(mmap(alignedRandomAddress, allocationSize, PROT_NONE, MAP_ANON | MAP_PRIVATE, -1, 0));
if (base != MAP_FAILED)
break;
randomAddress = reinterpret_cast<Address>(WTF::getRandomPageBase());
alignedRandomAddress = roundToBlinkPageBoundary(randomAddress);
}
RELEASE_ASSERT(base != MAP_FAILED);
Address end = base + allocationSize;
Address alignedBase = roundToBlinkPageBoundary(base);
Address regionEnd = alignedBase + size;
// If the allocated memory was not blink page aligned release
// the memory before the aligned address.
if (alignedBase != base)
MemoryRegion(base, alignedBase - base).release();
// Free the additional memory at the end of the page if any.
if (regionEnd < end)
MemoryRegion(regionEnd, end - regionEnd).release();
return new PageMemoryRegion(alignedBase, size, numPages);
#else
Address base = static_cast<Address>(VirtualAlloc(alignedRandomAddress, size, MEM_RESERVE, PAGE_NOACCESS));
if (base) {
ASSERT(base == alignedRandomAddress);
return new PageMemoryRegion(base, size, numPages);
}
// We failed to get the random aligned address that we asked
// for. Fall back to overallocating. On Windows it is
// impossible to partially release a region of memory
// allocated by VirtualAlloc. To avoid wasting virtual address
// space we attempt to release a large region of memory
// returned as a whole and then allocate an aligned region
// inside this larger region.
size_t allocationSize = size + blinkPageSize;
for (int attempt = 0; attempt < 3; ++attempt) {
base = static_cast<Address>(VirtualAlloc(0, allocationSize, MEM_RESERVE, PAGE_NOACCESS));
RELEASE_ASSERT(base);
VirtualFree(base, 0, MEM_RELEASE);
Address alignedBase = roundToBlinkPageBoundary(base);
base = static_cast<Address>(VirtualAlloc(alignedBase, size, MEM_RESERVE, PAGE_NOACCESS));
if (base) {
ASSERT(base == alignedBase);
return new PageMemoryRegion(alignedBase, size, numPages);
}
}
// We failed to avoid wasting virtual address space after
// several attempts.
base = static_cast<Address>(VirtualAlloc(0, allocationSize, MEM_RESERVE, PAGE_NOACCESS));
RELEASE_ASSERT(base);
// FIXME: If base is by accident blink page size aligned
// here then we can create two pages out of reserved
// space. Do this.
Address alignedBase = roundToBlinkPageBoundary(base);
return new PageMemoryRegion(alignedBase, size, numPages);
#endif
}
bool m_isLargePage;
bool m_inUse[blinkPagesPerRegion];
unsigned m_numPages;
};
// Representation of the memory used for a Blink heap page.
//
// The representation keeps track of two memory regions:
//
// 1. The virtual memory reserved from the system in order to be able
// to free all the virtual memory reserved. Multiple PageMemory
// instances can share the same reserved memory region and
// therefore notify the reserved memory region on destruction so
// that the system memory can be given back when all PageMemory
// instances for that memory are gone.
//
// 2. The writable memory (a sub-region of the reserved virtual
// memory region) that is used for the actual heap page payload.
//
// Guard pages are created before and after the writable memory.
class PageMemory {
public:
~PageMemory()
{
__lsan_unregister_root_region(m_writable.base(), m_writable.size());
m_reserved->pageDeleted(writableStart());
}
WARN_UNUSED_RETURN bool commit()
{
m_reserved->markPageUsed(writableStart());
return m_writable.commit();
}
void decommit()
{
m_reserved->markPageUnused(writableStart());
m_writable.decommit();
}
void markUnused() { m_reserved->markPageUnused(writableStart()); }
PageMemoryRegion* region() { return m_reserved; }
Address writableStart() { return m_writable.base(); }
static PageMemory* setupPageMemoryInRegion(PageMemoryRegion* region, size_t pageOffset, size_t payloadSize)
{
// Setup the payload one OS page into the page memory. The
// first os page is the guard page.
Address payloadAddress = region->base() + pageOffset + WTF::kSystemPageSize;
return new PageMemory(region, MemoryRegion(payloadAddress, payloadSize));
}
// Allocate a virtual address space for one blink page with the
// following layout:
//
// [ guard os page | ... payload ... | guard os page ]
// ^---{ aligned to blink page size }
//
// The returned page memory region will be zeroed.
//
static PageMemory* allocate(size_t payloadSize)
{
ASSERT(payloadSize > 0);
// Virtual memory allocation routines operate in OS page sizes.
// Round up the requested size to nearest os page size.
payloadSize = roundToOsPageSize(payloadSize);
// Overallocate by 2 times OS page size to have space for a
// guard page at the beginning and end of blink heap page.
size_t allocationSize = payloadSize + 2 * WTF::kSystemPageSize;
PageMemoryRegion* pageMemoryRegion = PageMemoryRegion::allocateLargePage(allocationSize);
PageMemory* storage = setupPageMemoryInRegion(pageMemoryRegion, 0, payloadSize);
RELEASE_ASSERT(storage->commit());
return storage;
}
private:
PageMemory(PageMemoryRegion* reserved, const MemoryRegion& writable)
: m_reserved(reserved)
, m_writable(writable)
{
ASSERT(reserved->contains(writable));
// Register the writable area of the memory as part of the LSan root set.
// Only the writable area is mapped and can contain C++ objects. Those
// C++ objects can contain pointers to objects outside of the heap and
// should therefore be part of the LSan root set.
__lsan_register_root_region(m_writable.base(), m_writable.size());
}
PageMemoryRegion* m_reserved;
MemoryRegion m_writable;
};
class GCScope {
public:
explicit GCScope(ThreadState::StackState stackState)
: m_state(ThreadState::current())
, m_safePointScope(stackState)
, m_parkedAllThreads(false)
{
TRACE_EVENT0("blink_gc", "Heap::GCScope");
const char* samplingState = TRACE_EVENT_GET_SAMPLING_STATE();
if (m_state->isMainThread())
TRACE_EVENT_SET_SAMPLING_STATE("blink_gc", "BlinkGCWaiting");
m_state->checkThread();
// FIXME: in an unlikely coincidence that two threads decide
// to collect garbage at the same time, avoid doing two GCs in
// a row.
if (LIKELY(ThreadState::stopThreads())) {
m_parkedAllThreads = true;
}
if (m_state->isMainThread())
TRACE_EVENT_SET_NONCONST_SAMPLING_STATE(samplingState);
}
bool allThreadsParked() { return m_parkedAllThreads; }
~GCScope()
{
// Only cleanup if we parked all threads in which case the GC happened
// and we need to resume the other threads.
if (LIKELY(m_parkedAllThreads)) {
ThreadState::resumeThreads();
}
}
private:
ThreadState* m_state;
ThreadState::SafePointScope m_safePointScope;
bool m_parkedAllThreads; // False if we fail to park all threads
};
#if ENABLE(ASSERT)
NO_SANITIZE_ADDRESS
void HeapObjectHeader::zapMagic()
{
checkHeader();
m_magic = zappedMagic;
}
#endif
void HeapObjectHeader::finalize(Address object, size_t objectSize)
{
const GCInfo* gcInfo = Heap::gcInfo(gcInfoIndex());
if (gcInfo->hasFinalizer()) {
gcInfo->m_finalize(object);
}
#if ENABLE(ASSERT) || defined(LEAK_SANITIZER) || defined(ADDRESS_SANITIZER)
// In Debug builds, memory is zapped when it's freed, and the zapped memory
// is zeroed out when the memory is reused. Memory is also zapped when
// using Leak Sanitizer because the heap is used as a root region for LSan
// and therefore pointers in unreachable memory could hide leaks.
for (size_t i = 0; i < objectSize; ++i)
object[i] = finalizedZapValue;
// Zap the primary vTable entry (secondary vTable entries are not zapped).
if (gcInfo->hasVTable()) {
*(reinterpret_cast<uintptr_t*>(object)) = zappedVTable;
}
#endif
// In Release builds, the entire object is zeroed out when it is added to
// the free list. This happens right after sweeping the page and before the
// thread commences execution.
}
void LargeObject::sweep(ThreadHeap*)
{
Heap::increaseMarkedObjectSize(size());
heapObjectHeader()->unmark();
}
bool LargeObject::isEmpty()
{
return !heapObjectHeader()->isMarked();
}
#if ENABLE(ASSERT)
static bool isUninitializedMemory(void* objectPointer, size_t objectSize)
{
// Scan through the object's fields and check that they are all zero.
Address* objectFields = reinterpret_cast<Address*>(objectPointer);
for (size_t i = 0; i < objectSize / sizeof(Address); ++i) {
if (objectFields[i] != 0)
return false;
}
return true;
}
#endif
static void markPointer(Visitor* visitor, HeapObjectHeader* header)
{
const GCInfo* gcInfo = Heap::gcInfo(header->gcInfoIndex());
if (gcInfo->hasVTable() && !vTableInitialized(header->payload())) {
visitor->markHeaderNoTracing(header);
ASSERT(isUninitializedMemory(header->payload(), header->payloadSize()));
} else {
visitor->markHeader(header, gcInfo->m_trace);
}
}
void LargeObject::checkAndMarkPointer(Visitor* visitor, Address address)
{
ASSERT(contains(address));
if (!containedInObjectPayload(address) || heapObjectHeader()->isDead())
return;
#if ENABLE(GC_PROFILE_MARKING)
visitor->setHostInfo(&address, "stack");
#endif
markPointer(visitor, heapObjectHeader());
}
void LargeObject::markUnmarkedObjectsDead()
{
HeapObjectHeader* header = heapObjectHeader();
if (header->isMarked())
header->unmark();
else
header->markDead();
}
void LargeObject::removeFromHeap(ThreadHeap* heap)
{
heap->freeLargeObject(this);
}
ThreadHeap::ThreadHeap(ThreadState* state, int index)
: m_currentAllocationPoint(nullptr)
, m_remainingAllocationSize(0)
, m_lastRemainingAllocationSize(0)
, m_firstPage(nullptr)
, m_firstLargeObject(nullptr)
, m_firstUnsweptPage(nullptr)
, m_firstUnsweptLargeObject(nullptr)
, m_threadState(state)
, m_index(index)
, m_promptlyFreedSize(0)
{
clearFreeLists();
}
FreeList::FreeList()
: m_biggestFreeListIndex(0)
{
}
ThreadHeap::~ThreadHeap()
{
ASSERT(!m_firstPage);
ASSERT(!m_firstLargeObject);
ASSERT(!m_firstUnsweptPage);
ASSERT(!m_firstUnsweptLargeObject);
}
void ThreadHeap::cleanupPages()
{
clearFreeLists();
ASSERT(!m_firstUnsweptPage);
ASSERT(!m_firstUnsweptLargeObject);
// Add the ThreadHeap's pages to the orphanedPagePool.
