1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
|
/*
* Copyright (C) 2013 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef Heap_h
#define Heap_h
#include "platform/PlatformExport.h"
#include "platform/heap/AddressSanitizer.h"
#include "platform/heap/ThreadState.h"
#include "platform/heap/Visitor.h"
#include "public/platform/WebThread.h"
#include "wtf/Assertions.h"
#include "wtf/Atomics.h"
#include "wtf/HashCountedSet.h"
#include "wtf/LinkedHashSet.h"
#include "wtf/ListHashSet.h"
#include "wtf/OwnPtr.h"
#include "wtf/PageAllocator.h"
#include "wtf/PassRefPtr.h"
#include "wtf/ThreadSafeRefCounted.h"
#include <stdint.h>
namespace blink {
const size_t blinkPageSizeLog2 = 17;
const size_t blinkPageSize = 1 << blinkPageSizeLog2;
const size_t blinkPageOffsetMask = blinkPageSize - 1;
const size_t blinkPageBaseMask = ~blinkPageOffsetMask;
// We allocate pages at random addresses but in groups of
// blinkPagesPerRegion at a given random address. We group pages to
// not spread out too much over the address space which would blow
// away the page tables and lead to bad performance.
const size_t blinkPagesPerRegion = 10;
// Double precision floats are more efficient when 8 byte aligned, so we 8 byte
// align all allocations even on 32 bit.
const size_t allocationGranularity = 8;
const size_t allocationMask = allocationGranularity - 1;
const size_t objectStartBitMapSize = (blinkPageSize + ((8 * allocationGranularity) - 1)) / (8 * allocationGranularity);
const size_t reservedForObjectBitMap = ((objectStartBitMapSize + allocationMask) & ~allocationMask);
const size_t maxHeapObjectSizeLog2 = 27;
const size_t maxHeapObjectSize = 1 << maxHeapObjectSizeLog2;
const size_t largeObjectSizeThreshold = blinkPageSize / 2;
const uint8_t freelistZapValue = 42;
const uint8_t finalizedZapValue = 24;
// The orphaned zap value must be zero in the lowest bits to allow for using
// the mark bit when tracing.
const uint8_t orphanedZapValue = 240;
// A zap value for vtables should be < 4K to ensure it cannot be
// used for dispatch.
static const intptr_t zappedVTable = 0xd0d;
#if ENABLE(ASSERT) || defined(LEAK_SANITIZER) || defined(ADDRESS_SANITIZER)
#define FILL_ZERO_IF_PRODUCTION(address, size) do { } while (false)
#define FILL_ZERO_IF_NOT_PRODUCTION(address, size) memset((address), 0, (size))
#else
#define FILL_ZERO_IF_PRODUCTION(address, size) memset((address), 0, (size))
#define FILL_ZERO_IF_NOT_PRODUCTION(address, size) do { } while (false)
#endif
class CallbackStack;
class PageMemory;
template<ThreadAffinity affinity> class ThreadLocalPersistents;
template<typename T, typename RootsAccessor = ThreadLocalPersistents<ThreadingTrait<T>::Affinity>> class Persistent;
#if ENABLE(GC_PROFILE_HEAP)
class TracedValue;
#endif
// HeapObjectHeader is 4 byte (32 bit) that has the following layout:
//
// | gcInfoIndex (15 bit) | size (14 bit) | dead bit (1 bit) | freed bit (1 bit) | mark bit (1 bit) |
//
// - For non-large objects, 14 bit is enough for |size| because the blink
// page size is 2^17 byte and each object is guaranteed to be aligned with
// 2^3 byte.
// - For large objects, |size| is 0. The actual size of a large object is
// stored in LargeObject::m_payloadSize.
// - 15 bit is enough for gcInfoIndex because there are less than 2^15 types
// in Blink.
const size_t headerGCInfoIndexShift = 17;
const size_t headerGCInfoIndexMask = (static_cast<size_t>((1 << 15) - 1)) << headerGCInfoIndexShift;
const size_t headerSizeMask = (static_cast<size_t>((1 << 14) - 1)) << 3;
const size_t headerMarkBitMask = 1;
const size_t headerFreedBitMask = 2;
// The dead bit is used for objects that have gone through a GC marking, but did
// not get swept before a new GC started. In that case we set the dead bit on
// objects that were not marked in the previous GC to ensure we are not tracing
// them via a conservatively found pointer. Tracing dead objects could lead to
// tracing of already finalized objects in another thread's heap which is a
// use-after-free situation.
const size_t headerDeadBitMask = 4;
// On free-list entries we reuse the dead bit to distinguish a normal free-list
// entry from one that has been promptly freed.
const size_t headerPromptlyFreedBitMask = headerFreedBitMask | headerDeadBitMask;
const size_t largeObjectSizeInHeader = 0;
const size_t gcInfoIndexForFreeListHeader = 0;
const size_t nonLargeObjectSizeMax = 1 << 17;
#if ENABLE(GC_PROFILE_HEAP)
const size_t maxHeapObjectAge = 7;
#endif
static_assert(nonLargeObjectSizeMax >= blinkPageSize, "max size supported by HeapObjectHeader must at least be blinkPageSize");
class PLATFORM_EXPORT HeapObjectHeader {
public:
// If gcInfoIndex is 0, this header is interpreted as a free list header.
NO_SANITIZE_ADDRESS
HeapObjectHeader(size_t size, size_t gcInfoIndex)
{
#if ENABLE(ASSERT)
m_magic = magic;
#endif
#if ENABLE(GC_PROFILE_HEAP)
m_age = 0;
#endif
// sizeof(HeapObjectHeader) must be equal to or smaller than
// allocationGranurarity, because HeapObjectHeader is used as a header
// for an freed entry. Given that the smallest entry size is
// allocationGranurarity, HeapObjectHeader must fit into the size.
static_assert(sizeof(HeapObjectHeader) <= allocationGranularity, "size of HeapObjectHeader must be smaller than allocationGranularity");
#if CPU(64BIT)
static_assert(sizeof(HeapObjectHeader) == 8, "size of HeapObjectHeader must be 8 byte aligned");
#endif
ASSERT(gcInfoIndex < GCInfoTable::maxIndex);
ASSERT(size < nonLargeObjectSizeMax);
ASSERT(!(size & allocationMask));
m_encoded = (gcInfoIndex << headerGCInfoIndexShift) | size | (gcInfoIndex ? 0 : headerFreedBitMask);
}
NO_SANITIZE_ADDRESS
bool isFree() const { return m_encoded & headerFreedBitMask; }
NO_SANITIZE_ADDRESS
bool isPromptlyFreed() const { return (m_encoded & headerPromptlyFreedBitMask) == headerPromptlyFreedBitMask; }
NO_SANITIZE_ADDRESS
void markPromptlyFreed() { m_encoded |= headerPromptlyFreedBitMask; }
inline size_t size() const;
NO_SANITIZE_ADDRESS
size_t gcInfoIndex() const { return (m_encoded & headerGCInfoIndexMask) >> headerGCInfoIndexShift; }
NO_SANITIZE_ADDRESS
void setSize(size_t size) { m_encoded = size | (m_encoded & ~headerSizeMask); }
inline bool isMarked() const;
inline void mark();
inline void unmark();
inline void markDead();
inline bool isDead() const;
inline Address payload();
inline size_t payloadSize();
inline Address payloadEnd();
inline void checkHeader() const;
#if ENABLE(ASSERT)
// Zap magic number with a new magic number that means there was once an
// object allocated here, but it was freed because nobody marked it during
// GC.
void zapMagic();
#endif
void finalize(Address, size_t);
static HeapObjectHeader* fromPayload(const void*);
static const uint16_t magic = 0xfff1;
static const uint16_t zappedMagic = 0x4321;
#if ENABLE(GC_PROFILE_HEAP)
NO_SANITIZE_ADDRESS
size_t encodedSize() const { return m_encoded; }
NO_SANITIZE_ADDRESS
size_t age() const { return m_age; }
NO_SANITIZE_ADDRESS
void incAge()
{
if (m_age < maxHeapObjectAge)
m_age++;
}
#endif
#if !ENABLE(ASSERT) && !ENABLE(GC_PROFILE_HEAP) && CPU(64BIT)
// This method is needed just to avoid compilers from removing m_padding.
uint64_t unusedMethod() const { return m_padding; }
#endif
private:
uint32_t m_encoded;
#if ENABLE(ASSERT)
uint16_t m_magic;
#endif
#if ENABLE(GC_PROFILE_HEAP)
uint8_t m_age;
#endif
// In 64 bit architectures, we intentionally add 4 byte padding immediately
// after the HeapHeaderObject. This is because:
//
// | HeapHeaderObject (4 byte) | padding (4 byte) | object payload (8 * n byte) |
// ^8 byte aligned ^8 byte aligned
//
// is better than:
//
// | HeapHeaderObject (4 byte) | object payload (8 * n byte) | padding (4 byte) |
// ^4 byte aligned ^8 byte aligned ^4 byte aligned
//
// since the former layout aligns both header and payload to 8 byte.
#if !ENABLE(ASSERT) && !ENABLE(GC_PROFILE_HEAP) && CPU(64BIT)
uint32_t m_padding;
#endif
};
inline HeapObjectHeader* HeapObjectHeader::fromPayload(const void* payload)
{
Address addr = reinterpret_cast<Address>(const_cast<void*>(payload));
HeapObjectHeader* header =
reinterpret_cast<HeapObjectHeader*>(addr - sizeof(HeapObjectHeader));
return header;
}
class FreeListEntry final : public HeapObjectHeader {
public:
NO_SANITIZE_ADDRESS
explicit FreeListEntry(size_t size)
: HeapObjectHeader(size, gcInfoIndexForFreeListHeader)
, m_next(nullptr)
{
#if ENABLE(ASSERT) && !defined(ADDRESS_SANITIZER)
// Zap free area with asterisks, aka 0x2a2a2a2a.
// For ASan don't zap since we keep accounting in the freelist entry.
for (size_t i = sizeof(*this); i < size; ++i)
reinterpret_cast<Address>(this)[i] = freelistZapValue;
ASSERT(size >= sizeof(HeapObjectHeader));
zapMagic();
#endif
}
Address address() { return reinterpret_cast<Address>(this); }
NO_SANITIZE_ADDRESS
void unlink(FreeListEntry** prevNext)
{
*prevNext = m_next;
m_next = nullptr;
}
NO_SANITIZE_ADDRESS
void link(FreeListEntry** prevNext)
{
m_next = *prevNext;
*prevNext = this;
}
NO_SANITIZE_ADDRESS
FreeListEntry* next() const { return m_next; }
NO_SANITIZE_ADDRESS
void append(FreeListEntry* next)
{
ASSERT(!m_next);
m_next = next;
}
#if defined(ADDRESS_SANITIZER)
NO_SANITIZE_ADDRESS
bool shouldAddToFreeList()
{
// Init if not already magic.
if ((m_asanMagic & ~asanDeferMemoryReuseMask) != asanMagic) {
m_asanMagic = asanMagic | asanDeferMemoryReuseCount;
return false;
}
// Decrement if count part of asanMagic > 0.
if (m_asanMagic & asanDeferMemoryReuseMask)
m_asanMagic--;
return !(m_asanMagic & asanDeferMemoryReuseMask);
}
#endif
private:
FreeListEntry* m_next;
#if defined(ADDRESS_SANITIZER)
unsigned m_asanMagic;
#endif
};
// Blink heap pages are set up with a guard page before and after the payload.
inline size_t blinkPagePayloadSize()
{
return blinkPageSize - 2 * WTF::kSystemPageSize;
}
// Blink heap pages are aligned to the Blink heap page size.
