1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
|
/*
* Copyright (C) 2013 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef ThreadState_h
#define ThreadState_h
#include "platform/PlatformExport.h"
#include "platform/heap/AddressSanitizer.h"
#include "public/platform/WebThread.h"
#include "wtf/HashMap.h"
#include "wtf/HashSet.h"
#include "wtf/OwnPtr.h"
#include "wtf/PassOwnPtr.h"
#include "wtf/ThreadSpecific.h"
#include "wtf/Threading.h"
#include "wtf/ThreadingPrimitives.h"
#include "wtf/Vector.h"
namespace v8 {
class Isolate;
};
namespace blink {
class BaseHeap;
class BaseHeapPage;
class CallbackStack;
struct GCInfo;
class HeapObjectHeader;
class PageMemoryRegion;
class PageMemory;
class PersistentNode;
class SafePointBarrier;
class SafePointAwareMutexLocker;
class ThreadHeap;
class ThreadState;
class Visitor;
using Address = uint8_t*;
using FinalizationCallback = void (*)(void*);
using VisitorCallback = void (*)(Visitor*, void* self);
using TraceCallback = VisitorCallback;
using WeakPointerCallback = VisitorCallback;
using EphemeronCallback = VisitorCallback;
// ThreadAffinity indicates which threads objects can be used on. We
// distinguish between objects that can be used on the main thread
// only and objects that can be used on any thread.
//
// For objects that can only be used on the main thread we avoid going
// through thread-local storage to get to the thread state.
//
// FIXME: We should evaluate the performance gain. Having
// ThreadAffinity is complicating the implementation and we should get
// rid of it if it is fast enough to go through thread-local storage
// always.
enum ThreadAffinity {
AnyThread,
MainThreadOnly,
};
// FIXME: These forward declarations violate dependency rules. Remove them.
// Ideally we want to provide a USED_IN_MAIN_THREAD_ONLY(T) macro, which
// indicates that classes in T's hierarchy are used only by the main thread.
class Node;
class NodeList;
template<typename T,
bool mainThreadOnly = WTF::IsSubclass<typename WTF::RemoveConst<T>::Type, Node>::value
|| WTF::IsSubclass<typename WTF::RemoveConst<T>::Type, NodeList>::value> struct DefaultThreadingTrait;
template<typename T>
struct DefaultThreadingTrait<T, false> {
static const ThreadAffinity Affinity = AnyThread;
};
template<typename T>
struct DefaultThreadingTrait<T, true> {
static const ThreadAffinity Affinity = MainThreadOnly;
};
template<typename T>
struct ThreadingTrait {
static const ThreadAffinity Affinity = DefaultThreadingTrait<T>::Affinity;
};
template<typename U> class ThreadingTrait<const U> : public ThreadingTrait<U> { };
// Declare that a class has a pre-finalizer function. The function is called in
// the object's owner thread, and can access Member<>s to other
// garbage-collected objects allocated in the thread. However we must not
// allocate new garbage-collected objects, nor update Member<> and Persistent<>
// pointers.
//
// This feature is similar to the HeapHashMap<WeakMember<Foo>, OwnPtr<Disposer>>
// idiom. The difference between this and the idiom is that pre-finalizer
// function is called whenever an object is destructed with this feature. The
// HeapHashMap<WeakMember<Foo>, OwnPtr<Disposer>> idiom requires an assumption
// that the HeapHashMap outlives objects pointed by WeakMembers.
// FIXME: Replace all of the HeapHashMap<WeakMember<Foo>, OwnPtr<Disposer>>
// idiom usages with the pre-finalizer if the replacement won't cause
// performance regressions.
//
// See ThreadState::registerPreFinalizer.
//
// Usage:
//
// class Foo : GarbageCollected<Foo> {
// USING_PRE_FINALIZER(Foo, dispose);
// public:
// Foo()
// {
// ThreadState::current()->registerPreFinalizer(*this);
// }
// private:
// void dispose();
// Member<Bar> m_bar;
// };
//
// void Foo::dispose()
// {
// m_bar->...
// }
#define USING_PRE_FINALIZER(Class, method) \
public: \
static bool invokePreFinalizer(void* object, Visitor& visitor) \
{ \
Class* self = reinterpret_cast<Class*>(object); \
if (visitor.isAlive(self)) \
return false; \
self->method(); \
return true; \
} \
using UsingPreFinazlizerMacroNeedsTrailingSemiColon = char
// List of typed heaps. The list is used to generate the implementation
// of typed heap related methods.