for (HeapPage* page = m_firstPage; page; page = page->m_next) {
Heap::decreaseAllocatedSpace(blinkPageSize);
Heap::orphanedPagePool()->addOrphanedPage(m_index, page);
}
m_firstPage = nullptr;
for (LargeObject* largeObject = m_firstLargeObject; largeObject; largeObject = largeObject->m_next) {
Heap::decreaseAllocatedSpace(largeObject->size());
Heap::orphanedPagePool()->addOrphanedPage(m_index, largeObject);
}
m_firstLargeObject = nullptr;
}
void ThreadHeap::updateRemainingAllocationSize()
{
if (m_lastRemainingAllocationSize > remainingAllocationSize()) {
Heap::increaseAllocatedObjectSize(m_lastRemainingAllocationSize - remainingAllocationSize());
m_lastRemainingAllocationSize = remainingAllocationSize();
}
ASSERT(m_lastRemainingAllocationSize == remainingAllocationSize());
}
void ThreadHeap::setAllocationPoint(Address point, size_t size)
{
#if ENABLE(ASSERT)
if (point) {
ASSERT(size);
BaseHeapPage* page = pageFromObject(point);
ASSERT(!page->isLargeObject());
ASSERT(size <= static_cast<HeapPage*>(page)->payloadSize());
}
#endif
if (hasCurrentAllocationArea())
addToFreeList(currentAllocationPoint(), remainingAllocationSize());
updateRemainingAllocationSize();
m_currentAllocationPoint = point;
m_lastRemainingAllocationSize = m_remainingAllocationSize = size;
}
Address ThreadHeap::outOfLineAllocate(size_t allocationSize, size_t gcInfoIndex)
{
ASSERT(allocationSize > remainingAllocationSize());
ASSERT(allocationSize >= allocationGranularity);
// 1. If this allocation is big enough, allocate a large object.
if (allocationSize >= largeObjectSizeThreshold)
return allocateLargeObject(allocationSize, gcInfoIndex);
// 2. Check if we should trigger a GC.
updateRemainingAllocationSize();
threadState()->scheduleGCOrForceConservativeGCIfNeeded();
// 3. Try to allocate from a free list.
Address result = allocateFromFreeList(allocationSize, gcInfoIndex);
if (result)
return result;
// 4. Reset the allocation point.
setAllocationPoint(nullptr, 0);
// 5. Lazily sweep pages of this heap until we find a freed area for
// this allocation or we finish sweeping all pages of this heap.
result = lazySweepPages(allocationSize, gcInfoIndex);
if (result)
return result;
// 6. Coalesce promptly freed areas and then try to allocate from a free
// list.
if (coalesce()) {
result = allocateFromFreeList(allocationSize, gcInfoIndex);
if (result)
return result;
}
// 7. Complete sweeping.
threadState()->completeSweep();
// 8. Add a new page to this heap.
allocatePage();
// 9. Try to allocate from a free list. This allocation must succeed.
result = allocateFromFreeList(allocationSize, gcInfoIndex);
RELEASE_ASSERT(result);
return result;
}
Address ThreadHeap::allocateFromFreeList(size_t allocationSize, size_t gcInfoIndex)
{
// Try reusing a block from the largest bin. The underlying reasoning
// being that we want to amortize this slow allocation call by carving
// off as a large a free block as possible in one go; a block that will
// service this block and let following allocations be serviced quickly
// by bump allocation.
size_t bucketSize = 1 << m_freeList.m_biggestFreeListIndex;
int index = m_freeList.m_biggestFreeListIndex;
for (; index > 0; --index, bucketSize >>= 1) {
FreeListEntry* entry = m_freeList.m_freeLists[index];
if (allocationSize > bucketSize) {
// Final bucket candidate; check initial entry if it is able
// to service this allocation. Do not perform a linear scan,
// as it is considered too costly.
if (!entry || entry->size() < allocationSize)
break;
}
if (entry) {
entry->unlink(&m_freeList.m_freeLists[index]);
setAllocationPoint(entry->address(), entry->size());
ASSERT(hasCurrentAllocationArea());
ASSERT(remainingAllocationSize() >= allocationSize);
m_freeList.m_biggestFreeListIndex = index;
return allocateObject(allocationSize, gcInfoIndex);
}
}
m_freeList.m_biggestFreeListIndex = index;
return nullptr;
}
void ThreadHeap::prepareForSweep()
{
ASSERT(!threadState()->isInGC());
ASSERT(!m_firstUnsweptPage);
ASSERT(!m_firstUnsweptLargeObject);
// Move all pages to a list of unswept pages.
m_firstUnsweptPage = m_firstPage;
m_firstUnsweptLargeObject = m_firstLargeObject;
m_firstPage = nullptr;
m_firstLargeObject = nullptr;
}
Address ThreadHeap::lazySweepPages(size_t allocationSize, size_t gcInfoIndex)
{
ASSERT(!hasCurrentAllocationArea());
ASSERT(allocationSize < largeObjectSizeThreshold);
// If there are no pages to be swept, return immediately.
if (!m_firstUnsweptPage)
return nullptr;
RELEASE_ASSERT(threadState()->isSweepingInProgress());
// lazySweepPages() can be called recursively if finalizers invoked in
// page->sweep() allocate memory and the allocation triggers
// lazySweepPages(). This check prevents the sweeping from being executed
// recursively.
if (threadState()->sweepForbidden())
return nullptr;
TRACE_EVENT0("blink_gc", "ThreadHeap::lazySweepPages");
ThreadState::SweepForbiddenScope scope(m_threadState);
if (threadState()->isMainThread())
ScriptForbiddenScope::enter();
Address result = nullptr;
while (m_firstUnsweptPage) {
HeapPage* page = m_firstUnsweptPage;
if (page->isEmpty()) {
page->unlink(&m_firstUnsweptPage);
page->removeFromHeap(this);
} else {
// Sweep a page and move the page from m_firstUnsweptPages to
// m_firstPages.
page->sweep(this);
page->unlink(&m_firstUnsweptPage);
page->link(&m_firstPage);
result = allocateFromFreeList(allocationSize, gcInfoIndex);
if (result) {
break;
}
}
}
if (threadState()->isMainThread())
ScriptForbiddenScope::exit();
return result;
}
bool ThreadHeap::lazySweepLargeObjects(size_t allocationSize)
{
ASSERT(allocationSize >= largeObjectSizeThreshold);
// If there are no large objects to be swept, return immediately.
if (!m_firstUnsweptLargeObject)
return false;
RELEASE_ASSERT(threadState()->isSweepingInProgress());
// lazySweepLargeObjects() can be called recursively if finalizers invoked
// in page->sweep() allocate memory and the allocation triggers
// lazySweepLargeObjects(). This check prevents the sweeping from being
// executed recursively.
if (threadState()->sweepForbidden())
return false;
TRACE_EVENT0("blink_gc", "ThreadHeap::lazySweepLargeObjects");
ThreadState::SweepForbiddenScope scope(m_threadState);
if (threadState()->isMainThread())
ScriptForbiddenScope::enter();
bool result = false;
size_t sweptSize = 0;
while (m_firstUnsweptLargeObject) {
LargeObject* largeObject = m_firstUnsweptLargeObject;
if (largeObject->isEmpty()) {
sweptSize += largeObject->size();
largeObject->unlink(&m_firstUnsweptLargeObject);
largeObject->removeFromHeap(this);
// If we have swept large objects more than allocationSize,
// we stop the lazy sweeping.
if (sweptSize >= allocationSize) {
result = true;
break;
}
} else {
// Sweep a large object and move the large object from
// m_firstUnsweptLargeObjects to m_firstLargeObjects.
largeObject->sweep(this);
largeObject->unlink(&m_firstUnsweptLargeObject);
largeObject->link(&m_firstLargeObject);
}
}
if (threadState()->isMainThread())
ScriptForbiddenScope::exit();
return result;
}
void ThreadHeap::completeSweep()
{
RELEASE_ASSERT(threadState()->isSweepingInProgress());
ASSERT(threadState()->sweepForbidden());
if (threadState()->isMainThread())
ScriptForbiddenScope::enter();
// Sweep normal pages.
while (m_firstUnsweptPage) {
HeapPage* page = m_firstUnsweptPage;
if (page->isEmpty()) {
page->unlink(&m_firstUnsweptPage);
page->removeFromHeap(this);
} else {
// Sweep a page and move the page from m_firstUnsweptPages to
// m_firstPages.
page->sweep(this);
page->unlink(&m_firstUnsweptPage);
page->link(&m_firstPage);
}
}
// Sweep large objects.
while (m_firstUnsweptLargeObject) {
LargeObject* largeObject = m_firstUnsweptLargeObject;
if (largeObject->isEmpty()) {
largeObject->unlink(&m_firstUnsweptLargeObject);
largeObject->removeFromHeap(this);
} else {
// Sweep a large object and move the large object from
// m_firstUnsweptLargeObjects to m_firstLargeObjects.
largeObject->sweep(this);
largeObject->unlink(&m_firstUnsweptLargeObject);
largeObject->link(&m_firstLargeObject);
}
}
if (threadState()->isMainThread())
ScriptForbiddenScope::exit();
}
#if ENABLE(ASSERT)
static bool isLargeObjectAligned(LargeObject* largeObject, Address address)
{
// Check that a large object is blinkPageSize aligned (modulo the osPageSize
// for the guard page).