// Therefore, the start of a Blink page can be obtained by
// rounding down to the Blink page size.
inline Address roundToBlinkPageStart(Address address)
{
return reinterpret_cast<Address>(reinterpret_cast<uintptr_t>(address) & blinkPageBaseMask);
}
inline Address roundToBlinkPageEnd(Address address)
{
return reinterpret_cast<Address>(reinterpret_cast<uintptr_t>(address - 1) & blinkPageBaseMask) + blinkPageSize;
}
// Compute the amount of padding we have to add to a header to make
// the size of the header plus the padding a multiple of 8 bytes.
inline size_t headerPadding()
{
return (allocationGranularity - (sizeof(HeapObjectHeader) % allocationGranularity)) % allocationGranularity;
}
// Masks an address down to the enclosing blink page base address.
inline Address blinkPageAddress(Address address)
{
return reinterpret_cast<Address>(reinterpret_cast<uintptr_t>(address) & blinkPageBaseMask);
}
#if ENABLE(ASSERT)
// Sanity check for a page header address: the address of the page
// header should be OS page size away from being Blink page size
// aligned.
inline bool isPageHeaderAddress(Address address)
{
return !((reinterpret_cast<uintptr_t>(address) & blinkPageOffsetMask) - WTF::kSystemPageSize);
}
#endif
// FIXME: Add a good comment about the heap layout once heap relayout work
// is done.
class BaseHeapPage {
public:
BaseHeapPage(PageMemory*, ThreadState*);
virtual ~BaseHeapPage() { }
// virtual methods are slow. So performance-sensitive methods
// should be defined as non-virtual methods on HeapPage and LargeObject.
// The following methods are not performance-sensitive.
virtual size_t objectPayloadSizeForTesting() = 0;
virtual bool isEmpty() = 0;
virtual void removeFromHeap(ThreadHeap*) = 0;
virtual void sweep(ThreadHeap*) = 0;
virtual void markUnmarkedObjectsDead() = 0;
// Check if the given address points to an object in this
// heap page. If so, find the start of that object and mark it
// using the given Visitor. Otherwise do nothing. The pointer must
// be within the same aligned blinkPageSize as the this-pointer.
//
// This is used during conservative stack scanning to
// conservatively mark all objects that could be referenced from
// the stack.
virtual void checkAndMarkPointer(Visitor*, Address) = 0;
virtual void markOrphaned();
#if ENABLE(GC_PROFILE_MARKING)
virtual const GCInfo* findGCInfo(Address) = 0;
#endif
#if ENABLE(GC_PROFILE_HEAP)
virtual void snapshot(TracedValue*, ThreadState::SnapshotInfo*) = 0;
#endif
#if ENABLE(ASSERT)
virtual bool contains(Address) = 0;
#endif
virtual size_t size() = 0;
virtual bool isLargeObject() { return false; }
Address address() { return reinterpret_cast<Address>(this); }
PageMemory* storage() const { return m_storage; }
ThreadState* threadState() const { return m_threadState; }
bool orphaned() { return !m_threadState; }
bool terminating() { return m_terminating; }
void setTerminating() { m_terminating = true; }
private:
PageMemory* m_storage;
ThreadState* m_threadState;
// Whether the page is part of a terminating thread or not.
bool m_terminating;
};
class HeapPage final : public BaseHeapPage {
public:
HeapPage(PageMemory*, ThreadHeap*);
Address payload()
{
return address() + sizeof(HeapPage) + headerPadding();
}
size_t payloadSize()
{
return (blinkPagePayloadSize() - sizeof(HeapPage) - headerPadding()) & ~allocationMask;
}
Address payloadEnd() { return payload() + payloadSize(); }
bool containedInObjectPayload(Address address) { return payload() <= address && address < payloadEnd(); }
void link(HeapPage** previousNext)
{
m_next = *previousNext;
*previousNext = this;
}
void unlink(HeapPage** previousNext)
{
*previousNext = m_next;
m_next = nullptr;
}
virtual size_t objectPayloadSizeForTesting() override;
virtual bool isEmpty() override;
virtual void removeFromHeap(ThreadHeap*) override;
virtual void sweep(ThreadHeap*) override;
virtual void markUnmarkedObjectsDead() override;
virtual void checkAndMarkPointer(Visitor*, Address) override;
virtual void markOrphaned() override
{
// Zap the payload with a recognizable value to detect any incorrect
// cross thread pointer usage.
#if defined(ADDRESS_SANITIZER)
// This needs to zap poisoned memory as well.
// Force unpoison memory before memset.
ASAN_UNPOISON_MEMORY_REGION(payload(), payloadSize());
#endif
memset(payload(), orphanedZapValue, payloadSize());
BaseHeapPage::markOrphaned();
}
#if ENABLE(GC_PROFILE_MARKING)
const GCInfo* findGCInfo(Address) override;
#endif
#if ENABLE(GC_PROFILE_HEAP)
virtual void snapshot(TracedValue*, ThreadState::SnapshotInfo*);
#endif
#if ENABLE(ASSERT)
// Returns true for the whole blinkPageSize page that the page is on, even
// for the header, and the unmapped guard page at the start. That ensures
// the result can be used to populate the negative page cache.
virtual bool contains(Address addr) override
{
Address blinkPageStart = roundToBlinkPageStart(address());
ASSERT(blinkPageStart == address() - WTF::kSystemPageSize); // Page is at aligned address plus guard page size.
return blinkPageStart <= addr && addr < blinkPageStart + blinkPageSize;
}
#endif
virtual size_t size() override { return blinkPageSize; }
HeapPage* next() { return m_next; }
void clearObjectStartBitMap();
#if defined(ADDRESS_SANITIZER)
void poisonUnmarkedObjects();
#endif
// This method is needed just to avoid compilers from removing m_padding.
uint64_t unusedMethod() const { return m_padding; }
private:
HeapObjectHeader* findHeaderFromAddress(Address);
void populateObjectStartBitMap();
bool isObjectStartBitMapComputed() { return m_objectStartBitMapComputed; }
HeapPage* m_next;
bool m_objectStartBitMapComputed;
uint8_t m_objectStartBitMap[reservedForObjectBitMap];
uint64_t m_padding; // Preserve 8-byte alignment on 32-bit systems.
friend class ThreadHeap;
};
// Large allocations are allocated as separate objects and linked in a list.
//
// In order to use the same memory allocation routines for everything allocated
// in the heap, large objects are considered heap pages containing only one
// object.
class LargeObject final : public BaseHeapPage {
public:
LargeObject(PageMemory* storage, ThreadState* state, size_t payloadSize)
: BaseHeapPage(storage, state)
, m_payloadSize(payloadSize)
{
}
Address payload() { return heapObjectHeader()->payload(); }
size_t payloadSize() { return m_payloadSize; }
Address payloadEnd() { return payload() + payloadSize(); }
bool containedInObjectPayload(Address address) { return payload() <= address && address < payloadEnd(); }
virtual size_t objectPayloadSizeForTesting() override;
virtual bool isEmpty() override;
virtual void removeFromHeap(ThreadHeap*) override;
virtual void sweep(ThreadHeap*) override;
virtual void markUnmarkedObjectsDead() override;
virtual void checkAndMarkPointer(Visitor*, Address) override;
virtual void markOrphaned() override
{
// Zap the payload with a recognizable value to detect any incorrect
// cross thread pointer usage.
memset(payload(), orphanedZapValue, payloadSize());
BaseHeapPage::markOrphaned();
}
#if ENABLE(GC_PROFILE_MARKING)
virtual const GCInfo* findGCInfo(Address address) override
{
if (!objectContains(address))
return nullptr;
return gcInfo();
}
#endif
#if ENABLE(GC_PROFILE_HEAP)
virtual void snapshot(TracedValue*, ThreadState::SnapshotInfo*) override;
#endif
#if ENABLE(ASSERT)
// Returns true for any address that is on one of the pages that this
// large object uses. That ensures that we can use a negative result to
// populate the negative page cache.
virtual bool contains(Address object) override
{
return roundToBlinkPageStart(address()) <= object && object < roundToBlinkPageEnd(address() + size());
}
#endif
virtual size_t size()
{
return sizeof(LargeObject) + headerPadding() + sizeof(HeapObjectHeader) + m_payloadSize;
}
virtual bool isLargeObject() override { return true; }
void link(LargeObject** previousNext)
{
m_next = *previousNext;
*previousNext = this;
}
void unlink(LargeObject** previousNext)
{
*previousNext = m_next;
m_next = nullptr;
}
LargeObject* next()
{
return m_next;
}
HeapObjectHeader* heapObjectHeader()
{
Address headerAddress = address() + sizeof(LargeObject) + headerPadding();
return reinterpret_cast<HeapObjectHeader*>(headerAddress);
}
// This method is needed just to avoid compilers from removing m_padding.
uint64_t unusedMethod() const { return m_padding; }
private:
friend class ThreadHeap;
LargeObject* m_next;
size_t m_payloadSize;
uint64_t m_padding; // Preserve 8-byte alignment on 32-bit systems.
};
// A HeapDoesNotContainCache provides a fast way of taking an arbitrary
// pointer-sized word, and determining whether it cannot be interpreted as a
// pointer to an area that is managed by the garbage collected Blink heap. This
// is a cache of 'pages' that have previously been determined to be wholly
// outside of the heap. The size of these pages must be smaller than the
// allocation alignment of the heap pages. We determine off-heap-ness by
// rounding down the pointer to the nearest page and looking up the page in the
// cache. If there is a miss in the cache we can determine the status of the
// pointer precisely using the heap RegionTree.
//
// The HeapDoesNotContainCache is a negative cache, so it must be flushed when
// memory is added to the heap.
class HeapDoesNotContainCache {
public:
HeapDoesNotContainCache()
: m_entries(adoptArrayPtr(new Address[HeapDoesNotContainCache::numberOfEntries]))
, m_hasEntries(false)
{
// Start by flushing the cache in a non-empty state to initialize all the cache entries.
for (int i = 0; i < numberOfEntries; ++i)
m_entries[i] = nullptr;
}
void flush();
bool isEmpty() { return !m_hasEntries; }
// Perform a lookup in the cache.
//
// If lookup returns false, the argument address was not found in
// the cache and it is unknown if the address is in the Blink
// heap.
//
// If lookup returns true, the argument address was found in the
// cache which means the address is not in the heap.
PLATFORM_EXPORT bool lookup(Address);
// Add an entry to the cache.
PLATFORM_EXPORT void addEntry(Address);
private:
static const int numberOfEntriesLog2 = 12;
static const int numberOfEntries = 1 << numberOfEntriesLog2;
static size_t hash(Address);
WTF::OwnPtr<Address[]> m_entries;
bool m_hasEntries;
};
template<typename DataType>
class PagePool {
protected:
PagePool();
class PoolEntry {
public:
PoolEntry(DataType* data, PoolEntry* next)
: data(data)
, next(next)
{ }
DataType* data;
PoolEntry* next;
};
PoolEntry* m_pool[NumberOfHeaps];
};
// Once pages have been used for one type of thread heap they will never be
// reused for another type of thread heap. Instead of unmapping, we add the
// pages to a pool of pages to be reused later by a thread heap of the same
// type. This is done as a security feature to avoid type confusion. The
// heaps are type segregated by having separate thread heaps for different
// types of objects. Holding on to pages ensures that the same virtual address
// space cannot be used for objects of another type than the type contained
// in this page to begin with.
class FreePagePool : public PagePool<PageMemory> {
public:
~FreePagePool();
void addFreePage(int, PageMemory*);
PageMemory* takeFreePage(int);
private:
Mutex m_mutex[NumberOfHeaps];
};
class OrphanedPagePool : public PagePool<BaseHeapPage> {
public:
~OrphanedPagePool();
void addOrphanedPage(int, BaseHeapPage*);
void decommitOrphanedPages();
#if ENABLE(ASSERT)
bool contains(void*);
#endif
private:
void clearMemory(PageMemory*);
};
class FreeList {
public:
FreeList();
void addToFreeList(Address, size_t);
void clear();
// Returns a bucket number for inserting a FreeListEntry of a given size.