//
// To create a new typed heap add a H(<ClassName>) to the
// FOR_EACH_TYPED_HEAP macro below.
#define FOR_EACH_TYPED_HEAP(H) \
H(Node) \
H(RenderObject) \
H(CSSValue)
#define TypedHeapEnumName(Type) Type##Heap,
enum TypedHeaps {
General1Heap = 0,
General2Heap,
General3Heap,
General4Heap,
VectorBackingHeap,
InlineVectorBackingHeap,
HashTableBackingHeap,
FOR_EACH_TYPED_HEAP(TypedHeapEnumName)
// Values used for iteration of heap segments.
NumberOfHeaps,
};
class PLATFORM_EXPORT ThreadState {
WTF_MAKE_NONCOPYABLE(ThreadState);
public:
// When garbage collecting we need to know whether or not there
// can be pointers to Blink GC managed objects on the stack for
// each thread. When threads reach a safe point they record
// whether or not they have pointers on the stack.
enum StackState {
NoHeapPointersOnStack,
HeapPointersOnStack
};
enum GCType {
GCWithSweep, // Sweeping is completed in Heap::collectGarbage().
GCWithoutSweep, // Lazy sweeping is scheduled.
};
// See setGCState() for possible state transitions.
enum GCState {
NoGCScheduled,
GCScheduled,
GCScheduledForTesting,
StoppingOtherThreads,
GCRunning,
EagerSweepScheduled,
LazySweepScheduled,
Sweeping,
SweepingAndNextGCScheduled,
};
// The NoAllocationScope class is used in debug mode to catch unwanted
// allocations. E.g. allocations during GC.
class NoAllocationScope final {
public:
explicit NoAllocationScope(ThreadState* state) : m_state(state)
{
m_state->enterNoAllocationScope();
}
~NoAllocationScope()
{
m_state->leaveNoAllocationScope();
}
private:
ThreadState* m_state;
};
class SweepForbiddenScope final {
public:
explicit SweepForbiddenScope(ThreadState* state) : m_state(state)
{
ASSERT(!m_state->m_sweepForbidden);
m_state->m_sweepForbidden = true;
}
~SweepForbiddenScope()
{
ASSERT(m_state->m_sweepForbidden);
m_state->m_sweepForbidden = false;
}
private:
ThreadState* m_state;
};
// The set of ThreadStates for all threads attached to the Blink
// garbage collector.
using AttachedThreadStateSet = HashSet<ThreadState*>;
static AttachedThreadStateSet& attachedThreads();
// Initialize threading infrastructure. Should be called from the main
// thread.
static void init();
static void shutdown();
static void shutdownHeapIfNecessary();
bool isTerminating() { return m_isTerminating; }
static void attachMainThread();
static void detachMainThread();
// Trace all persistent roots, called when marking the managed heap objects.
static void visitPersistentRoots(Visitor*);
// Trace all objects found on the stack, used when doing conservative GCs.
static void visitStackRoots(Visitor*);
// Associate ThreadState object with the current thread. After this
// call thread can start using the garbage collected heap infrastructure.
// It also has to periodically check for safepoints.
static void attach();
// Disassociate attached ThreadState from the current thread. The thread
// can no longer use the garbage collected heap after this call.
static void detach();
static ThreadState* current()
{
#if defined(__GLIBC__) || OS(ANDROID) || OS(FREEBSD)
// TLS lookup is fast in these platforms.
return **s_threadSpecific;
#else
uintptr_t dummy;
uintptr_t addressDiff = s_mainThreadStackStart - reinterpret_cast<uintptr_t>(&dummy);
// This is a fast way to judge if we are in the main thread.
// If |&dummy| is within |s_mainThreadUnderestimatedStackSize| byte from
// the stack start of the main thread, we judge that we are in
// the main thread.
if (LIKELY(addressDiff < s_mainThreadUnderestimatedStackSize)) {
ASSERT(**s_threadSpecific == mainThreadState());
return mainThreadState();
}
// TLS lookup is slow.
return **s_threadSpecific;
#endif
}
static ThreadState* mainThreadState()
{
return reinterpret_cast<ThreadState*>(s_mainThreadStateStorage);
}
bool isMainThread() const { return this == mainThreadState(); }
inline bool checkThread() const
{
ASSERT(m_thread == currentThread());
return true;
}
void didV8GC();
void scheduleGC();
void scheduleGCOrForceConservativeGCIfNeeded();
void setGCState(GCState);
GCState gcState() const;
bool isInGC() const { return gcState() == GCRunning; }
bool isSweepingInProgress() const
{
return gcState() == Sweeping || gcState() == SweepingAndNextGCScheduled;
}
void preGC();
void postGC(GCType);
// Support for disallowing allocation. Mainly used for sanity
// checks asserts.