return reinterpret_cast<Address>(largeObject) - WTF::kSystemPageSize == roundToBlinkPageStart(reinterpret_cast<Address>(largeObject));
}
BaseHeapPage* ThreadHeap::findPageFromAddress(Address address)
{
for (HeapPage* page = m_firstPage; page; page = page->next()) {
if (page->contains(address))
return page;
}
for (HeapPage* page = m_firstUnsweptPage; page; page = page->next()) {
if (page->contains(address))
return page;
}
for (LargeObject* largeObject = m_firstLargeObject; largeObject; largeObject = largeObject->next()) {
ASSERT(isLargeObjectAligned(largeObject, address));
if (largeObject->contains(address))
return largeObject;
}
for (LargeObject* largeObject = m_firstUnsweptLargeObject; largeObject; largeObject = largeObject->next()) {
ASSERT(isLargeObjectAligned(largeObject, address));
if (largeObject->contains(address))
return largeObject;
}
return nullptr;
}
#endif
#if ENABLE(GC_PROFILE_HEAP)
#define GC_PROFILE_HEAP_PAGE_SNAPSHOT_THRESHOLD 0
void ThreadHeap::snapshot(TracedValue* json, ThreadState::SnapshotInfo* info)
{
ASSERT(isConsistentForSweeping());
size_t previousPageCount = info->pageCount;
json->beginArray("pages");
for (HeapPage* page = m_firstPage; page; page = page->next(), ++info->pageCount) {
// FIXME: To limit the size of the snapshot we only output "threshold" many page snapshots.
if (info->pageCount < GC_PROFILE_HEAP_PAGE_SNAPSHOT_THRESHOLD) {
json->beginArray();
json->pushInteger(reinterpret_cast<intptr_t>(page));
page->snapshot(json, info);
json->endArray();
} else {
page->snapshot(0, info);
}
}
json->endArray();
json->beginArray("largeObjects");
for (LargeObject* largeObject = m_firstLargeObject; largeObject; largeObject = largeObject->next()) {
json->beginDictionary();
largeObject->snapshot(json, info);
json->endDictionary();
}
json->endArray();
json->setInteger("pageCount", info->pageCount - previousPageCount);
}
#endif
void FreeList::addToFreeList(Address address, size_t size)
{
ASSERT(size < blinkPagePayloadSize());
// The free list entries are only pointer aligned (but when we allocate
// from them we are 8 byte aligned due to the header size).
ASSERT(!((reinterpret_cast<uintptr_t>(address) + sizeof(HeapObjectHeader)) & allocationMask));
ASSERT(!(size & allocationMask));
ASAN_POISON_MEMORY_REGION(address, size);
FreeListEntry* entry;
if (size < sizeof(*entry)) {
// Create a dummy header with only a size and freelist bit set.
ASSERT(size >= sizeof(HeapObjectHeader));
// Free list encode the size to mark the lost memory as freelist memory.
new (NotNull, address) HeapObjectHeader(size, gcInfoIndexForFreeListHeader);
// This memory gets lost. Sweeping can reclaim it.
return;
}
entry = new (NotNull, address) FreeListEntry(size);
#if defined(ADDRESS_SANITIZER)
BaseHeapPage* page = pageFromObject(address);
ASSERT(!page->isLargeObject());
// For ASan we don't add the entry to the free lists until the
// asanDeferMemoryReuseCount reaches zero. However we always add entire
// pages to ensure that adding a new page will increase the allocation
// space.
if (static_cast<HeapPage*>(page)->payloadSize() != size && !entry->shouldAddToFreeList())
return;
#endif
int index = bucketIndexForSize(size);
entry->link(&m_freeLists[index]);
if (index > m_biggestFreeListIndex)
m_biggestFreeListIndex = index;
}
bool ThreadHeap::expandObject(HeapObjectHeader* header, size_t newSize)
{
// It's possible that Vector requests a smaller expanded size because
// Vector::shrinkCapacity can set a capacity smaller than the actual payload
// size.
if (header->payloadSize() >= newSize)
return true;
size_t allocationSize = allocationSizeFromSize(newSize);
ASSERT(allocationSize > header->size());
size_t expandSize = allocationSize - header->size();
if (header->payloadEnd() == m_currentAllocationPoint && expandSize <= m_remainingAllocationSize) {
m_currentAllocationPoint += expandSize;
m_remainingAllocationSize -= expandSize;
// Unpoison the memory used for the object (payload).
ASAN_UNPOISON_MEMORY_REGION(header->payloadEnd(), expandSize);
FILL_ZERO_IF_NOT_PRODUCTION(header->payloadEnd(), expandSize);
header->setSize(allocationSize);
ASSERT(findPageFromAddress(header->payloadEnd() - 1));
return true;
}
return false;
}
void ThreadHeap::shrinkObject(HeapObjectHeader* header, size_t newSize)
{
ASSERT(header->payloadSize() > newSize);
size_t allocationSize = allocationSizeFromSize(newSize);
ASSERT(header->size() > allocationSize);
size_t shrinkSize = header->size() - allocationSize;
if (header->payloadEnd() == m_currentAllocationPoint) {
m_currentAllocationPoint -= shrinkSize;
m_remainingAllocationSize += shrinkSize;
FILL_ZERO_IF_PRODUCTION(m_currentAllocationPoint, shrinkSize);
ASAN_POISON_MEMORY_REGION(m_currentAllocationPoint, shrinkSize);
header->setSize(allocationSize);
} else {
ASSERT(shrinkSize >= sizeof(HeapObjectHeader));
ASSERT(header->gcInfoIndex() > 0);
HeapObjectHeader* freedHeader = new (NotNull, header->payloadEnd() - shrinkSize) HeapObjectHeader(shrinkSize, header->gcInfoIndex());
freedHeader->markPromptlyFreed();
ASSERT(pageFromObject(reinterpret_cast<Address>(header)) == findPageFromAddress(reinterpret_cast<Address>(header)));
m_promptlyFreedSize += shrinkSize;
header->setSize(allocationSize);
}
}
void ThreadHeap::promptlyFreeObject(HeapObjectHeader* header)
{
ASSERT(!m_threadState->sweepForbidden());
header->checkHeader();
Address address = reinterpret_cast<Address>(header);
Address payload = header->payload();
size_t size = header->size();
size_t payloadSize = header->payloadSize();
ASSERT(size > 0);
ASSERT(pageFromObject(address) == findPageFromAddress(address));
{
ThreadState::SweepForbiddenScope forbiddenScope(m_threadState);
header->finalize(payload, payloadSize);
if (address + size == m_currentAllocationPoint) {
m_currentAllocationPoint = address;
if (m_lastRemainingAllocationSize == m_remainingAllocationSize) {
Heap::decreaseAllocatedObjectSize(size);
m_lastRemainingAllocationSize += size;
}
m_remainingAllocationSize += size;
FILL_ZERO_IF_PRODUCTION(address, size);
ASAN_POISON_MEMORY_REGION(address, size);
return;
}
FILL_ZERO_IF_PRODUCTION(payload, payloadSize);
header->markPromptlyFreed();
}
m_promptlyFreedSize += size;
}
bool ThreadHeap::coalesce()
{
// Don't coalesce heaps if there are not enough promptly freed entries
// to be coalesced.
//
// FIXME: This threshold is determined just to optimize blink_perf
// benchmarks. Coalescing is very sensitive to the threashold and
// we need further investigations on the coalescing scheme.
if (m_promptlyFreedSize < 1024 * 1024)
return false;
if (m_threadState->sweepForbidden())
return false;
ASSERT(!hasCurrentAllocationArea());
TRACE_EVENT0("blink_gc", "ThreadHeap::coalesce");
// Rebuild free lists.
m_freeList.clear();
size_t freedSize = 0;
for (HeapPage* page = m_firstPage; page; page = page->next()) {
page->clearObjectStartBitMap();
Address startOfGap = page->payload();
for (Address headerAddress = startOfGap; headerAddress < page->payloadEnd(); ) {
HeapObjectHeader* header = reinterpret_cast<HeapObjectHeader*>(headerAddress);
size_t size = header->size();
ASSERT(size > 0);
ASSERT(size < blinkPagePayloadSize());
if (header->isPromptlyFreed()) {
ASSERT(size >= sizeof(HeapObjectHeader));
FILL_ZERO_IF_PRODUCTION(headerAddress, sizeof(HeapObjectHeader));
freedSize += size;
headerAddress += size;
continue;
}
if (header->isFree()) {
// Zero the memory in the free list header to maintain the
// invariant that memory on the free list is zero filled.
// The rest of the memory is already on the free list and is
// therefore already zero filled.
FILL_ZERO_IF_PRODUCTION(headerAddress, size < sizeof(FreeListEntry) ? size : sizeof(FreeListEntry));
headerAddress += size;
continue;
}
if (startOfGap != headerAddress)
addToFreeList(startOfGap, headerAddress - startOfGap);
headerAddress += size;
startOfGap = headerAddress;
}
if (startOfGap != page->payloadEnd())
addToFreeList(startOfGap, page->payloadEnd() - startOfGap);
}
Heap::decreaseAllocatedObjectSize(freedSize);
ASSERT(m_promptlyFreedSize == freedSize);
m_promptlyFreedSize = 0;
return true;
}
Address ThreadHeap::allocateLargeObject(size_t size, size_t gcInfoIndex)
{
// Caller already added space for object header and rounded up to allocation
// alignment
ASSERT(!(size & allocationMask));
size_t allocationSize = sizeof(LargeObject) + size;
// Ensure that there is enough space for alignment. If the header
// is not a multiple of 8 bytes we will allocate an extra
// headerPadding bytes to ensure it 8 byte aligned.
allocationSize += headerPadding();
// If ASan is supported we add allocationGranularity bytes to the allocated
// space and poison that to detect overflows
#if defined(ADDRESS_SANITIZER)
allocationSize += allocationGranularity;
#endif
// 1. Check if we should trigger a GC.
updateRemainingAllocationSize();
m_threadState->scheduleGCOrForceConservativeGCIfNeeded();
// 2. Try to sweep large objects more than allocationSize bytes
// before allocating a new large object.
if (!lazySweepLargeObjects(allocationSize)) {
// 3. If we have failed in sweeping allocationSize bytes,
// we complete sweeping before allocating this large object.
m_threadState->completeSweep();
}
m_threadState->shouldFlushHeapDoesNotContainCache();
PageMemory* pageMemory = PageMemory::allocate(allocationSize);
m_threadState->allocatedRegionsSinceLastGC().append(pageMemory->region());
Address largeObjectAddress = pageMemory->writableStart();
Address headerAddress = largeObjectAddress + sizeof(LargeObject) + headerPadding();
#if ENABLE(ASSERT)
// Verify that the allocated PageMemory is expectedly zeroed.
for (size_t i = 0; i < size; ++i)
ASSERT(!headerAddress[i]);
#endif
ASSERT(gcInfoIndex > 0);
HeapObjectHeader* header = new (NotNull, headerAddress) HeapObjectHeader(largeObjectSizeInHeader, gcInfoIndex);
Address result = headerAddress + sizeof(*header);
ASSERT(!(reinterpret_cast<uintptr_t>(result) & allocationMask));
LargeObject* largeObject = new (largeObjectAddress) LargeObject(pageMemory, threadState(), size);
header->checkHeader();
// Poison the object header and allocationGranularity bytes after the object
ASAN_POISON_MEMORY_REGION(header, sizeof(*header));
ASAN_POISON_MEMORY_REGION(largeObject->address() + largeObject->size(), allocationGranularity);
largeObject->link(&m_firstLargeObject);
Heap::increaseAllocatedSpace(largeObject->size());
Heap::increaseAllocatedObjectSize(largeObject->size());
return result;
}
void ThreadHeap::freeLargeObject(LargeObject* object)
{
object->heapObjectHeader()->finalize(object->payload(), object->payloadSize());
Heap::decreaseAllocatedSpace(object->size());
// Unpoison the object header and allocationGranularity bytes after the
// object before freeing.