// All FreeListEntries in the given bucket, n, have size >= 2^n.
static int bucketIndexForSize(size_t);
private:
int m_biggestFreeListIndex;
// All FreeListEntries in the nth list have size >= 2^n.
FreeListEntry* m_freeLists[blinkPageSizeLog2];
friend class ThreadHeap;
};
// Thread heaps represent a part of the per-thread Blink heap.
//
// Each Blink thread has a number of thread heaps: one general heap
// that contains any type of object and a number of heaps specialized
// for specific object types (such as Node).
//
// Each thread heap contains the functionality to allocate new objects
// (potentially adding new pages to the heap), to find and mark
// objects during conservative stack scanning and to sweep the set of
// pages after a GC.
class PLATFORM_EXPORT ThreadHeap final {
public:
ThreadHeap(ThreadState*, int);
~ThreadHeap();
void cleanupPages();
#if ENABLE(ASSERT)
BaseHeapPage* findPageFromAddress(Address);
#endif
#if ENABLE(GC_PROFILE_HEAP)
void snapshot(TracedValue*, ThreadState::SnapshotInfo*);
#endif
void clearFreeLists();
void makeConsistentForSweeping();
#if ENABLE(ASSERT)
bool isConsistentForSweeping();
#endif
size_t objectPayloadSizeForTesting();
ThreadState* threadState() { return m_threadState; }
void addToFreeList(Address address, size_t size)
{
ASSERT(findPageFromAddress(address));
ASSERT(findPageFromAddress(address + size - 1));
m_freeList.addToFreeList(address, size);
}
inline Address allocate(size_t payloadSize, size_t gcInfoIndex);
inline static size_t roundedAllocationSize(size_t size)
{
return allocationSizeFromSize(size) - sizeof(HeapObjectHeader);
}
inline static size_t allocationSizeFromSize(size_t);
void prepareHeapForTermination();
void prepareForSweep();
void completeSweep();
void freePage(HeapPage*);
void freeLargeObject(LargeObject*);
void promptlyFreeObject(HeapObjectHeader*);
bool expandObject(HeapObjectHeader*, size_t);
void shrinkObject(HeapObjectHeader*, size_t);
void decreasePromptlyFreedSize(size_t size) { m_promptlyFreedSize -= size; }
private:
Address outOfLineAllocate(size_t allocationSize, size_t gcInfoIndex);
Address currentAllocationPoint() const { return m_currentAllocationPoint; }
size_t remainingAllocationSize() const { return m_remainingAllocationSize; }
bool hasCurrentAllocationArea() const { return currentAllocationPoint() && remainingAllocationSize(); }
inline void setAllocationPoint(Address, size_t);
void updateRemainingAllocationSize();
Address allocateFromFreeList(size_t, size_t gcInfoIndex);
Address lazySweepPages(size_t, size_t gcInfoIndex);
bool lazySweepLargeObjects(size_t);
void allocatePage();
Address allocateLargeObject(size_t, size_t gcInfoIndex);
inline Address allocateObject(size_t allocationSize, size_t gcInfoIndex);
#if ENABLE(ASSERT)
bool pagesToBeSweptContains(Address);
#endif
bool coalesce();
void markUnmarkedObjectsDead();
Address m_currentAllocationPoint;
size_t m_remainingAllocationSize;
size_t m_lastRemainingAllocationSize;
HeapPage* m_firstPage;
LargeObject* m_firstLargeObject;
HeapPage* m_firstUnsweptPage;
LargeObject* m_firstUnsweptLargeObject;
ThreadState* m_threadState;
FreeList m_freeList;
// Index into the page pools. This is used to ensure that the pages of the
// same type go into the correct page pool and thus avoid type confusion.
int m_index;
// The size of promptly freed objects in the heap.
size_t m_promptlyFreedSize;
};
class PLATFORM_EXPORT Heap {
public:
static void init();
static void shutdown();
static void doShutdown();
#if ENABLE(ASSERT)
static BaseHeapPage* findPageFromAddress(Address);
static BaseHeapPage* findPageFromAddress(void* pointer) { return findPageFromAddress(reinterpret_cast<Address>(pointer)); }
static bool containedInHeapOrOrphanedPage(void*);
#endif
// Push a trace callback on the marking stack.
static void pushTraceCallback(void* containerObject, TraceCallback);
// Push a trace callback on the post-marking callback stack. These
// callbacks are called after normal marking (including ephemeron
// iteration).
static void pushPostMarkingCallback(void*, TraceCallback);
// Add a weak pointer callback to the weak callback work list. General
// object pointer callbacks are added to a thread local weak callback work
// list and the callback is called on the thread that owns the object, with
// the closure pointer as an argument. Most of the time, the closure and
// the containerObject can be the same thing, but the containerObject is
// constrained to be on the heap, since the heap is used to identify the
// correct thread.
static void pushWeakPointerCallback(void* closure, void* containerObject, WeakPointerCallback);
// Similar to the more general pushWeakPointerCallback, but cell
// pointer callbacks are added to a static callback work list and the weak
// callback is performed on the thread performing garbage collection. This
// is OK because cells are just cleared and no deallocation can happen.
static void pushWeakCellPointerCallback(void** cell, WeakPointerCallback);
// Pop the top of a marking stack and call the callback with the visitor
// and the object. Returns false when there is nothing more to do.
static bool popAndInvokeTraceCallback(Visitor*);
// Remove an item from the post-marking callback stack and call
// the callback with the visitor and the object pointer. Returns
// false when there is nothing more to do.
static bool popAndInvokePostMarkingCallback(Visitor*);
// Remove an item from the weak callback work list and call the callback
// with the visitor and the closure pointer. Returns false when there is
// nothing more to do.
static bool popAndInvokeWeakPointerCallback(Visitor*);
// Register an ephemeron table for fixed-point iteration.
static void registerWeakTable(void* containerObject, EphemeronCallback, EphemeronCallback);
#if ENABLE(ASSERT)
static bool weakTableRegistered(const void*);
#endif
template<typename T> static Address allocateOnHeapIndex(size_t, int heapIndex, size_t gcInfoIndex);
template<typename T> static Address allocate(size_t);
template<typename T> static Address reallocate(void* previous, size_t);
static void collectGarbage(ThreadState::StackState, ThreadState::GCType = ThreadState::GCWithSweep);
static void collectGarbageForTerminatingThread(ThreadState*);
static void collectAllGarbage();
static void processMarkingStack(Visitor*);
static void postMarkingProcessing(Visitor*);
static void globalWeakProcessing(Visitor*);
static void setForcePreciseGCForTesting();
static void preGC();
static void postGC(ThreadState::GCType);
// Conservatively checks whether an address is a pointer in any of the
// thread heaps. If so marks the object pointed to as live.
static Address checkAndMarkPointer(Visitor*, Address);
#if ENABLE(GC_PROFILE_MARKING)
// Dump the path to specified object on the next GC. This method is to be
// invoked from GDB.
static void dumpPathToObjectOnNextGC(void* p);
// Forcibly find GCInfo of the object at Address. This is slow and should
// only be used for debug purposes. It involves finding the heap page and
// scanning the heap page for an object header.
static const GCInfo* findGCInfo(Address);
static String createBacktraceString();
#endif
static size_t objectPayloadSizeForTesting();
static void flushHeapDoesNotContainCache();
// Return true if the last GC found a pointer into a heap page
// during conservative scanning.
static bool lastGCWasConservative() { return s_lastGCWasConservative; }
static FreePagePool* freePagePool() { return s_freePagePool; }
static OrphanedPagePool* orphanedPagePool() { return s_orphanedPagePool; }
// This look-up uses the region search tree and a negative contains cache to
// provide an efficient mapping from arbitrary addresses to the containing
// heap-page if one exists.
static BaseHeapPage* lookup(Address);
static void addPageMemoryRegion(PageMemoryRegion*);
static void removePageMemoryRegion(PageMemoryRegion*);
static const GCInfo* gcInfo(size_t gcInfoIndex)
{
ASSERT(gcInfoIndex >= 1);
ASSERT(gcInfoIndex < GCInfoTable::maxIndex);
ASSERT(s_gcInfoTable);
const GCInfo* info = s_gcInfoTable[gcInfoIndex];
ASSERT(info);
return info;
}
static void increaseAllocatedObjectSize(size_t delta) { atomicAdd(&s_allocatedObjectSize, static_cast<long>(delta)); }
static void decreaseAllocatedObjectSize(size_t delta) { atomicSubtract(&s_allocatedObjectSize, static_cast<long>(delta)); }
static size_t allocatedObjectSize() { return acquireLoad(&s_allocatedObjectSize); }
static void increaseMarkedObjectSize(size_t delta) { atomicAdd(&s_markedObjectSize, static_cast<long>(delta)); }
static size_t markedObjectSize() { return acquireLoad(&s_markedObjectSize); }
static void increaseAllocatedSpace(size_t delta) { atomicAdd(&s_allocatedSpace, static_cast<long>(delta)); }
static void decreaseAllocatedSpace(size_t delta) { atomicSubtract(&s_allocatedSpace, static_cast<long>(delta)); }
static size_t allocatedSpace() { return acquireLoad(&s_allocatedSpace); }
private:
// A RegionTree is a simple binary search tree of PageMemoryRegions sorted
// by base addresses.
class RegionTree {
public:
explicit RegionTree(PageMemoryRegion* region) : m_region(region), m_left(nullptr), m_right(nullptr) { }
~RegionTree()
{
delete m_left;
delete m_right;
}
PageMemoryRegion* lookup(Address);
static void add(RegionTree*, RegionTree**);
static void remove(PageMemoryRegion*, RegionTree**);
private:
PageMemoryRegion* m_region;
RegionTree* m_left;
RegionTree* m_right;
};
static void resetAllocatedObjectSize() { ASSERT(ThreadState::current()->isInGC()); s_allocatedObjectSize = 0; }
static void resetMarkedObjectSize() { ASSERT(ThreadState::current()->isInGC()); s_markedObjectSize = 0; }
static Visitor* s_markingVisitor;
static CallbackStack* s_markingStack;
static CallbackStack* s_postMarkingCallbackStack;
static CallbackStack* s_weakCallbackStack;
static CallbackStack* s_ephemeronStack;
static HeapDoesNotContainCache* s_heapDoesNotContainCache;
static bool s_shutdownCalled;
static bool s_lastGCWasConservative;
static FreePagePool* s_freePagePool;
static OrphanedPagePool* s_orphanedPagePool;
static RegionTree* s_regionTree;
static size_t s_allocatedSpace;
static size_t s_allocatedObjectSize;
static size_t s_markedObjectSize;
friend class ThreadState;
};
// Base class for objects allocated in the Blink garbage-collected heap.
//
// Defines a 'new' operator that allocates the memory in the heap. 'delete'
// should not be called on objects that inherit from GarbageCollected.