bool isAllocationAllowed() const { return !isAtSafePoint() && !m_noAllocationCount; }
void enterNoAllocationScope() { m_noAllocationCount++; }
void leaveNoAllocationScope() { m_noAllocationCount--; }
// Before performing GC the thread-specific heap state should be
// made consistent for sweeping.
void makeConsistentForSweeping();
bool sweepForbidden() const { return m_sweepForbidden; }
void completeSweep();
void prepareRegionTree();
void flushHeapDoesNotContainCacheIfNeeded();
// Safepoint related functionality.
//
// When a thread attempts to perform GC it needs to stop all other threads
// that use the heap or at least guarantee that they will not touch any
// heap allocated object until GC is complete.
//
// We say that a thread is at a safepoint if this thread is guaranteed to
// not touch any heap allocated object or any heap related functionality until
// it leaves the safepoint.
//
// Notice that a thread does not have to be paused if it is at safepoint it
// can continue to run and perform tasks that do not require interaction
// with the heap. It will be paused if it attempts to leave the safepoint and
// there is a GC in progress.
//
// Each thread that has ThreadState attached must:
// - periodically check if GC is requested from another thread by calling a safePoint() method;
// - use SafePointScope around long running loops that have no safePoint() invocation inside,
// such loops must not touch any heap object;
// - register an Interruptor that can interrupt long running loops that have no calls to safePoint and
// are not wrapped in a SafePointScope (e.g. Interruptor for JavaScript code)
//
// Request all other threads to stop. Must only be called if the current thread is at safepoint.
static bool stopThreads();
static void resumeThreads();
// Check if GC is requested by another thread and pause this thread if this is the case.
// Can only be called when current thread is in a consistent state.
void safePoint(StackState);
// Mark current thread as running inside safepoint.
void enterSafePointWithPointers(void* scopeMarker) { enterSafePoint(HeapPointersOnStack, scopeMarker); }
void leaveSafePoint(SafePointAwareMutexLocker* = nullptr);
bool isAtSafePoint() const { return m_atSafePoint; }
class SafePointScope {
public:
enum ScopeNesting {
NoNesting,
AllowNesting
};
explicit SafePointScope(StackState stackState, ScopeNesting nesting = NoNesting)
: m_state(ThreadState::current())
{
if (m_state->isAtSafePoint()) {
RELEASE_ASSERT(nesting == AllowNesting);
// We can ignore stackState because there should be no heap object
// pointers manipulation after outermost safepoint was entered.
m_state = nullptr;
} else {
m_state->enterSafePoint(stackState, this);
}
}
~SafePointScope()
{
if (m_state)
m_state->leaveSafePoint();
}
private:
ThreadState* m_state;
};
// If attached thread enters long running loop that can call back
// into Blink and leaving and reentering safepoint at every
// transition between this loop and Blink is deemed too expensive
// then instead of marking this loop as a GC safepoint thread
// can provide an interruptor object which would allow GC
// to temporarily interrupt and pause this long running loop at
// an arbitrary moment creating a safepoint for a GC.
class PLATFORM_EXPORT Interruptor {
public:
virtual ~Interruptor() { }
// Request the interruptor to interrupt the thread and
// call onInterrupted on that thread once interruption
// succeeds.
virtual void requestInterrupt() = 0;
// Clear previous interrupt request.
virtual void clearInterrupt() = 0;
protected:
// This method is called on the interrupted thread to
// create a safepoint for a GC.
void onInterrupted();
};
void addInterruptor(Interruptor*);
void removeInterruptor(Interruptor*);
// CleanupTasks are executed when ThreadState performs
// cleanup before detaching.
class CleanupTask {
public:
virtual ~CleanupTask() { }
// Executed after the final GC. Thread heap is empty at this point.
virtual void postCleanup() { }
};
void addCleanupTask(PassOwnPtr<CleanupTask> cleanupTask)
{
m_cleanupTasks.append(cleanupTask);
}
// Should only be called under protection of threadAttachMutex().
const Vector<Interruptor*>& interruptors() const { return m_interruptors; }
void recordStackEnd(intptr_t* endOfStack)
{
m_endOfStack = endOfStack;
}
// Get one of the heap structures for this thread.
//
// The heap is split into multiple heap parts based on object
// types. To get the index for a given type, use
// HeapTypeTrait<Type>::index.