ASAN_UNPOISON_MEMORY_REGION(object->heapObjectHeader(), sizeof(HeapObjectHeader));
ASAN_UNPOISON_MEMORY_REGION(object->address() + object->size(), allocationGranularity);
if (object->terminating()) {
ASSERT(ThreadState::current()->isTerminating());
// The thread is shutting down and this page is being removed as a part
// of the thread local GC. In that case the object could be traced in
// the next global GC if there is a dangling pointer from a live thread
// heap to this dead thread heap. To guard against this, we put the
// page into the orphaned page pool and zap the page memory. This
// ensures that tracing the dangling pointer in the next global GC just
// crashes instead of causing use-after-frees. After the next global
// GC, the orphaned pages are removed.
Heap::orphanedPagePool()->addOrphanedPage(m_index, object);
} else {
ASSERT(!ThreadState::current()->isTerminating());
PageMemory* memory = object->storage();
object->~LargeObject();
delete memory;
}
}
template<typename DataType>
PagePool<DataType>::PagePool()
{
for (int i = 0; i < NumberOfHeaps; ++i) {
m_pool[i] = nullptr;
}
}
FreePagePool::~FreePagePool()
{
for (int index = 0; index < NumberOfHeaps; ++index) {
while (PoolEntry* entry = m_pool[index]) {
m_pool[index] = entry->next;
PageMemory* memory = entry->data;
ASSERT(memory);
delete memory;
delete entry;
}
}
}
void FreePagePool::addFreePage(int index, PageMemory* memory)
{
// When adding a page to the pool we decommit it to ensure it is unused
// while in the pool. This also allows the physical memory, backing the
// page, to be given back to the OS.
memory->decommit();
MutexLocker locker(m_mutex[index]);
PoolEntry* entry = new PoolEntry(memory, m_pool[index]);
m_pool[index] = entry;
}
PageMemory* FreePagePool::takeFreePage(int index)
{
MutexLocker locker(m_mutex[index]);
while (PoolEntry* entry = m_pool[index]) {
m_pool[index] = entry->next;
PageMemory* memory = entry->data;
ASSERT(memory);
delete entry;
if (memory->commit())
return memory;
// We got some memory, but failed to commit it, try again.
delete memory;
}
return nullptr;
}
BaseHeapPage::BaseHeapPage(PageMemory* storage, ThreadState* state)
: m_storage(storage)
, m_threadState(state)
, m_terminating(false)
{
ASSERT(isPageHeaderAddress(reinterpret_cast<Address>(this)));
}
void BaseHeapPage::markOrphaned()
{
m_threadState = nullptr;
m_terminating = false;
// Since we zap the page payload for orphaned pages we need to mark it as
// unused so a conservative pointer won't interpret the object headers.
storage()->markUnused();
}
OrphanedPagePool::~OrphanedPagePool()
{
for (int index = 0; index < NumberOfHeaps; ++index) {
while (PoolEntry* entry = m_pool[index]) {
m_pool[index] = entry->next;
BaseHeapPage* page = entry->data;
delete entry;
PageMemory* memory = page->storage();
ASSERT(memory);
page->~BaseHeapPage();
delete memory;
}
}
}
void OrphanedPagePool::addOrphanedPage(int index, BaseHeapPage* page)
{
page->markOrphaned();
PoolEntry* entry = new PoolEntry(page, m_pool[index]);
m_pool[index] = entry;
}
NO_SANITIZE_ADDRESS
void OrphanedPagePool::decommitOrphanedPages()
{
ASSERT(ThreadState::current()->isInGC());
#if ENABLE(ASSERT)
// No locking needed as all threads are at safepoints at this point in time.
for (ThreadState* state : ThreadState::attachedThreads())
ASSERT(state->isAtSafePoint());
#endif
for (int index = 0; index < NumberOfHeaps; ++index) {
PoolEntry* entry = m_pool[index];
PoolEntry** prevNext = &m_pool[index];
while (entry) {
BaseHeapPage* page = entry->data;
// Check if we should reuse the memory or just free it.
// Large object memory is not reused but freed, normal blink heap
// pages are reused.
// NOTE: We call the destructor before freeing or adding to the
// free page pool.
PageMemory* memory = page->storage();
if (page->isLargeObject()) {
page->~BaseHeapPage();
delete memory;
} else {
page->~BaseHeapPage();
clearMemory(memory);
Heap::freePagePool()->addFreePage(index, memory);
}
PoolEntry* deadEntry = entry;
entry = entry->next;
*prevNext = entry;
delete deadEntry;
}
}
}
NO_SANITIZE_ADDRESS
void OrphanedPagePool::clearMemory(PageMemory* memory)
{
#if defined(ADDRESS_SANITIZER)
// Don't use memset when running with ASan since this needs to zap
// poisoned memory as well and the NO_SANITIZE_ADDRESS annotation
// only works for code in this method and not for calls to memset.
Address base = memory->writableStart();
for (Address current = base; current < base + blinkPagePayloadSize(); ++current)
*current = 0;
#else
memset(memory->writableStart(), 0, blinkPagePayloadSize());
#endif
}
#if ENABLE(ASSERT)
bool OrphanedPagePool::contains(void* object)
{
for (int index = 0; index < NumberOfHeaps; ++index) {
for (PoolEntry* entry = m_pool[index]; entry; entry = entry->next) {
BaseHeapPage* page = entry->data;
if (page->contains(reinterpret_cast<Address>(object)))
return true;
}
}
return false;
}
#endif
void ThreadHeap::freePage(HeapPage* page)
{
Heap::decreaseAllocatedSpace(blinkPageSize);
if (page->terminating()) {
// The thread is shutting down and this page is being removed as a part
// of the thread local GC. In that case the object could be traced in
// the next global GC if there is a dangling pointer from a live thread
// heap to this dead thread heap. To guard against this, we put the
// page into the orphaned page pool and zap the page memory. This
// ensures that tracing the dangling pointer in the next global GC just
// crashes instead of causing use-after-frees. After the next global
// GC, the orphaned pages are removed.
Heap::orphanedPagePool()->addOrphanedPage(m_index, page);
} else {
PageMemory* memory = page->storage();
page->~HeapPage();
Heap::freePagePool()->addFreePage(m_index, memory);
}
}
void ThreadHeap::allocatePage()
{
m_threadState->shouldFlushHeapDoesNotContainCache();
PageMemory* pageMemory = Heap::freePagePool()->takeFreePage(m_index);
// We continue allocating page memory until we succeed in committing one.
while (!pageMemory) {
// Allocate a memory region for blinkPagesPerRegion pages that
// will each have the following layout.
//
// [ guard os page | ... payload ... | guard os page ]
// ^---{ aligned to blink page size }
PageMemoryRegion* region = PageMemoryRegion::allocateNormalPages();
m_threadState->allocatedRegionsSinceLastGC().append(region);
// Setup the PageMemory object for each of the pages in the region.
size_t offset = 0;
for (size_t i = 0; i < blinkPagesPerRegion; ++i) {
PageMemory* memory = PageMemory::setupPageMemoryInRegion(region, offset, blinkPagePayloadSize());
// Take the first possible page ensuring that this thread actually
// gets a page and add the rest to the page pool.
if (!pageMemory) {
if (memory->commit())
pageMemory = memory;
else
delete memory;
} else {
Heap::freePagePool()->addFreePage(m_index, memory);
}
offset += blinkPageSize;
}
}
HeapPage* page = new (pageMemory->writableStart()) HeapPage(pageMemory, this);
page->link(&m_firstPage);
Heap::increaseAllocatedSpace(blinkPageSize);
addToFreeList(page->payload(), page->payloadSize());
}
#if ENABLE(ASSERT)
bool ThreadHeap::pagesToBeSweptContains(Address address)
{
for (HeapPage* page = m_firstUnsweptPage; page; page = page->next()) {
if (page->contains(address))
return true;
}
return false;
}
#endif
size_t ThreadHeap::objectPayloadSizeForTesting()
{
ASSERT(isConsistentForSweeping());
ASSERT(!m_firstUnsweptPage);
ASSERT(!m_firstUnsweptLargeObject);
size_t objectPayloadSize = 0;
for (HeapPage* page = m_firstPage; page; page = page->next())
objectPayloadSize += page->objectPayloadSizeForTesting();
for (LargeObject* largeObject = m_firstLargeObject; largeObject; largeObject = largeObject->next())
objectPayloadSize += largeObject->objectPayloadSizeForTesting();
return objectPayloadSize;
}
#if ENABLE(ASSERT)
bool ThreadHeap::isConsistentForSweeping()
{
// A thread heap is consistent for sweeping if none of the pages to be swept
// contain a freelist block or the current allocation point.
for (size_t i = 0; i < blinkPageSizeLog2; ++i) {
for (FreeListEntry* freeListEntry = m_freeList.m_freeLists[i]; freeListEntry; freeListEntry = freeListEntry->next()) {
if (pagesToBeSweptContains(freeListEntry->address()))
return false;
}
}
if (hasCurrentAllocationArea()) {
if (pagesToBeSweptContains(currentAllocationPoint()))
return false;
}
return true;
}
#endif
void ThreadHeap::makeConsistentForSweeping()
{
markUnmarkedObjectsDead();
setAllocationPoint(nullptr, 0);
clearFreeLists();
}
void ThreadHeap::markUnmarkedObjectsDead()
{
ASSERT(isConsistentForSweeping());
// If a new GC is requested before this thread got around to sweep,
// ie. due to the thread doing a long running operation, we clear
// the mark bits and mark any of the dead objects as dead. The latter
// is used to ensure the next GC marking does not trace already dead
// objects. If we trace a dead object we could end up tracing into
// garbage or the middle of another object via the newly conservatively
// found object.