//
// Instances of GarbageCollected will *NOT* get finalized. Their destructor
// will not be called. Therefore, only classes that have trivial destructors
// with no semantic meaning (including all their subclasses) should inherit from
// GarbageCollected. If there are non-trival destructors in a given class or
// any of its subclasses, GarbageCollectedFinalized should be used which
// guarantees that the destructor is called on an instance when the garbage
// collector determines that it is no longer reachable.
template<typename T>
class GarbageCollected {
WTF_MAKE_NONCOPYABLE(GarbageCollected);
// For now direct allocation of arrays on the heap is not allowed.
void* operator new[](size_t size);
#if OS(WIN) && COMPILER(MSVC)
// Due to some quirkiness in the MSVC compiler we have to provide
// the delete[] operator in the GarbageCollected subclasses as it
// is called when a class is exported in a DLL.
protected:
void operator delete[](void* p)
{
ASSERT_NOT_REACHED();
}
#else
void operator delete[](void* p);
#endif
public:
using GarbageCollectedBase = T;
void* operator new(size_t size)
{
return Heap::allocate<T>(size);
}
void operator delete(void* p)
{
ASSERT_NOT_REACHED();
}
protected:
GarbageCollected()
{
}
};
// Base class for objects allocated in the Blink garbage-collected heap.
//
// Defines a 'new' operator that allocates the memory in the heap. 'delete'
// should not be called on objects that inherit from GarbageCollected.
//
// Instances of GarbageCollectedFinalized will have their destructor called when
// the garbage collector determines that the object is no longer reachable.
template<typename T>
class GarbageCollectedFinalized : public GarbageCollected<T> {
WTF_MAKE_NONCOPYABLE(GarbageCollectedFinalized);
protected:
// finalizeGarbageCollectedObject is called when the object is freed from
// the heap. By default finalization means calling the destructor on the
// object. finalizeGarbageCollectedObject can be overridden to support
// calling the destructor of a subclass. This is useful for objects without
// vtables that require explicit dispatching. The name is intentionally a
// bit long to make name conflicts less likely.
void finalizeGarbageCollectedObject()
{
static_cast<T*>(this)->~T();
}
GarbageCollectedFinalized() { }
~GarbageCollectedFinalized() { }
template<typename U> friend struct HasFinalizer;
template<typename U, bool> friend struct FinalizerTraitImpl;
};
// Base class for objects that are in the Blink garbage-collected heap
// and are still reference counted.
//
// This class should be used sparingly and only to gradually move
// objects from being reference counted to being managed by the blink
// garbage collector.
//
// While the current reference counting keeps one of these objects
// alive it will have a Persistent handle to itself allocated so we
// will not reclaim the memory. When the reference count reaches 0 the
// persistent handle will be deleted. When the garbage collector
// determines that there are no other references to the object it will
// be reclaimed and the destructor of the reclaimed object will be
// called at that time.
template<typename T>
class RefCountedGarbageCollected : public GarbageCollectedFinalized<T> {
WTF_MAKE_NONCOPYABLE(RefCountedGarbageCollected);
public:
RefCountedGarbageCollected()
: m_refCount(0)
{
}
// Implement method to increase reference count for use with RefPtrs.
//
// In contrast to the normal WTF::RefCounted, the reference count can reach
// 0 and increase again. This happens in the following scenario:
//
// (1) The reference count becomes 0, but members, persistents, or
// on-stack pointers keep references to the object.
//
// (2) The pointer is assigned to a RefPtr again and the reference
// count becomes 1.
//
// In this case, we have to resurrect m_keepAlive.
void ref()
{
if (UNLIKELY(!m_refCount)) {
ASSERT(ThreadState::current()->findPageFromAddress(reinterpret_cast<Address>(this)));
makeKeepAlive();
}
++m_refCount;
}
// Implement method to decrease reference count for use with RefPtrs.
//
// In contrast to the normal WTF::RefCounted implementation, the
// object itself is not deleted when the reference count reaches
// 0. Instead, the keep-alive persistent handle is deallocated so
// that the object can be reclaimed when the garbage collector
// determines that there are no other references to the object.
void deref()
{
ASSERT(m_refCount > 0);
if (!--m_refCount) {
delete m_keepAlive;
m_keepAlive = 0;
}
}
bool hasOneRef()
{
return m_refCount == 1;
}
protected:
~RefCountedGarbageCollected() { }
private:
void makeKeepAlive()
{
ASSERT(!m_keepAlive);
m_keepAlive = new Persistent<T>(static_cast<T*>(this));
}
int m_refCount;
Persistent<T>* m_keepAlive;
};
// Classes that contain heap references but aren't themselves heap allocated,
// have some extra macros available which allows their use to be restricted to
// cases where the garbage collector is able to discover their heap references.
//
// STACK_ALLOCATED(): Use if the object is only stack allocated. Heap objects
// should be in Members but you do not need the trace method as they are on the
// stack. (Down the line these might turn in to raw pointers, but for now
// Members indicates that we have thought about them and explicitly taken care
// of them.)
//
// DISALLOW_ALLOCATION(): Cannot be allocated with new operators but can be a
// part object. If it has Members you need a trace method and the containing
// object needs to call that trace method.
//
// ALLOW_ONLY_INLINE_ALLOCATION(): Allows only placement new operator. This
// disallows general allocation of this object but allows to put the object as a
// value object in collections. If these have Members you need to have a trace
// method. That trace method will be called automatically by the Heap
// collections.
//
#define DISALLOW_ALLOCATION() \
private: \
void* operator new(size_t) = delete; \
void* operator new(size_t, NotNullTag, void*) = delete; \
void* operator new(size_t, void*) = delete;
#define ALLOW_ONLY_INLINE_ALLOCATION() \
public: \
void* operator new(size_t, NotNullTag, void* location) { return location; } \
void* operator new(size_t, void* location) { return location; } \
private: \
void* operator new(size_t) = delete;
#define STATIC_ONLY(Type) \
private: \
Type() = delete;
// These macros insert annotations that the Blink GC plugin for clang uses for
// verification. STACK_ALLOCATED is used to declare that objects of this type
// are always stack allocated. GC_PLUGIN_IGNORE is used to make the plugin
// ignore a particular class or field when checking for proper usage. When
// using GC_PLUGIN_IGNORE a bug-number should be provided as an argument where
// the bug describes what needs to happen to remove the GC_PLUGIN_IGNORE again.
#if COMPILER(CLANG)
#define STACK_ALLOCATED() \
private: \
__attribute__((annotate("blink_stack_allocated"))) \
void* operator new(size_t) = delete; \
void* operator new(size_t, NotNullTag, void*) = delete; \
void* operator new(size_t, void*) = delete;
#define GC_PLUGIN_IGNORE(bug) \
__attribute__((annotate("blink_gc_plugin_ignore")))
#else
#define STACK_ALLOCATED() DISALLOW_ALLOCATION()
#define GC_PLUGIN_IGNORE(bug)
#endif
// Mask an address down to the enclosing oilpan heap base page. All oilpan heap
// pages are aligned at blinkPageBase plus an OS page size.
// FIXME: Remove PLATFORM_EXPORT once we get a proper public interface to our
// typed heaps. This is only exported to enable tests in HeapTest.cpp.
PLATFORM_EXPORT inline BaseHeapPage* pageFromObject(const void* object)
{
Address address = reinterpret_cast<Address>(const_cast<void*>(object));
BaseHeapPage* page = reinterpret_cast<BaseHeapPage*>(blinkPageAddress(address) + WTF::kSystemPageSize);
ASSERT(page->contains(address));
return page;
}
NO_SANITIZE_ADDRESS inline
size_t HeapObjectHeader::size() const
{
size_t result = m_encoded & headerSizeMask;
// Large objects should not refer to header->size().
// The actual size of a large object is stored in
// LargeObject::m_payloadSize.
ASSERT(result != largeObjectSizeInHeader);
ASSERT(!pageFromObject(this)->isLargeObject());
return result;
}
NO_SANITIZE_ADDRESS
void HeapObjectHeader::checkHeader() const
{
ASSERT(pageFromObject(this)->orphaned() || m_magic == magic);
}
Address HeapObjectHeader::payload()
{
return reinterpret_cast<Address>(this) + sizeof(HeapObjectHeader);
}
Address HeapObjectHeader::payloadEnd()
{
return reinterpret_cast<Address>(this) + size();
}
NO_SANITIZE_ADDRESS inline
size_t HeapObjectHeader::payloadSize()
{
size_t size = m_encoded & headerSizeMask;
if (UNLIKELY(size == largeObjectSizeInHeader)) {
ASSERT(pageFromObject(this)->isLargeObject());
return static_cast<LargeObject*>(pageFromObject(this))->payloadSize();
}
ASSERT(!pageFromObject(this)->isLargeObject());
return size - sizeof(HeapObjectHeader);
}
NO_SANITIZE_ADDRESS inline
bool HeapObjectHeader::isMarked() const
{
checkHeader();
return m_encoded & headerMarkBitMask;
}
NO_SANITIZE_ADDRESS inline
void HeapObjectHeader::mark()
{
checkHeader();
ASSERT(!isMarked());
m_encoded = m_encoded | headerMarkBitMask;
}
NO_SANITIZE_ADDRESS inline
void HeapObjectHeader::unmark()
{
checkHeader();
ASSERT(isMarked());
m_encoded &= ~headerMarkBitMask;
}
NO_SANITIZE_ADDRESS inline
bool HeapObjectHeader::isDead() const
{
checkHeader();
return m_encoded & headerDeadBitMask;
}
NO_SANITIZE_ADDRESS inline
void HeapObjectHeader::markDead()
{
checkHeader();
ASSERT(!isMarked());
m_encoded |= headerDeadBitMask;
}
size_t ThreadHeap::allocationSizeFromSize(size_t size)
{
// Check the size before computing the actual allocation size. The
// allocation size calculation can overflow for large sizes and the check
// therefore has to happen before any calculation on the size.
RELEASE_ASSERT(size < maxHeapObjectSize);
// Add space for header.
size_t allocationSize = size + sizeof(HeapObjectHeader);
// Align size with allocation granularity.
allocationSize = (allocationSize + allocationMask) & ~allocationMask;
return allocationSize;
}
Address ThreadHeap::allocateObject(size_t allocationSize, size_t gcInfoIndex)
{
if (LIKELY(allocationSize <= m_remainingAllocationSize)) {
Address headerAddress = m_currentAllocationPoint;
m_currentAllocationPoint += allocationSize;
m_remainingAllocationSize -= allocationSize;
ASSERT(gcInfoIndex > 0);
new (NotNull, headerAddress) HeapObjectHeader(allocationSize, gcInfoIndex);
Address result = headerAddress + sizeof(HeapObjectHeader);
ASSERT(!(reinterpret_cast<uintptr_t>(result) & allocationMask));
// Unpoison the memory used for the object (payload).
ASAN_UNPOISON_MEMORY_REGION(result, allocationSize - sizeof(HeapObjectHeader));
FILL_ZERO_IF_NOT_PRODUCTION(result, allocationSize - sizeof(HeapObjectHeader));
ASSERT(findPageFromAddress(headerAddress + allocationSize - 1));
return result;
}
return outOfLineAllocate(allocationSize, gcInfoIndex);
}
Address ThreadHeap::allocate(size_t size, size_t gcInfoIndex)
{
return allocateObject(allocationSizeFromSize(size), gcInfoIndex);
}
// We use four heaps for general type objects depending on their object sizes.
// Objects whose size is 1 - 3 words go to the first general type heap.
// Objects whose size is 4 - 7 words go to the second general type heap.
// Objects whose size is 8 - 15 words go to the third general type heap.