ThreadHeap* heap(int index) const { return m_heaps[index]; }
#if ENABLE(ASSERT)
// Infrastructure to determine if an address is within one of the
// address ranges for the Blink heap. If the address is in the Blink
// heap the containing heap page is returned.
BaseHeapPage* findPageFromAddress(Address);
BaseHeapPage* findPageFromAddress(void* pointer) { return findPageFromAddress(reinterpret_cast<Address>(pointer)); }
#endif
// List of persistent roots allocated on the given thread.
PersistentNode* roots() const { return m_persistents.get(); }
// List of global persistent roots not owned by any particular thread.
// globalRootsMutex must be acquired before any modifications.
static PersistentNode* globalRoots();
static Mutex& globalRootsMutex();
// Visit local thread stack and trace all pointers conservatively.
void visitStack(Visitor*);
// Visit the asan fake stack frame corresponding to a slot on the
// real machine stack if there is one.
void visitAsanFakeStackForPointer(Visitor*, Address);
// Visit all persistents allocated on this thread.
void visitPersistents(Visitor*);
#if ENABLE(GC_PROFILE_MARKING)
const GCInfo* findGCInfo(Address);
static const GCInfo* findGCInfoFromAllThreads(Address);
#endif
#if ENABLE(GC_PROFILE_HEAP)
struct SnapshotInfo {
ThreadState* state;
size_t freeSize;
size_t pageCount;
// Map from base-classes to a snapshot class-ids (used as index below).
HashMap<const GCInfo*, size_t> classTags;
// Map from class-id (index) to count/size.
Vector<int> liveCount;
Vector<int> deadCount;
Vector<size_t> liveSize;
Vector<size_t> deadSize;
// Map from class-id (index) to a vector of generation counts.
// For i < 7, the count is the number of objects that died after surviving |i| GCs.
// For i == 7, the count is the number of objects that survived at least 7 GCs.
Vector<Vector<int, 8>> generations;
explicit SnapshotInfo(ThreadState* state) : state(state), freeSize(0), pageCount(0) { }
size_t getClassTag(const GCInfo*);
};
void snapshot();
#endif
void pushWeakPointerCallback(void*, WeakPointerCallback);
bool popAndInvokeWeakPointerCallback(Visitor*);
size_t objectPayloadSizeForTesting();
void postGCProcessing();
void prepareHeapForTermination();
// Request to call a pref-finalizer of the target object before the object
// is destructed. The class T must have USING_PRE_FINALIZER(). The
// argument should be |*this|. Registering a lot of objects affects GC
// performance. We should register an object only if the object really
// requires pre-finalizer, and we should unregister the object if
// pre-finalizer is unnecessary.
template<typename T>
void registerPreFinalizer(T& target)
{
checkThread();
ASSERT(!m_preFinalizers.contains(&target));
ASSERT(!sweepForbidden());
m_preFinalizers.add(&target, &T::invokePreFinalizer);
}
// Cancel above requests. The argument should be |*this|. This function is
// ignored if it is called in pre-finalizer functions.
template<typename T>
void unregisterPreFinalizer(T& target)
{
checkThread();
ASSERT(&T::invokePreFinalizer);
unregisterPreFinalizerInternal(&target);
}
Vector<PageMemoryRegion*>& allocatedRegionsSinceLastGC() { return m_allocatedRegionsSinceLastGC; }
void shouldFlushHeapDoesNotContainCache() { m_shouldFlushHeapDoesNotContainCache = true; }
void registerTraceDOMWrappers(v8::Isolate* isolate, void (*traceDOMWrappers)(v8::Isolate*, Visitor*))
{
m_isolate = isolate;
m_traceDOMWrappers = traceDOMWrappers;
}
private:
ThreadState();
~ThreadState();
friend class SafePointBarrier;
friend class SafePointAwareMutexLocker;
void enterSafePoint(StackState, void*);
NO_SANITIZE_ADDRESS void copyStackUntilSafePointScope();
void clearSafePointScopeMarker()
{
m_safePointStackCopy.clear();
m_safePointScopeMarker = nullptr;
}
// shouldGC and shouldForceConservativeGC implement the heuristics
// that are used to determine when to collect garbage. If
// shouldForceConservativeGC returns true, we force the garbage
// collection immediately. Otherwise, if shouldGC returns true, we
// record that we should garbage collect the next time we return
// to the event loop. If both return false, we don't need to
// collect garbage at this point.
bool shouldGC();
bool shouldForceConservativeGC();
void runScheduledGC(StackState);
// When ThreadState is detaching from non-main thread its
// heap is expected to be empty (because it is going away).