HeapPage* previousPage = nullptr;
for (HeapPage* page = m_firstUnsweptPage; page; previousPage = page, page = page->next()) {
page->markUnmarkedObjectsDead();
}
if (previousPage) {
ASSERT(m_firstUnsweptPage);
previousPage->m_next = m_firstPage;
m_firstPage = m_firstUnsweptPage;
m_firstUnsweptPage = nullptr;
}
ASSERT(!m_firstUnsweptPage);
LargeObject* previousLargeObject = nullptr;
for (LargeObject* largeObject = m_firstUnsweptLargeObject; largeObject; previousLargeObject = largeObject, largeObject = largeObject->next()) {
largeObject->markUnmarkedObjectsDead();
}
if (previousLargeObject) {
ASSERT(m_firstUnsweptLargeObject);
previousLargeObject->m_next = m_firstLargeObject;
m_firstLargeObject = m_firstUnsweptLargeObject;
m_firstUnsweptLargeObject = nullptr;
}
ASSERT(!m_firstUnsweptLargeObject);
}
void ThreadHeap::clearFreeLists()
{
m_freeList.clear();
}
void FreeList::clear()
{
m_biggestFreeListIndex = 0;
for (size_t i = 0; i < blinkPageSizeLog2; ++i)
m_freeLists[i] = nullptr;
}
int FreeList::bucketIndexForSize(size_t size)
{
ASSERT(size > 0);
int index = -1;
while (size) {
size >>= 1;
index++;
}
return index;
}
HeapPage::HeapPage(PageMemory* storage, ThreadHeap* heap)
: BaseHeapPage(storage, heap->threadState())
, m_next(nullptr)
{
m_objectStartBitMapComputed = false;
ASSERT(isPageHeaderAddress(reinterpret_cast<Address>(this)));
}
size_t HeapPage::objectPayloadSizeForTesting()
{
size_t objectPayloadSize = 0;
Address headerAddress = payload();
ASSERT(headerAddress != payloadEnd());
do {
HeapObjectHeader* header = reinterpret_cast<HeapObjectHeader*>(headerAddress);
if (!header->isFree()) {
header->checkHeader();
objectPayloadSize += header->payloadSize();
}
ASSERT(header->size() < blinkPagePayloadSize());
headerAddress += header->size();
ASSERT(headerAddress <= payloadEnd());
} while (headerAddress < payloadEnd());
return objectPayloadSize;
}
bool HeapPage::isEmpty()
{
HeapObjectHeader* header = reinterpret_cast<HeapObjectHeader*>(payload());
return header->isFree() && header->size() == payloadSize();
}
void HeapPage::sweep(ThreadHeap* heap)
{
clearObjectStartBitMap();
size_t markedObjectSize = 0;
Address startOfGap = payload();
for (Address headerAddress = startOfGap; headerAddress < payloadEnd(); ) {
HeapObjectHeader* header = reinterpret_cast<HeapObjectHeader*>(headerAddress);
ASSERT(header->size() > 0);
ASSERT(header->size() < blinkPagePayloadSize());
if (header->isPromptlyFreed())
heap->decreasePromptlyFreedSize(header->size());
if (header->isFree()) {
size_t size = header->size();
// Zero the memory in the free list header to maintain the
// invariant that memory on the free list is zero filled.
// The rest of the memory is already on the free list and is
// therefore already zero filled.
FILL_ZERO_IF_PRODUCTION(headerAddress, size < sizeof(FreeListEntry) ? size : sizeof(FreeListEntry));
headerAddress += size;
continue;
}
header->checkHeader();
if (!header->isMarked()) {
size_t size = header->size();
// This is a fast version of header->payloadSize().
size_t payloadSize = size - sizeof(HeapObjectHeader);
Address payload = header->payload();
// For ASan we unpoison the specific object when calling the
// finalizer and poison it again when done to allow the object's own
// finalizer to operate on the object, but not have other finalizers
// be allowed to access it.
ASAN_UNPOISON_MEMORY_REGION(payload, payloadSize);
header->finalize(payload, payloadSize);
// This memory will be added to the freelist. Maintain the invariant
// that memory on the freelist is zero filled.
FILL_ZERO_IF_PRODUCTION(headerAddress, size);
ASAN_POISON_MEMORY_REGION(payload, payloadSize);
headerAddress += size;
continue;
}
if (startOfGap != headerAddress)
heap->addToFreeList(startOfGap, headerAddress - startOfGap);
header->unmark();
headerAddress += header->size();
markedObjectSize += header->size();
startOfGap = headerAddress;
}
if (startOfGap != payloadEnd())
heap->addToFreeList(startOfGap, payloadEnd() - startOfGap);
Heap::increaseMarkedObjectSize(markedObjectSize);
}
void HeapPage::markUnmarkedObjectsDead()
{
for (Address headerAddress = payload(); headerAddress < payloadEnd();) {
HeapObjectHeader* header = reinterpret_cast<HeapObjectHeader*>(headerAddress);
ASSERT(header->size() < blinkPagePayloadSize());
// Check if a free list entry first since we cannot call
// isMarked on a free list entry.
if (header->isFree()) {
headerAddress += header->size();
continue;
}
header->checkHeader();
if (header->isMarked())
header->unmark();
else
header->markDead();
headerAddress += header->size();
}
}
void HeapPage::removeFromHeap(ThreadHeap* heap)
{
heap->freePage(this);
}
void HeapPage::populateObjectStartBitMap()
{
memset(&m_objectStartBitMap, 0, objectStartBitMapSize);
Address start = payload();
for (Address headerAddress = start; headerAddress < payloadEnd();) {
HeapObjectHeader* header = reinterpret_cast<HeapObjectHeader*>(headerAddress);
size_t objectOffset = headerAddress - start;
ASSERT(!(objectOffset & allocationMask));
size_t objectStartNumber = objectOffset / allocationGranularity;
size_t mapIndex = objectStartNumber / 8;
ASSERT(mapIndex < objectStartBitMapSize);
m_objectStartBitMap[mapIndex] |= (1 << (objectStartNumber & 7));
headerAddress += header->size();
ASSERT(headerAddress <= payloadEnd());
}
m_objectStartBitMapComputed = true;
}
void HeapPage::clearObjectStartBitMap()
{
m_objectStartBitMapComputed = false;
}
static int numberOfLeadingZeroes(uint8_t byte)
{
if (!byte)
return 8;
int result = 0;
if (byte <= 0x0F) {
result += 4;
byte = byte << 4;
}
if (byte <= 0x3F) {
result += 2;
byte = byte << 2;
}
if (byte <= 0x7F)
result++;
return result;
}
HeapObjectHeader* HeapPage::findHeaderFromAddress(Address address)
{
if (address < payload())
return nullptr;
if (!isObjectStartBitMapComputed())
populateObjectStartBitMap();
size_t objectOffset = address - payload();
size_t objectStartNumber = objectOffset / allocationGranularity;
size_t mapIndex = objectStartNumber / 8;
ASSERT(mapIndex < objectStartBitMapSize);
size_t bit = objectStartNumber & 7;
uint8_t byte = m_objectStartBitMap[mapIndex] & ((1 << (bit + 1)) - 1);
while (!byte) {
ASSERT(mapIndex > 0);
byte = m_objectStartBitMap[--mapIndex];
}
int leadingZeroes = numberOfLeadingZeroes(byte);
objectStartNumber = (mapIndex * 8) + 7 - leadingZeroes;
objectOffset = objectStartNumber * allocationGranularity;
Address objectAddress = objectOffset + payload();
HeapObjectHeader* header = reinterpret_cast<HeapObjectHeader*>(objectAddress);
if (header->isFree())
return nullptr;
header->checkHeader();
return header;
}
void HeapPage::checkAndMarkPointer(Visitor* visitor, Address address)
{
ASSERT(contains(address));
HeapObjectHeader* header = findHeaderFromAddress(address);
if (!header || header->isDead())
return;
#if ENABLE(GC_PROFILE_MARKING)
visitor->setHostInfo(&address, "stack");
#endif
markPointer(visitor, header);
}
#if ENABLE(GC_PROFILE_MARKING)
const GCInfo* HeapPage::findGCInfo(Address address)
{
if (address < payload())
return nullptr;
HeapObjectHeader* header = findHeaderFromAddress(address);
if (!header)
return nullptr;
return Heap::gcInfo(header->gcInfoIndex());
}
#endif
#if ENABLE(GC_PROFILE_HEAP)
void HeapPage::snapshot(TracedValue* json, ThreadState::SnapshotInfo* info)
{
HeapObjectHeader* header = nullptr;
for (Address addr = payload(); addr < payloadEnd(); addr += header->size()) {
header = reinterpret_cast<HeapObjectHeader*>(addr);
if (json)
json->pushInteger(header->encodedSize());
if (header->isFree()) {
info->freeSize += header->size();
continue;
}
size_t tag = info->getClassTag(Heap::gcInfo(header->gcInfoIndex()));
size_t age = header->age();
if (json)
json->pushInteger(tag);
if (header->isMarked()) {
info->liveCount[tag] += 1;
info->liveSize[tag] += header->size();
// Count objects that are live when promoted to the final generation.
if (age == maxHeapObjectAge - 1)
info->generations[tag][maxHeapObjectAge] += 1;
header->incAge();
} else {
info->deadCount[tag] += 1;
info->deadSize[tag] += header->size();
// Count objects that are dead before the final generation.