// Objects whose size is more than 15 words go to the fourth general type heap.
template<typename T>
struct HeapIndexTrait {
static int index(size_t size)
{
static const int wordSize = sizeof(void*);
if (size < 8 * wordSize) {
if (size < 4 * wordSize)
return General1Heap;
return General2Heap;
}
if (size < 16 * wordSize)
return General3Heap;
return General4Heap;
};
};
// FIXME: The forward declaration is layering violation.
#define DEFINE_TYPED_HEAP_TRAIT(Type) \
class Type; \
template<> \
struct HeapIndexTrait<class Type> { \
static int index(size_t) { return Type##Heap; }; \
};
FOR_EACH_TYPED_HEAP(DEFINE_TYPED_HEAP_TRAIT)
#undef DEFINE_TYPED_HEAP_TRAIT
template<typename T>
Address Heap::allocateOnHeapIndex(size_t size, int heapIndex, size_t gcInfoIndex)
{
ThreadState* state = ThreadStateFor<ThreadingTrait<T>::Affinity>::state();
ASSERT(state->isAllocationAllowed());
return state->heap(heapIndex)->allocate(size, gcInfoIndex);
}
template<typename T>
Address Heap::allocate(size_t size)
{
return allocateOnHeapIndex<T>(size, HeapIndexTrait<T>::index(size), GCInfoTrait<T>::index());
}
template<typename T>
Address Heap::reallocate(void* previous, size_t size)
{
if (!size) {
// If the new size is 0 this is equivalent to either free(previous) or
// malloc(0). In both cases we do nothing and return nullptr.
return nullptr;
}
Address address = Heap::allocateOnHeapIndex<T>(size, HeapIndexTrait<T>::index(size), GCInfoTrait<T>::index());
if (!previous) {
// This is equivalent to malloc(size).
return address;
}
HeapObjectHeader* previousHeader = HeapObjectHeader::fromPayload(previous);
// FIXME: We don't support reallocate() for finalizable objects.
ASSERT(!Heap::gcInfo(previousHeader->gcInfoIndex())->hasFinalizer());
ASSERT(previousHeader->gcInfoIndex() == GCInfoTrait<T>::index());
size_t copySize = previousHeader->payloadSize();
if (copySize > size)
copySize = size;
memcpy(address, previous, copySize);
return address;
}
class HeapAllocatorQuantizer {
public:
template<typename T>
static size_t quantizedSize(size_t count)
{
RELEASE_ASSERT(count <= kMaxUnquantizedAllocation / sizeof(T));
return ThreadHeap::roundedAllocationSize(count * sizeof(T));
}
static const size_t kMaxUnquantizedAllocation = maxHeapObjectSize;
};
// This is a static-only class used as a trait on collections to make them heap
// allocated. However see also HeapListHashSetAllocator.
class HeapAllocator {
public:
using Quantizer = HeapAllocatorQuantizer;
using Visitor = blink::Visitor;
static const bool isGarbageCollected = true;
template <typename T>
static T* allocateVectorBacking(size_t size)
{
size_t gcInfoIndex = GCInfoTrait<HeapVectorBacking<T, VectorTraits<T>>>::index();
return reinterpret_cast<T*>(Heap::allocateOnHeapIndex<T>(size, VectorBackingHeap, gcInfoIndex));
}
PLATFORM_EXPORT static void freeVectorBacking(void* address);
PLATFORM_EXPORT static bool expandVectorBacking(void*, size_t);
static inline bool shrinkVectorBacking(void* address, size_t quantizedCurrentSize, size_t quantizedShrunkSize)
{
shrinkVectorBackingInternal(address, quantizedCurrentSize, quantizedShrunkSize);
return true;
}
template <typename T>
static T* allocateInlineVectorBacking(size_t size)
{
size_t gcInfoIndex = GCInfoTrait<HeapVectorBacking<T, VectorTraits<T>>>::index();
return reinterpret_cast<T*>(Heap::allocateOnHeapIndex<T>(size, InlineVectorBackingHeap, gcInfoIndex));
}
PLATFORM_EXPORT static void freeInlineVectorBacking(void* address);
PLATFORM_EXPORT static bool expandInlineVectorBacking(void*, size_t);
static inline bool shrinkInlineVectorBacking(void* address, size_t quantizedCurrentSize, size_t quantizedShrinkedSize)
{
shrinkInlineVectorBackingInternal(address, quantizedCurrentSize, quantizedShrinkedSize);
return true;
}
template <typename T, typename HashTable>
static T* allocateHashTableBacking(size_t size)
{
size_t gcInfoIndex = GCInfoTrait<HeapHashTableBacking<HashTable>>::index();
return reinterpret_cast<T*>(Heap::allocateOnHeapIndex<T>(size, HashTableBackingHeap, gcInfoIndex));
}
template <typename T, typename HashTable>
static T* allocateZeroedHashTableBacking(size_t size)
{
return allocateHashTableBacking<T, HashTable>(size);
}
PLATFORM_EXPORT static void freeHashTableBacking(void* address);
PLATFORM_EXPORT static bool expandHashTableBacking(void*, size_t);
template <typename Return, typename Metadata>
static Return malloc(size_t size)
{
return reinterpret_cast<Return>(Heap::allocate<Metadata>(size));
}
static void free(void* address) { }
template<typename T>
static void* newArray(size_t bytes)
{
ASSERT_NOT_REACHED();
return 0;
}
static void deleteArray(void* ptr)
{
ASSERT_NOT_REACHED();
}
static bool isAllocationAllowed()
{
return ThreadState::current()->isAllocationAllowed();
}
template<typename VisitorDispatcher>
static void markNoTracing(VisitorDispatcher visitor, const void* t) { visitor->markNoTracing(t); }
template<typename VisitorDispatcher, typename T, typename Traits>
static void trace(VisitorDispatcher visitor, T& t)
{
CollectionBackingTraceTrait<WTF::ShouldBeTraced<Traits>::value, Traits::weakHandlingFlag, WTF::WeakPointersActWeak, T, Traits>::trace(visitor, t);
}
template<typename VisitorDispatcher>
static void registerDelayedMarkNoTracing(VisitorDispatcher visitor, const void* object)
{
visitor->registerDelayedMarkNoTracing(object);
}
template<typename VisitorDispatcher>
static void registerWeakMembers(VisitorDispatcher visitor, const void* closure, const void* object, WeakPointerCallback callback)
{
visitor->registerWeakMembers(closure, object, callback);
}
template<typename VisitorDispatcher>
static void registerWeakTable(VisitorDispatcher visitor, const void* closure, EphemeronCallback iterationCallback, EphemeronCallback iterationDoneCallback)
{
visitor->registerWeakTable(closure, iterationCallback, iterationDoneCallback);
}
#if ENABLE(ASSERT)
static bool weakTableRegistered(Visitor* visitor, const void* closure)
{
return visitor->weakTableRegistered(closure);
}
#endif
template<typename T>
struct ResultType {
using Type = T*;
};
template<typename T>
struct OtherType {
using Type = T*;
};
template<typename T>
static T& getOther(T* other)
{
return *other;
}
static void enterNoAllocationScope()
{
#if ENABLE(ASSERT)
ThreadState::current()->enterNoAllocationScope();
#endif
}
static void leaveNoAllocationScope()
{
#if ENABLE(ASSERT)
ThreadState::current()->leaveNoAllocationScope();
#endif
}
private:
static void backingFree(void*, int heapIndex);
static bool backingExpand(void*, size_t, int heapIndex);
static void backingShrink(void*, size_t quantizedCurrentSize, size_t quantizedShrunkSize, int heapIndex);
PLATFORM_EXPORT static void shrinkVectorBackingInternal(void*, size_t quantizedCurrentSize, size_t quantizedShrunkSize);
PLATFORM_EXPORT static void shrinkInlineVectorBackingInternal(void*, size_t quantizedCurrentSize, size_t quantizedShrunkSize);
template<typename T, size_t u, typename V> friend class WTF::Vector;
template<typename T, typename U, typename V, typename W> friend class WTF::HashSet;
template<typename T, typename U, typename V, typename W, typename X, typename Y> friend class WTF::HashMap;
};
template<typename Value>
static void traceListHashSetValue(Visitor* visitor, Value& value)
{
// We use the default hash traits for the value in the node, because
// ListHashSet does not let you specify any specific ones.
// We don't allow ListHashSet of WeakMember, so we set that one false
// (there's an assert elsewhere), but we have to specify some value for the
// strongify template argument, so we specify WTF::WeakPointersActWeak,
// arbitrarily.
CollectionBackingTraceTrait<WTF::ShouldBeTraced<WTF::HashTraits<Value>>::value, WTF::NoWeakHandlingInCollections, WTF::WeakPointersActWeak, Value, WTF::HashTraits<Value>>::trace(visitor, value);
}
// The inline capacity is just a dummy template argument to match the off-heap
// allocator.
// This inherits from the static-only HeapAllocator trait class, but we do
// declare pointers to instances. These pointers are always null, and no
// objects are instantiated.
template<typename ValueArg, size_t inlineCapacity>
struct HeapListHashSetAllocator : public HeapAllocator {
using TableAllocator = HeapAllocator;
using Node = WTF::ListHashSetNode<ValueArg, HeapListHashSetAllocator>;
public:
class AllocatorProvider {
public:
// For the heap allocation we don't need an actual allocator object, so
// we just return null.
HeapListHashSetAllocator* get() const { return 0; }
// No allocator object is needed.
void createAllocatorIfNeeded() { }
// There is no allocator object in the HeapListHashSet (unlike in the
// regular ListHashSet) so there is nothing to swap.
void swap(AllocatorProvider& other) { }
};
void deallocate(void* dummy) { }
// This is not a static method even though it could be, because it needs to
// match the one that the (off-heap) ListHashSetAllocator has. The 'this'
// pointer will always be null.
void* allocateNode()
{
// Consider using a LinkedHashSet instead if this compile-time assert fails:
static_assert(!WTF::IsWeak<ValueArg>::value, "weak pointers in a ListHashSet will result in null entries in the set");
return malloc<void*, Node>(sizeof(Node));
}
static void traceValue(Visitor* visitor, Node* node)
{
traceListHashSetValue(visitor, node->m_value);
}
};
// FIXME: These should just be template aliases:
//
// template<typename T, size_t inlineCapacity = 0>
// using HeapVector = Vector<T, inlineCapacity, HeapAllocator>;
//
// as soon as all the compilers we care about support that.