// Perform registered cleanup tasks and garbage collection
// to sweep away any objects that are left on this heap.
// We assert that nothing must remain after this cleanup.
// If assertion does not hold we crash as we are potentially
// in the dangling pointer situation.
void cleanup();
void cleanupPages();
void unregisterPreFinalizerInternal(void*);
void invokePreFinalizers(Visitor&);
static WTF::ThreadSpecific<ThreadState*>* s_threadSpecific;
static uintptr_t s_mainThreadStackStart;
static uintptr_t s_mainThreadUnderestimatedStackSize;
static SafePointBarrier* s_safePointBarrier;
// We can't create a static member of type ThreadState here
// because it will introduce global constructor and destructor.
// We would like to manage lifetime of the ThreadState attached
// to the main thread explicitly instead and still use normal
// constructor and destructor for the ThreadState class.
// For this we reserve static storage for the main ThreadState
// and lazily construct ThreadState in it using placement new.
static uint8_t s_mainThreadStateStorage[];
ThreadIdentifier m_thread;
OwnPtr<PersistentNode> m_persistents;
StackState m_stackState;
intptr_t* m_startOfStack;
intptr_t* m_endOfStack;
void* m_safePointScopeMarker;
Vector<Address> m_safePointStackCopy;
bool m_atSafePoint;
Vector<Interruptor*> m_interruptors;
bool m_didV8GCAfterLastGC;
bool m_sweepForbidden;
size_t m_noAllocationCount;
size_t m_allocatedObjectSizeBeforeSweeping;
ThreadHeap* m_heaps[NumberOfHeaps];
Vector<OwnPtr<CleanupTask>> m_cleanupTasks;
bool m_isTerminating;
bool m_shouldFlushHeapDoesNotContainCache;
double m_collectionRate;
GCState m_gcState;
CallbackStack* m_weakCallbackStack;
HashMap<void*, bool (*)(void*, Visitor&)> m_preFinalizers;
v8::Isolate* m_isolate;
void (*m_traceDOMWrappers)(v8::Isolate*, Visitor*);
#if defined(ADDRESS_SANITIZER)
void* m_asanFakeStack;
#endif
Vector<PageMemoryRegion*> m_allocatedRegionsSinceLastGC;
};
template<ThreadAffinity affinity> class ThreadStateFor;
template<> class ThreadStateFor<MainThreadOnly> {
public:
static ThreadState* state()
{
// This specialization must only be used from the main thread.
ASSERT(ThreadState::current()->isMainThread());
return ThreadState::mainThreadState();
}
};
template<> class ThreadStateFor<AnyThread> {
public:
static ThreadState* state() { return ThreadState::current(); }
};
// The SafePointAwareMutexLocker is used to enter a safepoint while waiting for
// a mutex lock. It also ensures that the lock is not held while waiting for a GC
// to complete in the leaveSafePoint method, by releasing the lock if the
// leaveSafePoint method cannot complete without blocking, see
// SafePointBarrier::checkAndPark.
class SafePointAwareMutexLocker {
WTF_MAKE_NONCOPYABLE(SafePointAwareMutexLocker);
public:
explicit SafePointAwareMutexLocker(MutexBase& mutex, ThreadState::StackState stackState = ThreadState::HeapPointersOnStack)
: m_mutex(mutex)
, m_locked(false)
{
ThreadState* state = ThreadState::current();
do {
bool leaveSafePoint = false;
// We cannot enter a safepoint if we are currently sweeping. In that
// case we just try to acquire the lock without being at a safepoint.
// If another thread tries to do a GC at that time it might time out
// due to this thread not being at a safepoint and waiting on the lock.
if (!state->sweepForbidden() && !state->isAtSafePoint()) {
state->enterSafePoint(stackState, this);
leaveSafePoint = true;
}
m_mutex.lock();
m_locked = true;
if (leaveSafePoint) {
// When leaving the safepoint we might end up release the mutex
// if another thread is requesting a GC, see
// SafePointBarrier::checkAndPark. This is the case where we
// loop around to reacquire the lock.
state->leaveSafePoint(this);
}
} while (!m_locked);
}
~SafePointAwareMutexLocker()
{
ASSERT(m_locked);
m_mutex.unlock();
}
private:
friend class SafePointBarrier;
void reset()
{
ASSERT(m_locked);
m_mutex.unlock();
m_locked = false;
}
MutexBase& m_mutex;
bool m_locked;
};
} // namespace blink
#endif // ThreadState_h
|