if (age < maxHeapObjectAge)
info->generations[tag][age] += 1;
}
}
}
#endif
size_t LargeObject::objectPayloadSizeForTesting()
{
return payloadSize();
}
#if ENABLE(GC_PROFILE_HEAP)
void LargeObject::snapshot(TracedValue* json, ThreadState::SnapshotInfo* info)
{
HeapObjectHeader* header = heapObjectHeader();
size_t tag = info->getClassTag(Heap::gcInfo(header->gcInfoIndex()));
size_t age = header->age();
if (header->isMarked()) {
info->liveCount[tag] += 1;
info->liveSize[tag] += header->size();
// Count objects that are live when promoted to the final generation.
if (age == maxHeapObjectAge - 1)
info->generations[tag][maxHeapObjectAge] += 1;
header->incAge();
} else {
info->deadCount[tag] += 1;
info->deadSize[tag] += header->size();
// Count objects that are dead before the final generation.
if (age < maxHeapObjectAge)
info->generations[tag][age] += 1;
}
if (json) {
json->setInteger("class", tag);
json->setInteger("size", header->size());
json->setInteger("isMarked", header->isMarked());
}
}
#endif
void HeapDoesNotContainCache::flush()
{
if (m_hasEntries) {
for (int i = 0; i < numberOfEntries; ++i)
m_entries[i] = nullptr;
m_hasEntries = false;
}
}
size_t HeapDoesNotContainCache::hash(Address address)
{
size_t value = (reinterpret_cast<size_t>(address) >> blinkPageSizeLog2);
value ^= value >> numberOfEntriesLog2;
value ^= value >> (numberOfEntriesLog2 * 2);
value &= numberOfEntries - 1;
return value & ~1; // Returns only even number.
}
bool HeapDoesNotContainCache::lookup(Address address)
{
ASSERT(ThreadState::current()->isInGC());
size_t index = hash(address);
ASSERT(!(index & 1));
Address cachePage = roundToBlinkPageStart(address);
if (m_entries[index] == cachePage)
return m_entries[index];
if (m_entries[index + 1] == cachePage)
return m_entries[index + 1];
return false;
}
void HeapDoesNotContainCache::addEntry(Address address)
{
ASSERT(ThreadState::current()->isInGC());
m_hasEntries = true;
size_t index = hash(address);
ASSERT(!(index & 1));
Address cachePage = roundToBlinkPageStart(address);
m_entries[index + 1] = m_entries[index];
m_entries[index] = cachePage;
}
void Heap::flushHeapDoesNotContainCache()
{
s_heapDoesNotContainCache->flush();
}
enum MarkingMode {
GlobalMarking,
ThreadLocalMarking,
};
template <MarkingMode Mode>
class MarkingVisitor final : public Visitor, public MarkingVisitorImpl<MarkingVisitor<Mode>> {
public:
using Impl = MarkingVisitorImpl<MarkingVisitor<Mode>>;
friend class MarkingVisitorImpl<MarkingVisitor<Mode>>;
#if ENABLE(GC_PROFILE_MARKING)
using LiveObjectSet = HashSet<uintptr_t>;
using LiveObjectMap = HashMap<String, LiveObjectSet>;
using ObjectGraph = HashMap<uintptr_t, std::pair<uintptr_t, String>>;
#endif
MarkingVisitor()
: Visitor(Mode == GlobalMarking ? Visitor::GlobalMarkingVisitorType : Visitor::GenericVisitorType)
{
}
virtual void markHeader(HeapObjectHeader* header, TraceCallback callback) override
{
Impl::visitHeader(header, header->payload(), callback);
}
virtual void mark(const void* objectPointer, TraceCallback callback) override
{
Impl::mark(objectPointer, callback);
}
virtual void registerDelayedMarkNoTracing(const void* object) override
{
Impl::registerDelayedMarkNoTracing(object);
}
virtual void registerWeakMembers(const void* closure, const void* objectPointer, WeakPointerCallback callback) override
{
Impl::registerWeakMembers(closure, objectPointer, callback);
}
virtual void registerWeakTable(const void* closure, EphemeronCallback iterationCallback, EphemeronCallback iterationDoneCallback)
{
Impl::registerWeakTable(closure, iterationCallback, iterationDoneCallback);
}
#if ENABLE(ASSERT)
virtual bool weakTableRegistered(const void* closure)
{
return Impl::weakTableRegistered(closure);
}
#endif
virtual bool isMarked(const void* objectPointer) override
{
return Impl::isMarked(objectPointer);
}
virtual bool ensureMarked(const void* objectPointer) override
{
return Impl::ensureMarked(objectPointer);
}
#if ENABLE(GC_PROFILE_MARKING)
virtual void recordObjectGraphEdge(const void* objectPointer) override
{
MutexLocker locker(objectGraphMutex());
String className(classOf(objectPointer));
{
LiveObjectMap::AddResult result = currentlyLive().add(className, LiveObjectSet());
result.storedValue->value.add(reinterpret_cast<uintptr_t>(objectPointer));
}
ObjectGraph::AddResult result = objectGraph().add(reinterpret_cast<uintptr_t>(objectPointer), std::make_pair(reinterpret_cast<uintptr_t>(m_hostObject), m_hostName));
ASSERT(result.isNewEntry);
// fprintf(stderr, "%s[%p] -> %s[%p]\n", m_hostName.ascii().data(), m_hostObject, className.ascii().data(), objectPointer);
}
void reportStats()
{
fprintf(stderr, "\n---------- AFTER MARKING -------------------\n");
for (LiveObjectMap::iterator it = currentlyLive().begin(), end = currentlyLive().payloadEnd(); it != end; ++it) {
fprintf(stderr, "%s %u", it->key.ascii().data(), it->value.size());
if (it->key == "blink::Document")
reportStillAlive(it->value, previouslyLive().get(it->key));
fprintf(stderr, "\n");
}
previouslyLive().swap(currentlyLive());
currentlyLive().clear();
for (uintptr_t object : objectsToFindPath()) {
dumpPathToObjectFromObjectGraph(objectGraph(), object);
}
}
static void reportStillAlive(LiveObjectSet current, LiveObjectSet previous)
{
int count = 0;
fprintf(stderr, " [previously %u]", previous.size());
for (uintptr_t object : current) {
if (previous.find(object) == previous.payloadEnd())
continue;
count++;
}
if (!count)
return;
fprintf(stderr, " {survived 2GCs %d: ", count);
for (uintptr_t object : current) {
if (previous.find(object) == previous.payloadEnd())
continue;
fprintf(stderr, "%ld", object);
if (--count)
fprintf(stderr, ", ");
}
ASSERT(!count);
fprintf(stderr, "}");
}
static void dumpPathToObjectFromObjectGraph(const ObjectGraph& graph, uintptr_t target)
{
ObjectGraph::const_iterator it = graph.find(target);
if (it == graph.payloadEnd())
return;
fprintf(stderr, "Path to %lx of %s\n", target, classOf(reinterpret_cast<const void*>(target)).ascii().data());
while (it != graph.payloadEnd()) {
fprintf(stderr, "<- %lx of %s\n", it->value.first, it->value.second.utf8().data());
it = graph.find(it->value.first);
}
fprintf(stderr, "\n");
}
static void dumpPathToObjectOnNextGC(void* p)
{
objectsToFindPath().add(reinterpret_cast<uintptr_t>(p));
}
static Mutex& objectGraphMutex()
{
AtomicallyInitializedStatic(Mutex&, mutex = *new Mutex);
return mutex;
}
static LiveObjectMap& previouslyLive()
{
DEFINE_STATIC_LOCAL(LiveObjectMap, map, ());
return map;
}
static LiveObjectMap& currentlyLive()
{
DEFINE_STATIC_LOCAL(LiveObjectMap, map, ());
return map;
}
static ObjectGraph& objectGraph()
{
DEFINE_STATIC_LOCAL(ObjectGraph, graph, ());
return graph;
}
static HashSet<uintptr_t>& objectsToFindPath()
{
DEFINE_STATIC_LOCAL(HashSet<uintptr_t>, set, ());
return set;
}
#endif
protected:
virtual void registerWeakCellWithCallback(void** cell, WeakPointerCallback callback) override
{
Impl::registerWeakCellWithCallback(cell, callback);
}
inline bool shouldMarkObject(const void* objectPointer)
{
if (Mode != ThreadLocalMarking)
return true;
BaseHeapPage* page = pageFromObject(objectPointer);
ASSERT(!page->orphaned());
// When doing a thread local GC, the marker checks if
// the object resides in another thread's heap. If it
// does, the object should not be marked & traced.
return page->terminating();
}
};
void Heap::init()
{
ThreadState::init();
s_markingStack = new CallbackStack();
s_postMarkingCallbackStack = new CallbackStack();
s_weakCallbackStack = new CallbackStack();
s_ephemeronStack = new CallbackStack();
s_heapDoesNotContainCache = new HeapDoesNotContainCache();
s_markingVisitor = new MarkingVisitor<GlobalMarking>();
s_freePagePool = new FreePagePool();
s_orphanedPagePool = new OrphanedPagePool();
s_allocatedObjectSize = 0;
s_allocatedSpace = 0;
s_markedObjectSize = 0;
GCInfoTable::init();
}
void Heap::shutdown()
{
s_shutdownCalled = true;
ThreadState::shutdownHeapIfNecessary();
}
void Heap::doShutdown()
{
// We don't want to call doShutdown() twice.