// MSVC supports it only in MSVC 2013.
template<
typename KeyArg,
typename MappedArg,
typename HashArg = typename DefaultHash<KeyArg>::Hash,
typename KeyTraitsArg = HashTraits<KeyArg>,
typename MappedTraitsArg = HashTraits<MappedArg> >
class HeapHashMap : public HashMap<KeyArg, MappedArg, HashArg, KeyTraitsArg, MappedTraitsArg, HeapAllocator> { };
template<
typename ValueArg,
typename HashArg = typename DefaultHash<ValueArg>::Hash,
typename TraitsArg = HashTraits<ValueArg> >
class HeapHashSet : public HashSet<ValueArg, HashArg, TraitsArg, HeapAllocator> { };
template<
typename ValueArg,
typename HashArg = typename DefaultHash<ValueArg>::Hash,
typename TraitsArg = HashTraits<ValueArg> >
class HeapLinkedHashSet : public LinkedHashSet<ValueArg, HashArg, TraitsArg, HeapAllocator> { };
template<
typename ValueArg,
size_t inlineCapacity = 0, // The inlineCapacity is just a dummy to match ListHashSet (off-heap).
typename HashArg = typename DefaultHash<ValueArg>::Hash>
class HeapListHashSet : public ListHashSet<ValueArg, inlineCapacity, HashArg, HeapListHashSetAllocator<ValueArg, inlineCapacity> > { };
template<
typename Value,
typename HashFunctions = typename DefaultHash<Value>::Hash,
typename Traits = HashTraits<Value> >
class HeapHashCountedSet : public HashCountedSet<Value, HashFunctions, Traits, HeapAllocator> { };
template<typename T, size_t inlineCapacity = 0>
class HeapVector : public Vector<T, inlineCapacity, HeapAllocator> {
public:
HeapVector() { }
explicit HeapVector(size_t size) : Vector<T, inlineCapacity, HeapAllocator>(size)
{
}
HeapVector(size_t size, const T& val) : Vector<T, inlineCapacity, HeapAllocator>(size, val)
{
}
template<size_t otherCapacity>
HeapVector(const HeapVector<T, otherCapacity>& other)
: Vector<T, inlineCapacity, HeapAllocator>(other)
{
}
template<typename U>
void append(const U& other)
{
Vector<T, inlineCapacity, HeapAllocator>::append(other);
}
template<typename U, size_t otherCapacity>
void appendVector(const HeapVector<U, otherCapacity>& other)
{
const Vector<U, otherCapacity, HeapAllocator>& otherVector = other;
Vector<T, inlineCapacity, HeapAllocator>::appendVector(otherVector);
}
};
template<typename T, size_t inlineCapacity = 0>
class HeapDeque : public Deque<T, inlineCapacity, HeapAllocator> {
public:
HeapDeque() { }
explicit HeapDeque(size_t size) : Deque<T, inlineCapacity, HeapAllocator>(size)
{
}
HeapDeque(size_t size, const T& val) : Deque<T, inlineCapacity, HeapAllocator>(size, val)
{
}
// FIXME: Doesn't work if there is an inline buffer, due to crbug.com/360572
HeapDeque<T, 0>& operator=(const HeapDeque& other)
{
HeapDeque<T> copy(other);
swap(copy);
return *this;
}
// FIXME: Doesn't work if there is an inline buffer, due to crbug.com/360572
inline void swap(HeapDeque& other)
{
Deque<T, inlineCapacity, HeapAllocator>::swap(other);
}
template<size_t otherCapacity>
HeapDeque(const HeapDeque<T, otherCapacity>& other)
: Deque<T, inlineCapacity, HeapAllocator>(other)
{
}
template<typename U>
void append(const U& other)
{
Deque<T, inlineCapacity, HeapAllocator>::append(other);
}
};
template<typename T, size_t i>
inline void swap(HeapVector<T, i>& a, HeapVector<T, i>& b) { a.swap(b); }
template<typename T, size_t i>
inline void swap(HeapDeque<T, i>& a, HeapDeque<T, i>& b) { a.swap(b); }
template<typename T, typename U, typename V>
inline void swap(HeapHashSet<T, U, V>& a, HeapHashSet<T, U, V>& b) { a.swap(b); }
template<typename T, typename U, typename V, typename W, typename X>
inline void swap(HeapHashMap<T, U, V, W, X>& a, HeapHashMap<T, U, V, W, X>& b) { a.swap(b); }
template<typename T, size_t i, typename U>
inline void swap(HeapListHashSet<T, i, U>& a, HeapListHashSet<T, i, U>& b) { a.swap(b); }
template<typename T, typename U, typename V>
inline void swap(HeapLinkedHashSet<T, U, V>& a, HeapLinkedHashSet<T, U, V>& b) { a.swap(b); }
template<typename T, typename U, typename V>
inline void swap(HeapHashCountedSet<T, U, V>& a, HeapHashCountedSet<T, U, V>& b) { a.swap(b); }
template<typename T>
struct ThreadingTrait<Member<T>> {
static const ThreadAffinity Affinity = ThreadingTrait<T>::Affinity;
};
template<typename T>
struct ThreadingTrait<WeakMember<T>> {
static const ThreadAffinity Affinity = ThreadingTrait<T>::Affinity;
};
template<typename Key, typename Value, typename T, typename U, typename V>
struct ThreadingTrait<HashMap<Key, Value, T, U, V, HeapAllocator>> {
static const ThreadAffinity Affinity =
(ThreadingTrait<Key>::Affinity == MainThreadOnly)
&& (ThreadingTrait<Value>::Affinity == MainThreadOnly) ? MainThreadOnly : AnyThread;
};
template<typename First, typename Second>
struct ThreadingTrait<WTF::KeyValuePair<First, Second>> {
static const ThreadAffinity Affinity =
(ThreadingTrait<First>::Affinity == MainThreadOnly)
&& (ThreadingTrait<Second>::Affinity == MainThreadOnly) ? MainThreadOnly : AnyThread;
};
template<typename T, typename U, typename V>
struct ThreadingTrait<HashSet<T, U, V, HeapAllocator>> {
static const ThreadAffinity Affinity = ThreadingTrait<T>::Affinity;
};
template<typename T, size_t inlineCapacity>
struct ThreadingTrait<Vector<T, inlineCapacity, HeapAllocator>> {
static const ThreadAffinity Affinity = ThreadingTrait<T>::Affinity;
};
template<typename T, typename Traits>
struct ThreadingTrait<HeapVectorBacking<T, Traits>> {
static const ThreadAffinity Affinity = ThreadingTrait<T>::Affinity;
};
template<typename T, size_t inlineCapacity>
struct ThreadingTrait<Deque<T, inlineCapacity, HeapAllocator>> {
static const ThreadAffinity Affinity = ThreadingTrait<T>::Affinity;
};
template<typename T, typename U, typename V>
struct ThreadingTrait<HashCountedSet<T, U, V, HeapAllocator>> {
static const ThreadAffinity Affinity = ThreadingTrait<T>::Affinity;
};
template<typename Table>
struct ThreadingTrait<HeapHashTableBacking<Table>> {
using Key = typename Table::KeyType;
using Value = typename Table::ValueType;
static const ThreadAffinity Affinity =
(ThreadingTrait<Key>::Affinity == MainThreadOnly)
&& (ThreadingTrait<Value>::Affinity == MainThreadOnly) ? MainThreadOnly : AnyThread;
};
template<typename T, typename U, typename V, typename W, typename X>
struct ThreadingTrait<HeapHashMap<T, U, V, W, X>> : public ThreadingTrait<HashMap<T, U, V, W, X, HeapAllocator>> { };
template<typename T, typename U, typename V>
struct ThreadingTrait<HeapHashSet<T, U, V>> : public ThreadingTrait<HashSet<T, U, V, HeapAllocator>> { };
template<typename T, size_t inlineCapacity>
struct ThreadingTrait<HeapVector<T, inlineCapacity>> : public ThreadingTrait<Vector<T, inlineCapacity, HeapAllocator>> { };
template<typename T, size_t inlineCapacity>
struct ThreadingTrait<HeapDeque<T, inlineCapacity>> : public ThreadingTrait<Deque<T, inlineCapacity, HeapAllocator>> { };
template<typename T, typename U, typename V>
struct ThreadingTrait<HeapHashCountedSet<T, U, V>> : public ThreadingTrait<HashCountedSet<T, U, V, HeapAllocator>> { };
// The standard implementation of GCInfoTrait<T>::index() just returns a static
// from the class T, but we can't do that for HashMap, HashSet, Vector, etc.
// because they are in WTF and know nothing of GCInfos. Instead we have a
// specialization of GCInfoTrait for these four classes here.
template<typename Key, typename Value, typename T, typename U, typename V>
struct GCInfoTrait<HashMap<Key, Value, T, U, V, HeapAllocator>> {
static size_t index()
{
using TargetType = HashMap<Key, Value, T, U, V, HeapAllocator>;
static const GCInfo gcInfo = {
TraceTrait<TargetType>::trace,
nullptr,
false, // HashMap needs no finalizer.
WTF::IsPolymorphic<TargetType>::value,
#if ENABLE(GC_PROFILING)
TypenameStringTrait<TargetType>::get()
#endif
};
RETURN_GCINFO_INDEX();
}
};
template<typename T, typename U, typename V>
struct GCInfoTrait<HashSet<T, U, V, HeapAllocator>> {
static size_t index()
{
using TargetType = HashSet<T, U, V, HeapAllocator>;
static const GCInfo gcInfo = {
TraceTrait<TargetType>::trace,
nullptr,
false, // HashSet needs no finalizer.
WTF::IsPolymorphic<TargetType>::value,
#if ENABLE(GC_PROFILING)
TypenameStringTrait<TargetType>::get()
#endif
};
RETURN_GCINFO_INDEX();
}
};
template<typename T, typename U, typename V>
struct GCInfoTrait<LinkedHashSet<T, U, V, HeapAllocator>> {
static size_t index()
{
using TargetType = LinkedHashSet<T, U, V, HeapAllocator>;
static const GCInfo gcInfo = {
TraceTrait<TargetType>::trace,
LinkedHashSet<T, U, V, HeapAllocator>::finalize,
true, // Needs finalization. The anchor needs to unlink itself from the chain.
WTF::IsPolymorphic<TargetType>::value,
#if ENABLE(GC_PROFILING)
TypenameStringTrait<TargetType>::get()
#endif
};
RETURN_GCINFO_INDEX();
}
};
template<typename ValueArg, size_t inlineCapacity, typename U>
struct GCInfoTrait<ListHashSet<ValueArg, inlineCapacity, U, HeapListHashSetAllocator<ValueArg, inlineCapacity>>> {
static size_t index()
{
using TargetType = WTF::ListHashSet<ValueArg, inlineCapacity, U, HeapListHashSetAllocator<ValueArg, inlineCapacity>>;
static const GCInfo gcInfo = {
TraceTrait<TargetType>::trace,
nullptr,
false, // ListHashSet needs no finalization though its backing might.
false, // no vtable.
#if ENABLE(GC_PROFILING)
TypenameStringTrait<TargetType>::get()
#endif
};
RETURN_GCINFO_INDEX();
}
};
template<typename T, typename Allocator>
struct GCInfoTrait<WTF::ListHashSetNode<T, Allocator>> {
static size_t index()
{
using TargetType = WTF::ListHashSetNode<T, Allocator>;
static const GCInfo gcInfo = {
TraceTrait<TargetType>::trace,
TargetType::finalize,
WTF::HashTraits<T>::needsDestruction, // The node needs destruction if its data does.
false, // no vtable.
#if ENABLE(GC_PROFILING)
TypenameStringTrait<TargetType>::get()
#endif
};
RETURN_GCINFO_INDEX();
}
};
template<typename T>
struct GCInfoTrait<Vector<T, 0, HeapAllocator>> {
static size_t index()
{
#if ENABLE(GC_PROFILING)
using TargetType = Vector<T, 0, HeapAllocator>;
#endif
static const GCInfo gcInfo = {
TraceTrait<Vector<T, 0, HeapAllocator>>::trace,
nullptr,
false, // Vector needs no finalizer if it has no inline capacity.
WTF::IsPolymorphic<Vector<T, 0, HeapAllocator>>::value,
#if ENABLE(GC_PROFILING)
TypenameStringTrait<TargetType>::get()
#endif
};
RETURN_GCINFO_INDEX();
}
};
template<typename T, size_t inlineCapacity>
struct FinalizerTrait<Vector<T, inlineCapacity, HeapAllocator>> : public FinalizerTraitImpl<Vector<T, inlineCapacity, HeapAllocator>, true> { };
template<typename T, size_t inlineCapacity>
struct GCInfoTrait<Vector<T, inlineCapacity, HeapAllocator>> {
static size_t index()
{
using TargetType = Vector<T, inlineCapacity, HeapAllocator>;
static const GCInfo gcInfo = {
TraceTrait<TargetType>::trace,
FinalizerTrait<TargetType>::finalize,
// Finalizer is needed to destruct things stored in the inline capacity.
inlineCapacity && VectorTraits<T>::needsDestruction,
WTF::IsPolymorphic<TargetType>::value,
#if ENABLE(GC_PROFILING)
TypenameStringTrait<TargetType>::get()
#endif
};
RETURN_GCINFO_INDEX();
}
};
template<typename T>
struct GCInfoTrait<Deque<T, 0, HeapAllocator>> {
static size_t index()
{
using TargetType = Deque<T, 0, HeapAllocator>;
static const GCInfo gcInfo = {
TraceTrait<TargetType>::trace,
nullptr,
false, // Deque needs no finalizer if it has no inline capacity.
WTF::IsPolymorphic<TargetType>::value,
#if ENABLE(GC_PROFILING)
TypenameStringTrait<TargetType>::get()
#endif
};
RETURN_GCINFO_INDEX();
}
};
template<typename T, typename U, typename V>
struct GCInfoTrait<HashCountedSet<T, U, V, HeapAllocator>> {
static size_t index()
{
using TargetType = HashCountedSet<T, U, V, HeapAllocator>;
static const GCInfo gcInfo = {
TraceTrait<TargetType>::trace,
nullptr,
false, // HashCountedSet is just a HashTable, and needs no finalizer.
WTF::IsPolymorphic<TargetType>::value,
#if ENABLE(GC_PROFILING)
TypenameStringTrait<TargetType>::get()
#endif
};
RETURN_GCINFO_INDEX();
}
};
template<typename T, size_t inlineCapacity>
struct FinalizerTrait<Deque<T, inlineCapacity, HeapAllocator>> : public FinalizerTraitImpl<Deque<T, inlineCapacity, HeapAllocator>, true> { };
template<typename T, size_t inlineCapacity>
struct GCInfoTrait<Deque<T, inlineCapacity, HeapAllocator>> {
static size_t index()
{
using TargetType = Deque<T, inlineCapacity, HeapAllocator>;
static const GCInfo gcInfo = {
TraceTrait<TargetType>::trace,
FinalizerTrait<TargetType>::finalize,
// Finalizer is needed to destruct things stored in the inline capacity.
inlineCapacity && VectorTraits<T>::needsDestruction,
WTF::IsPolymorphic<TargetType>::value,
#if ENABLE(GC_PROFILING)
TypenameStringTrait<TargetType>::get()
#endif
};
RETURN_GCINFO_INDEX();
}
};
template<typename T, typename Traits>
struct GCInfoTrait<HeapVectorBacking<T, Traits>> {
static size_t index()
{
using TargetType = HeapVectorBacking<T, Traits>;
static const GCInfo gcInfo = {
TraceTrait<TargetType>::trace,
FinalizerTrait<TargetType>::finalize,
Traits::needsDestruction,
false, // We don't support embedded objects in HeapVectors with vtables.
#if ENABLE(GC_PROFILING)
TypenameStringTrait<TargetType>::get()
#endif
};
RETURN_GCINFO_INDEX();
}
};
template<typename Table>
struct GCInfoTrait<HeapHashTableBacking<Table>> {
static size_t index()
{
using TargetType = HeapHashTableBacking<Table>;
static const GCInfo gcInfo = {
TraceTrait<TargetType>::trace,
HeapHashTableBacking<Table>::finalize,
Table::ValueTraits::needsDestruction,
WTF::IsPolymorphic<TargetType>::value,
#if ENABLE(GC_PROFILING)
TypenameStringTrait<TargetType>::get()
#endif
};
RETURN_GCINFO_INDEX();
}
};
} // namespace blink
namespace WTF {
// Catch-all for types that have a way to trace that don't have special
// handling for weakness in collections. This means that if this type
// contains WeakMember fields, they will simply be zeroed, but the entry
// will not be removed from the collection. This always happens for
// things in vectors, which don't currently support special handling of
// weak elements.
template<ShouldWeakPointersBeMarkedStrongly strongify, typename T, typename Traits>
struct TraceInCollectionTrait<NoWeakHandlingInCollections, strongify, T, Traits> {
template<typename VisitorDispatcher>
static bool trace(VisitorDispatcher visitor, T& t)
{
blink::TraceTrait<T>::trace(visitor, &t);
return false;
}
};
template<ShouldWeakPointersBeMarkedStrongly strongify, typename T, typename Traits>
struct TraceInCollectionTrait<NoWeakHandlingInCollections, strongify, blink::Member<T>, Traits> {
template<typename VisitorDispatcher>
static bool trace(VisitorDispatcher visitor, blink::Member<T>& t)
{
blink::TraceTrait<T>::mark(visitor, const_cast<typename RemoveConst<T>::Type*>(t.get()));
return false;
}
};
// Catch-all for things that have HashTrait support for tracing with weakness.
template<ShouldWeakPointersBeMarkedStrongly strongify, typename T, typename Traits>
struct TraceInCollectionTrait<WeakHandlingInCollections, strongify, T, Traits> {
template<typename VisitorDispatcher>
static bool trace(VisitorDispatcher visitor, T& t)
{
return Traits::traceInCollection(visitor, t, strongify);
}
};
// Vector backing that needs marking. We don't support weak members in vectors.
template<ShouldWeakPointersBeMarkedStrongly strongify, typename T, typename Traits>
struct TraceInCollectionTrait<NoWeakHandlingInCollections, strongify, blink::HeapVectorBacking<T, Traits>, void> {
template<typename VisitorDispatcher>
static bool trace(VisitorDispatcher visitor, void* self)
{
// The allocator can oversize the allocation a little, according to
// the allocation granularity. The extra size is included in the
// payloadSize call below, since there is nowhere to store the
// originally allocated memory. This assert ensures that visiting the
// last bit of memory can't cause trouble.
static_assert(!ShouldBeTraced<Traits>::value || sizeof(T) > blink::allocationGranularity || Traits::canInitializeWithMemset, "heap overallocation can cause spurious visits");
T* array = reinterpret_cast<T*>(self);
blink::HeapObjectHeader* header = blink::HeapObjectHeader::fromPayload(self);
// Use the payload size as recorded by the heap to determine how many
// elements to mark.
size_t length = header->payloadSize() / sizeof(T);
for (size_t i = 0; i < length; ++i)
blink::CollectionBackingTraceTrait<ShouldBeTraced<Traits>::value, Traits::weakHandlingFlag, WeakPointersActStrong, T, Traits>::trace(visitor, array[i]);
return false;
}
};
// Almost all hash table backings are visited with this specialization.
template<ShouldWeakPointersBeMarkedStrongly strongify, typename Table>
struct TraceInCollectionTrait<NoWeakHandlingInCollections, strongify, blink::HeapHashTableBacking<Table>, void> {
using Value = typename Table::ValueType;
using Traits = typename Table::ValueTraits;
template<typename VisitorDispatcher>
static bool trace(VisitorDispatcher visitor, void* self)
{
Value* array = reinterpret_cast<Value*>(self);
blink::HeapObjectHeader* header = blink::HeapObjectHeader::fromPayload(self);
size_t length = header->payloadSize() / sizeof(Value);
for (size_t i = 0; i < length; ++i) {
if (!HashTableHelper<Value, typename Table::ExtractorType, typename Table::KeyTraitsType>::isEmptyOrDeletedBucket(array[i]))
blink::CollectionBackingTraceTrait<ShouldBeTraced<Traits>::value, Traits::weakHandlingFlag, strongify, Value, Traits>::trace(visitor, array[i]);
}
return false;
}
};
// This specialization of TraceInCollectionTrait is for the backing of
// HeapListHashSet. This is for the case that we find a reference to the
// backing from the stack. That probably means we have a GC while we are in a
// ListHashSet method since normal API use does not put pointers to the backing
// on the stack.
template<ShouldWeakPointersBeMarkedStrongly strongify, typename NodeContents, size_t inlineCapacity, typename T, typename U, typename V, typename W, typename X, typename Y>
struct TraceInCollectionTrait<NoWeakHandlingInCollections, strongify, blink::HeapHashTableBacking<HashTable<ListHashSetNode<NodeContents, blink::HeapListHashSetAllocator<T, inlineCapacity>>*, U, V, W, X, Y, blink::HeapAllocator>>, void> {
using Node = ListHashSetNode<NodeContents, blink::HeapListHashSetAllocator<T, inlineCapacity>>;
using Table = HashTable<Node*, U, V, W, X, Y, blink::HeapAllocator>;
template<typename VisitorDispatcher>
static bool trace(VisitorDispatcher visitor, void* self)
{
Node** array = reinterpret_cast<Node**>(self);
blink::HeapObjectHeader* header = blink::HeapObjectHeader::fromPayload(self);
size_t length = header->payloadSize() / sizeof(Node*);
for (size_t i = 0; i < length; ++i) {
if (!HashTableHelper<Node*, typename Table::ExtractorType, typename Table::KeyTraitsType>::isEmptyOrDeletedBucket(array[i])) {
traceListHashSetValue(visitor, array[i]->m_value);
// Just mark the node without tracing because we already traced
// the contents, and there is no need to trace the next and
// prev fields since iterating over the hash table backing will
// find the whole chain.
visitor->markNoTracing(array[i]);
}
}
return false;
}
};
// Key value pairs, as used in HashMap. To disambiguate template choice we have
// to have two versions, first the one with no special weak handling, then the
// one with weak handling.
template<ShouldWeakPointersBeMarkedStrongly strongify, typename Key, typename Value, typename Traits>
struct TraceInCollectionTrait<NoWeakHandlingInCollections, strongify, KeyValuePair<Key, Value>, Traits> {
template<typename VisitorDispatcher>
static bool trace(VisitorDispatcher visitor, KeyValuePair<Key, Value>& self)
{
ASSERT(ShouldBeTraced<Traits>::value);
blink::CollectionBackingTraceTrait<ShouldBeTraced<typename Traits::KeyTraits>::value, NoWeakHandlingInCollections, strongify, Key, typename Traits::KeyTraits>::trace(visitor, self.key);
blink::CollectionBackingTraceTrait<ShouldBeTraced<typename Traits::ValueTraits>::value, NoWeakHandlingInCollections, strongify, Value, typename Traits::ValueTraits>::trace(visitor, self.value);
return false;
}
};
template<ShouldWeakPointersBeMarkedStrongly strongify, typename Key, typename Value, typename Traits>
struct TraceInCollectionTrait<WeakHandlingInCollections, strongify, KeyValuePair<Key, Value>, Traits> {
template<typename VisitorDispatcher>
static bool trace(VisitorDispatcher visitor, KeyValuePair<Key, Value>& self)
{
// This is the core of the ephemeron-like functionality. If there is
// weakness on the key side then we first check whether there are
// dead weak pointers on that side, and if there are we don't mark the
// value side (yet). Conversely if there is weakness on the value side
// we check that first and don't mark the key side yet if we find dead
// weak pointers.