if (!s_markingVisitor)
return;
ASSERT(!ThreadState::attachedThreads().size());
delete s_markingVisitor;
s_markingVisitor = nullptr;
delete s_heapDoesNotContainCache;
s_heapDoesNotContainCache = nullptr;
delete s_freePagePool;
s_freePagePool = nullptr;
delete s_orphanedPagePool;
s_orphanedPagePool = nullptr;
delete s_weakCallbackStack;
s_weakCallbackStack = nullptr;
delete s_postMarkingCallbackStack;
s_postMarkingCallbackStack = nullptr;
delete s_markingStack;
s_markingStack = nullptr;
delete s_ephemeronStack;
s_ephemeronStack = nullptr;
delete s_regionTree;
s_regionTree = nullptr;
GCInfoTable::shutdown();
ThreadState::shutdown();
ASSERT(Heap::allocatedSpace() == 0);
}
#if ENABLE(ASSERT)
BaseHeapPage* Heap::findPageFromAddress(Address address)
{
ASSERT(ThreadState::current()->isInGC());
for (ThreadState* state : ThreadState::attachedThreads()) {
if (BaseHeapPage* page = state->findPageFromAddress(address))
return page;
}
return nullptr;
}
bool Heap::containedInHeapOrOrphanedPage(void* object)
{
return findPageFromAddress(object) || orphanedPagePool()->contains(object);
}
#endif
Address Heap::checkAndMarkPointer(Visitor* visitor, Address address)
{
ASSERT(ThreadState::current()->isInGC());
#if !ENABLE(ASSERT)
if (s_heapDoesNotContainCache->lookup(address))
return nullptr;
#endif
if (BaseHeapPage* page = lookup(address)) {
ASSERT(page->contains(address));
ASSERT(!page->orphaned());
ASSERT(!s_heapDoesNotContainCache->lookup(address));
page->checkAndMarkPointer(visitor, address);
// FIXME: We only need to set the conservative flag if
// checkAndMarkPointer actually marked the pointer.
s_lastGCWasConservative = true;
return address;
}
#if !ENABLE(ASSERT)
s_heapDoesNotContainCache->addEntry(address);
#else
if (!s_heapDoesNotContainCache->lookup(address))
s_heapDoesNotContainCache->addEntry(address);
#endif
return nullptr;
}
#if ENABLE(GC_PROFILE_MARKING)
const GCInfo* Heap::findGCInfo(Address address)
{
return ThreadState::findGCInfoFromAllThreads(address);
}
#endif
#if ENABLE(GC_PROFILE_MARKING)
void Heap::dumpPathToObjectOnNextGC(void* p)
{
static_cast<MarkingVisitor<GlobalMarking>*>(s_markingVisitor)->dumpPathToObjectOnNextGC(p);
}
String Heap::createBacktraceString()
{
int framesToShow = 3;
int stackFrameSize = 16;
ASSERT(stackFrameSize >= framesToShow);
using FramePointer = void*;
FramePointer* stackFrame = static_cast<FramePointer*>(alloca(sizeof(FramePointer) * stackFrameSize));
WTFGetBacktrace(stackFrame, &stackFrameSize);
StringBuilder builder;
builder.append("Persistent");
bool didAppendFirstName = false;
// Skip frames before/including "blink::Persistent".
bool didSeePersistent = false;
for (int i = 0; i < stackFrameSize && framesToShow > 0; ++i) {
FrameToNameScope frameToName(stackFrame[i]);
if (!frameToName.nullableName())
continue;
if (strstr(frameToName.nullableName(), "blink::Persistent")) {
didSeePersistent = true;
continue;
}
if (!didSeePersistent)
continue;
if (!didAppendFirstName) {
didAppendFirstName = true;
builder.append(" ... Backtrace:");
}
builder.append("\n\t");
builder.append(frameToName.nullableName());
--framesToShow;
}
return builder.toString().replace("blink::", "");
}
#endif
void Heap::pushTraceCallback(void* object, TraceCallback callback)
{
ASSERT(Heap::containedInHeapOrOrphanedPage(object));
CallbackStack::Item* slot = s_markingStack->allocateEntry();
*slot = CallbackStack::Item(object, callback);
}
bool Heap::popAndInvokeTraceCallback(Visitor* visitor)
{
CallbackStack::Item* item = s_markingStack->pop();
if (!item)
return false;
#if ENABLE(GC_PROFILE_MARKING)
visitor->setHostInfo(item->object(), classOf(item->object()));
#endif
item->call(visitor);
return true;
}
void Heap::pushPostMarkingCallback(void* object, TraceCallback callback)
{
ASSERT(!Heap::orphanedPagePool()->contains(object));
CallbackStack::Item* slot = s_postMarkingCallbackStack->allocateEntry();
*slot = CallbackStack::Item(object, callback);
}
bool Heap::popAndInvokePostMarkingCallback(Visitor* visitor)
{
if (CallbackStack::Item* item = s_postMarkingCallbackStack->pop()) {
item->call(visitor);
return true;
}
return false;
}
void Heap::pushWeakCellPointerCallback(void** cell, WeakPointerCallback callback)
{
ASSERT(!Heap::orphanedPagePool()->contains(cell));
CallbackStack::Item* slot = s_weakCallbackStack->allocateEntry();
*slot = CallbackStack::Item(cell, callback);
}
void Heap::pushWeakPointerCallback(void* closure, void* object, WeakPointerCallback callback)
{
BaseHeapPage* page = pageFromObject(object);
ASSERT(!page->orphaned());
ThreadState* state = page->threadState();
state->pushWeakPointerCallback(closure, callback);
}
bool Heap::popAndInvokeWeakPointerCallback(Visitor* visitor)
{
// For weak processing we should never reach orphaned pages since orphaned
// pages are not traced and thus objects on those pages are never be
// registered as objects on orphaned pages. We cannot assert this here
// since we might have an off-heap collection. We assert it in
// Heap::pushWeakPointerCallback.
if (CallbackStack::Item* item = s_weakCallbackStack->pop()) {
item->call(visitor);
return true;
}
return false;
}
void Heap::registerWeakTable(void* table, EphemeronCallback iterationCallback, EphemeronCallback iterationDoneCallback)
{
{
// Check that the ephemeron table being pushed onto the stack is not on
// an orphaned page.
ASSERT(!Heap::orphanedPagePool()->contains(table));
CallbackStack::Item* slot = s_ephemeronStack->allocateEntry();
*slot = CallbackStack::Item(table, iterationCallback);
}
// Register a post-marking callback to tell the tables that
// ephemeron iteration is complete.
pushPostMarkingCallback(table, iterationDoneCallback);
}
#if ENABLE(ASSERT)
bool Heap::weakTableRegistered(const void* table)
{
ASSERT(s_ephemeronStack);
return s_ephemeronStack->hasCallbackForObject(table);
}
#endif
void Heap::preGC()
{
ASSERT(!ThreadState::current()->isInGC());
for (ThreadState* state : ThreadState::attachedThreads())
state->preGC();
}
void Heap::postGC(ThreadState::GCType gcType)
{
ASSERT(ThreadState::current()->isInGC());
for (ThreadState* state : ThreadState::attachedThreads())
state->postGC(gcType);
}
void Heap::collectGarbage(ThreadState::StackState stackState, ThreadState::GCType gcType)
{
ThreadState* state = ThreadState::current();
state->setGCState(ThreadState::StoppingOtherThreads);
GCScope gcScope(stackState);
// Check if we successfully parked the other threads. If not we bail out of
// the GC.
if (!gcScope.allThreadsParked()) {
state->scheduleGC();
return;
}
if (state->isMainThread())
ScriptForbiddenScope::enter();
s_lastGCWasConservative = false;
TRACE_EVENT2("blink_gc", "Heap::collectGarbage",
"precise", stackState == ThreadState::NoHeapPointersOnStack,
"forced", gcType == ThreadState::GCWithSweep);
TRACE_EVENT_SCOPED_SAMPLING_STATE("blink_gc", "BlinkGC");
double timeStamp = WTF::currentTimeMS();
#if ENABLE(GC_PROFILE_MARKING)
static_cast<MarkingVisitor<GlobalMarking>*>(s_markingVisitor)->objectGraph().clear();
#endif
// Disallow allocation during garbage collection (but not during the
// finalization that happens when the gcScope is torn down).
ThreadState::NoAllocationScope noAllocationScope(state);
preGC();
s_markingVisitor->configureEagerTraceLimit();
ASSERT(s_markingVisitor->canTraceEagerly());
Heap::resetMarkedObjectSize();
Heap::resetAllocatedObjectSize();
// 1. Trace persistent roots.
ThreadState::visitPersistentRoots(s_markingVisitor);
// 2. Trace objects reachable from the persistent roots including
// ephemerons.
processMarkingStack(s_markingVisitor);
// 3. Trace objects reachable from the stack. We do this independent of the
// given stackState since other threads might have a different stack state.
ThreadState::visitStackRoots(s_markingVisitor);
// 4. Trace objects reachable from the stack "roots" including ephemerons.
// Only do the processing if we found a pointer to an object on one of the
// thread stacks.
if (lastGCWasConservative())
processMarkingStack(s_markingVisitor);
postMarkingProcessing(s_markingVisitor);
globalWeakProcessing(s_markingVisitor);
// Now we can delete all orphaned pages because there are no dangling
// pointers to the orphaned pages. (If we have such dangling pointers,
// we should have crashed during marking before getting here.)
orphanedPagePool()->decommitOrphanedPages();
postGC(gcType);
#if ENABLE(GC_PROFILE_MARKING)
static_cast<MarkingVisitor<GlobalMarking>*>(s_markingVisitor)->reportStats();
#endif
if (Platform::current()) {
Platform::current()->histogramCustomCounts("BlinkGC.CollectGarbage", WTF::currentTimeMS() - timeStamp, 0, 10 * 1000, 50);
Platform::current()->histogramCustomCounts("BlinkGC.TotalObjectSpace", Heap::allocatedObjectSize() / 1024, 0, 4 * 1024 * 1024, 50);
Platform::current()->histogramCustomCounts("BlinkGC.TotalAllocatedSpace", Heap::allocatedSpace() / 1024, 0, 4 * 1024 * 1024, 50);
}
if (state->isMainThread())
ScriptForbiddenScope::exit();
}
void Heap::collectGarbageForTerminatingThread(ThreadState* state)
{
// We explicitly do not enter a safepoint while doing thread specific
// garbage collection since we don't want to allow a global GC at the
// same time as a thread local GC.
{
MarkingVisitor<ThreadLocalMarking> markingVisitor;
ThreadState::NoAllocationScope noAllocationScope(state);
state->preGC();
s_markingVisitor->configureEagerTraceLimit();
// 1. Trace the thread local persistent roots. For thread local GCs we
// don't trace the stack (ie. no conservative scanning) since this is
// only called during thread shutdown where there should be no objects
// on the stack.