// Corner case: If there is weakness on both the key and value side,
// and there are also strong pointers on the both sides then we could
// unexpectedly leak. The scenario is that the weak pointer on the key
// side is alive, which causes the strong pointer on the key side to be
// marked. If that then results in the object pointed to by the weak
// pointer on the value side being marked live, then the whole
// key-value entry is leaked. To avoid unexpected leaking, we disallow
// this case, but if you run into this assert, please reach out to Blink
// reviewers, and we may relax it.
const bool keyIsWeak = Traits::KeyTraits::weakHandlingFlag == WeakHandlingInCollections;
const bool valueIsWeak = Traits::ValueTraits::weakHandlingFlag == WeakHandlingInCollections;
const bool keyHasStrongRefs = ShouldBeTraced<typename Traits::KeyTraits>::value;
const bool valueHasStrongRefs = ShouldBeTraced<typename Traits::ValueTraits>::value;
static_assert(!keyIsWeak || !valueIsWeak || !keyHasStrongRefs || !valueHasStrongRefs, "this configuration is disallowed to avoid unexpected leaks");
if ((valueIsWeak && !keyIsWeak) || (valueIsWeak && keyIsWeak && !valueHasStrongRefs)) {
// Check value first.
bool deadWeakObjectsFoundOnValueSide = blink::CollectionBackingTraceTrait<ShouldBeTraced<typename Traits::ValueTraits>::value, Traits::ValueTraits::weakHandlingFlag, strongify, Value, typename Traits::ValueTraits>::trace(visitor, self.value);
if (deadWeakObjectsFoundOnValueSide)
return true;
return blink::CollectionBackingTraceTrait<ShouldBeTraced<typename Traits::KeyTraits>::value, Traits::KeyTraits::weakHandlingFlag, strongify, Key, typename Traits::KeyTraits>::trace(visitor, self.key);
}
// Check key first.
bool deadWeakObjectsFoundOnKeySide = blink::CollectionBackingTraceTrait<ShouldBeTraced<typename Traits::KeyTraits>::value, Traits::KeyTraits::weakHandlingFlag, strongify, Key, typename Traits::KeyTraits>::trace(visitor, self.key);
if (deadWeakObjectsFoundOnKeySide)
return true;
return blink::CollectionBackingTraceTrait<ShouldBeTraced<typename Traits::ValueTraits>::value, Traits::ValueTraits::weakHandlingFlag, strongify, Value, typename Traits::ValueTraits>::trace(visitor, self.value);
}
};
// Nodes used by LinkedHashSet. Again we need two versions to disambiguate the
// template.
template<ShouldWeakPointersBeMarkedStrongly strongify, typename Value, typename Allocator, typename Traits>
struct TraceInCollectionTrait<NoWeakHandlingInCollections, strongify, LinkedHashSetNode<Value, Allocator>, Traits> {
template<typename VisitorDispatcher>
static bool trace(VisitorDispatcher visitor, LinkedHashSetNode<Value, Allocator>& self)
{
ASSERT(ShouldBeTraced<Traits>::value);
return TraceInCollectionTrait<NoWeakHandlingInCollections, strongify, Value, typename Traits::ValueTraits>::trace(visitor, self.m_value);
}
};
template<ShouldWeakPointersBeMarkedStrongly strongify, typename Value, typename Allocator, typename Traits>
struct TraceInCollectionTrait<WeakHandlingInCollections, strongify, LinkedHashSetNode<Value, Allocator>, Traits> {
template<typename VisitorDispatcher>
static bool trace(VisitorDispatcher visitor, LinkedHashSetNode<Value, Allocator>& self)
{
return TraceInCollectionTrait<WeakHandlingInCollections, strongify, Value, typename Traits::ValueTraits>::trace(visitor, self.m_value);
}
};
// ListHashSetNode pointers (a ListHashSet is implemented as a hash table of
// these pointers).
template<ShouldWeakPointersBeMarkedStrongly strongify, typename Value, size_t inlineCapacity, typename Traits>
struct TraceInCollectionTrait<NoWeakHandlingInCollections, strongify, ListHashSetNode<Value, blink::HeapListHashSetAllocator<Value, inlineCapacity>>*, Traits> {
using Node = ListHashSetNode<Value, blink::HeapListHashSetAllocator<Value, inlineCapacity>>;
template<typename VisitorDispatcher>
static bool trace(VisitorDispatcher visitor, Node* node)
{
traceListHashSetValue(visitor, node->m_value);
// Just mark the node without tracing because we already traced the
// contents, and there is no need to trace the next and prev fields
// since iterating over the hash table backing will find the whole
// chain.
visitor->markNoTracing(node);
return false;
}
};
} // namespace WTF
namespace blink {
// CollectionBackingTraceTrait. Do nothing for things in collections that don't
// need tracing, or call TraceInCollectionTrait for those that do.
// Specialization for things that don't need marking and have no weak pointers.
// We do nothing, even if WTF::WeakPointersActStrong.
template<WTF::ShouldWeakPointersBeMarkedStrongly strongify, typename T, typename Traits>
struct CollectionBackingTraceTrait<false, WTF::NoWeakHandlingInCollections, strongify, T, Traits> {
template<typename VisitorDispatcher>
static bool trace(VisitorDispatcher, T&) { return false; }
};
template<typename T>
static void verifyGarbageCollectedIfMember(T*)
{
}
template<typename T>
static void verifyGarbageCollectedIfMember(Member<T>* t)
{
STATIC_ASSERT_IS_GARBAGE_COLLECTED(T, "non garbage collected object in member");
}
// Specialization for things that either need marking or have weak pointers or
// both.
template<bool needsTracing, WTF::WeakHandlingFlag weakHandlingFlag, WTF::ShouldWeakPointersBeMarkedStrongly strongify, typename T, typename Traits>
struct CollectionBackingTraceTrait {
template<typename VisitorDispatcher>
static bool trace(VisitorDispatcher visitor, T&t)
{
verifyGarbageCollectedIfMember(reinterpret_cast<T*>(0));
return WTF::TraceInCollectionTrait<weakHandlingFlag, strongify, T, Traits>::trace(visitor, t);
}
};
template<typename T> struct WeakHandlingHashTraits : WTF::SimpleClassHashTraits<T> {
// We want to treat the object as a weak object in the sense that it can
// disappear from hash sets and hash maps.
static const WTF::WeakHandlingFlag weakHandlingFlag = WTF::WeakHandlingInCollections;
// Normally whether or not an object needs tracing is inferred
// automatically from the presence of the trace method, but we don't
// necessarily have a trace method, and we may not need one because T
// can perhaps only be allocated inside collections, never as independent
// objects. Explicitly mark this as needing tracing and it will be traced
// in collections using the traceInCollection method, which it must have.
template<typename U = void> struct NeedsTracingLazily {
static const bool value = true;
};
// The traceInCollection method traces differently depending on whether we
// are strongifying the trace operation. We strongify the trace operation
// when there are active iterators on the object. In this case all
// WeakMembers are marked like strong members so that elements do not
// suddenly disappear during iteration. Returns true if weak pointers to
// dead objects were found: In this case any strong pointers were not yet
// traced and the entry should be removed from the collection.
template<typename VisitorDispatcher>
static bool traceInCollection(VisitorDispatcher visitor, T& t, WTF::ShouldWeakPointersBeMarkedStrongly strongify)
{
return t.traceInCollection(visitor, strongify);
}
};
template<typename T, typename Traits>
struct TraceTrait<HeapVectorBacking<T, Traits>> {
using Backing = HeapVectorBacking<T, Traits>;
template<typename VisitorDispatcher>
static void trace(VisitorDispatcher visitor, void* self)
{
static_assert(!WTF::IsWeak<T>::value, "weakness in HeapVectors and Deques are not supported");
if (WTF::ShouldBeTraced<Traits>::value)
WTF::TraceInCollectionTrait<WTF::NoWeakHandlingInCollections, WTF::WeakPointersActWeak, HeapVectorBacking<T, Traits>, void>::trace(visitor, self);
}
template<typename VisitorDispatcher>
static void mark(VisitorDispatcher visitor, const Backing* backing)
{
visitor->mark(backing, &trace);
}
static void checkGCInfo(Visitor* visitor, const Backing* backing)
{
#if ENABLE(ASSERT)
assertObjectHasGCInfo(const_cast<Backing*>(backing), GCInfoTrait<Backing>::index());
#endif
}
};
// The trace trait for the heap hashtable backing is used when we find a
// direct pointer to the backing from the conservative stack scanner. This
// normally indicates that there is an ongoing iteration over the table, and so
// we disable weak processing of table entries. When the backing is found
// through the owning hash table we mark differently, in order to do weak
// processing.
template<typename Table>
struct TraceTrait<HeapHashTableBacking<Table>> {
using Backing = HeapHashTableBacking<Table>;
using Traits = typename Table::ValueTraits;
template<typename VisitorDispatcher>
static void trace(VisitorDispatcher visitor, void* self)
{
if (WTF::ShouldBeTraced<Traits>::value || Traits::weakHandlingFlag == WTF::WeakHandlingInCollections)
WTF::TraceInCollectionTrait<WTF::NoWeakHandlingInCollections, WTF::WeakPointersActStrong, Backing, void>::trace(visitor, self);
}
template<typename VisitorDispatcher>
static void mark(VisitorDispatcher visitor, const Backing* backing)
{
if (WTF::ShouldBeTraced<Traits>::value || Traits::weakHandlingFlag == WTF::WeakHandlingInCollections)
visitor->mark(backing, &trace);
else
visitor->markNoTracing(backing); // If we know the trace function will do nothing there is no need to call it.
}
static void checkGCInfo(Visitor* visitor, const Backing* backing)
{
#if ENABLE(ASSERT)
assertObjectHasGCInfo(const_cast<Backing*>(backing), GCInfoTrait<Backing>::index());
#endif
}
};
template<typename Table>
void HeapHashTableBacking<Table>::finalize(void* pointer)
{
using Value = typename Table::ValueType;
ASSERT(Table::ValueTraits::needsDestruction);
HeapObjectHeader* header = HeapObjectHeader::fromPayload(pointer);
// Use the payload size as recorded by the heap to determine how many
// elements to finalize.
size_t length = header->payloadSize() / sizeof(Value);
Value* table = reinterpret_cast<Value*>(pointer);
for (unsigned i = 0; i < length; ++i) {
if (!Table::isEmptyOrDeletedBucket(table[i]))
table[i].~Value();
}
}
template<typename T, typename U, typename V, typename W, typename X>
struct GCInfoTrait<HeapHashMap<T, U, V, W, X>> : public GCInfoTrait<HashMap<T, U, V, W, X, HeapAllocator>> { };
template<typename T, typename U, typename V>
struct GCInfoTrait<HeapHashSet<T, U, V>> : public GCInfoTrait<HashSet<T, U, V, HeapAllocator>> { };
template<typename T, typename U, typename V>
struct GCInfoTrait<HeapLinkedHashSet<T, U, V>> : public GCInfoTrait<LinkedHashSet<T, U, V, HeapAllocator>> { };
template<typename T, size_t inlineCapacity, typename U>
struct GCInfoTrait<HeapListHashSet<T, inlineCapacity, U>> : public GCInfoTrait<ListHashSet<T, inlineCapacity, U, HeapListHashSetAllocator<T, inlineCapacity>> > { };
template<typename T, size_t inlineCapacity>
struct GCInfoTrait<HeapVector<T, inlineCapacity>> : public GCInfoTrait<Vector<T, inlineCapacity, HeapAllocator>> { };
template<typename T, size_t inlineCapacity>
struct GCInfoTrait<HeapDeque<T, inlineCapacity>> : public GCInfoTrait<Deque<T, inlineCapacity, HeapAllocator>> { };
template<typename T, typename U, typename V>
struct GCInfoTrait<HeapHashCountedSet<T, U, V>> : public GCInfoTrait<HashCountedSet<T, U, V, HeapAllocator>> { };
} // namespace blink
#endif // Heap_h
|