// We also assume that orphaned pages have no objects reachable from
// persistent handles on other threads or CrossThreadPersistents. The
// only cases where this could happen is if a subsequent conservative
// global GC finds a "pointer" on the stack or due to a programming
// error where an object has a dangling cross-thread pointer to an
// object on this heap.
state->visitPersistents(&markingVisitor);
// 2. Trace objects reachable from the thread's persistent roots
// including ephemerons.
processMarkingStack(&markingVisitor);
postMarkingProcessing(&markingVisitor);
globalWeakProcessing(&markingVisitor);
state->postGC(ThreadState::GCWithSweep);
}
state->postGCProcessing();
}
void Heap::processMarkingStack(Visitor* markingVisitor)
{
// Ephemeron fixed point loop.
do {
{
// Iteratively mark all objects that are reachable from the objects
// currently pushed onto the marking stack.
TRACE_EVENT0("blink_gc", "Heap::processMarkingStackSingleThreaded");
while (popAndInvokeTraceCallback(markingVisitor)) { }
}
{
// Mark any strong pointers that have now become reachable in
// ephemeron maps.
TRACE_EVENT0("blink_gc", "Heap::processEphemeronStack");
s_ephemeronStack->invokeEphemeronCallbacks(markingVisitor);
}
// Rerun loop if ephemeron processing queued more objects for tracing.
} while (!s_markingStack->isEmpty());
}
void Heap::postMarkingProcessing(Visitor* markingVisitor)
{
TRACE_EVENT0("blink_gc", "Heap::postMarkingProcessing");
// Call post-marking callbacks including:
// 1. the ephemeronIterationDone callbacks on weak tables to do cleanup
// (specifically to clear the queued bits for weak hash tables), and
// 2. the markNoTracing callbacks on collection backings to mark them
// if they are only reachable from their front objects.
while (popAndInvokePostMarkingCallback(markingVisitor)) { }
s_ephemeronStack->clear();
// Post-marking callbacks should not trace any objects and
// therefore the marking stack should be empty after the
// post-marking callbacks.
ASSERT(s_markingStack->isEmpty());
}
void Heap::globalWeakProcessing(Visitor* markingVisitor)
{
TRACE_EVENT0("blink_gc", "Heap::globalWeakProcessing");
// Call weak callbacks on objects that may now be pointing to dead objects.
while (popAndInvokeWeakPointerCallback(markingVisitor)) { }
// It is not permitted to trace pointers of live objects in the weak
// callback phase, so the marking stack should still be empty here.
ASSERT(s_markingStack->isEmpty());
}
void Heap::collectAllGarbage()
{
// FIXME: Oilpan: we should perform a single GC and everything
// should die. Unfortunately it is not the case for all objects
// because the hierarchy was not completely moved to the heap and
// some heap allocated objects own objects that contain persistents
// pointing to other heap allocated objects.
for (int i = 0; i < 5; ++i)
collectGarbage(ThreadState::NoHeapPointersOnStack);
}
void ThreadHeap::prepareHeapForTermination()
{
ASSERT(!m_firstUnsweptPage);
ASSERT(!m_firstUnsweptLargeObject);
for (HeapPage* page = m_firstPage; page; page = page->next()) {
page->setTerminating();
}
for (LargeObject* largeObject = m_firstLargeObject; largeObject; largeObject = largeObject->next()) {
largeObject->setTerminating();
}
}
size_t Heap::objectPayloadSizeForTesting()
{
size_t objectPayloadSize = 0;
for (ThreadState* state : ThreadState::attachedThreads()) {
state->setGCState(ThreadState::GCRunning);
state->makeConsistentForSweeping();
objectPayloadSize += state->objectPayloadSizeForTesting();
state->setGCState(ThreadState::EagerSweepScheduled);
state->setGCState(ThreadState::Sweeping);
state->setGCState(ThreadState::NoGCScheduled);
}
return objectPayloadSize;
}
void HeapAllocator::backingFree(void* address, int heapIndex)
{
ThreadState* state = ThreadState::current();
if (!address || state->isInGC())
return;
if (state->sweepForbidden())
return;
// Don't promptly free large objects because their page is never reused
// and don't free backings allocated on other threads.
BaseHeapPage* page = pageFromObject(address);
if (page->isLargeObject() || page->threadState() != state)
return;
HeapObjectHeader* header = HeapObjectHeader::fromPayload(address);
header->checkHeader();
state->heap(heapIndex)->promptlyFreeObject(header);
}
void HeapAllocator::freeVectorBacking(void* address)
{
backingFree(address, VectorBackingHeap);
}
void HeapAllocator::freeInlineVectorBacking(void* address)
{
backingFree(address, InlineVectorBackingHeap);
}
void HeapAllocator::freeHashTableBacking(void* address)
{
backingFree(address, HashTableBackingHeap);
}
bool HeapAllocator::backingExpand(void* address, size_t newSize, int heapIndex)
{
ThreadState* state = ThreadState::current();
if (!address || state->isInGC())
return false;
if (state->sweepForbidden())
return false;
ASSERT(state->isAllocationAllowed());
BaseHeapPage* page = pageFromObject(address);
if (page->isLargeObject() || page->threadState() != state)
return false;
HeapObjectHeader* header = HeapObjectHeader::fromPayload(address);
header->checkHeader();
return state->heap(heapIndex)->expandObject(header, newSize);
}
bool HeapAllocator::expandVectorBacking(void* address, size_t newSize)
{
return backingExpand(address, newSize, VectorBackingHeap);
}
bool HeapAllocator::expandInlineVectorBacking(void* address, size_t newSize)
{
return backingExpand(address, newSize, InlineVectorBackingHeap);
}
bool HeapAllocator::expandHashTableBacking(void* address, size_t newSize)
{
return backingExpand(address, newSize, HashTableBackingHeap);
}
void HeapAllocator::backingShrink(void* address, size_t quantizedCurrentSize, size_t quantizedShrunkSize, int heapIndex)
{
// We shrink the object only if the shrinking will make a non-small
// prompt-free block.
// FIXME: Optimize the threshold size.
if (quantizedCurrentSize <= quantizedShrunkSize + sizeof(HeapObjectHeader) + sizeof(void*) * 32)
return;
ThreadState* state = ThreadState::current();
if (!address || state->isInGC())
return;
if (state->sweepForbidden())
return;
ASSERT(state->isAllocationAllowed());
BaseHeapPage* page = pageFromObject(address);
if (page->isLargeObject()) {
// We do nothing for large objects.
// FIXME: This wastes unused memory. If this increases memory
// consumption, we should reallocate a new large object and shrink the
// memory usage.
return;
}
if (page->threadState() != state)
return;
HeapObjectHeader* header = HeapObjectHeader::fromPayload(address);
header->checkHeader();
state->heap(heapIndex)->shrinkObject(header, quantizedShrunkSize);
}
void HeapAllocator::shrinkVectorBackingInternal(void* address, size_t quantizedCurrentSize, size_t quantizedShrunkSize)
{
backingShrink(address, quantizedCurrentSize, quantizedShrunkSize, VectorBackingHeap);
}
void HeapAllocator::shrinkInlineVectorBackingInternal(void* address, size_t quantizedCurrentSize, size_t quantizedShrunkSize)
{
backingShrink(address, quantizedCurrentSize, quantizedShrunkSize, InlineVectorBackingHeap);
}
BaseHeapPage* Heap::lookup(Address address)
{
ASSERT(ThreadState::current()->isInGC());
if (!s_regionTree)
return nullptr;
if (PageMemoryRegion* region = s_regionTree->lookup(address)) {
BaseHeapPage* page = region->pageFromAddress(address);
return page && !page->orphaned() ? page : nullptr;
}
return nullptr;
}
static Mutex& regionTreeMutex()
{
AtomicallyInitializedStatic(Mutex&, mutex = *new Mutex);
return mutex;
}
void Heap::removePageMemoryRegion(PageMemoryRegion* region)
{
// Deletion of large objects (and thus their regions) can happen
// concurrently on sweeper threads. Removal can also happen during thread
// shutdown, but that case is safe. Regardless, we make all removals
// mutually exclusive.
MutexLocker locker(regionTreeMutex());
RegionTree::remove(region, &s_regionTree);
}
void Heap::addPageMemoryRegion(PageMemoryRegion* region)
{
RegionTree::add(new RegionTree(region), &s_regionTree);
}
PageMemoryRegion* Heap::RegionTree::lookup(Address address)
{
RegionTree* current = s_regionTree;
while (current) {
Address base = current->m_region->base();
if (address < base) {
current = current->m_left;
continue;
}
if (address >= base + current->m_region->size()) {
current = current->m_right;
continue;
}
ASSERT(current->m_region->contains(address));
return current->m_region;
}
return nullptr;
}
void Heap::RegionTree::add(RegionTree* newTree, RegionTree** context)
{
ASSERT(newTree);
Address base = newTree->m_region->base();
for (RegionTree* current = *context; current; current = *context) {
ASSERT(!current->m_region->contains(base));
context = (base < current->m_region->base()) ? ¤t->m_left : ¤t->m_right;
}
*context = newTree;
}
void Heap::RegionTree::remove(PageMemoryRegion* region, RegionTree** context)
{
ASSERT(region);
ASSERT(context);
Address base = region->base();
RegionTree* current = *context;
for (; current; current = *context) {
if (region == current->m_region)
break;
context = (base < current->m_region->base()) ? ¤t->m_left : ¤t->m_right;
}
// Shutdown via detachMainThread might not have populated the region tree.
if (!current)
return;
*context = nullptr;
if (current->m_left) {
add(current->m_left, context);
current->m_left = nullptr;
}
if (current->m_right) {
add(current->m_right, context);
current->m_right = nullptr;
}
delete current;
}
Visitor* Heap::s_markingVisitor;
CallbackStack* Heap::s_markingStack;
CallbackStack* Heap::s_postMarkingCallbackStack;
CallbackStack* Heap::s_weakCallbackStack;
CallbackStack* Heap::s_ephemeronStack;
HeapDoesNotContainCache* Heap::s_heapDoesNotContainCache;
bool Heap::s_shutdownCalled = false;
bool Heap::s_lastGCWasConservative = false;
FreePagePool* Heap::s_freePagePool;
OrphanedPagePool* Heap::s_orphanedPagePool;
Heap::RegionTree* Heap::s_regionTree = nullptr;
size_t Heap::s_allocatedObjectSize = 0;
size_t Heap::s_allocatedSpace = 0;
size_t Heap::s_markedObjectSize = 0;
} // namespace blink
|