1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
|
/*
* Copyright (C) 2006 Apple Computer, Inc.
*
* Portions are Copyright (C) 2001-6 mozilla.org
*
* Other contributors:
* Stuart Parmenter <stuart@mozilla.com>
*
* Copyright (C) 2007-2009 Torch Mobile, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Alternatively, the contents of this file may be used under the terms
* of either the Mozilla Public License Version 1.1, found at
* http://www.mozilla.org/MPL/ (the "MPL") or the GNU General Public
* License Version 2.0, found at http://www.fsf.org/copyleft/gpl.html
* (the "GPL"), in which case the provisions of the MPL or the GPL are
* applicable instead of those above. If you wish to allow use of your
* version of this file only under the terms of one of those two
* licenses (the MPL or the GPL) and not to allow others to use your
* version of this file under the LGPL, indicate your decision by
* deletingthe provisions above and replace them with the notice and
* other provisions required by the MPL or the GPL, as the case may be.
* If you do not delete the provisions above, a recipient may use your
* version of this file under any of the LGPL, the MPL or the GPL.
*/
#include "config.h"
#include "platform/image-decoders/jpeg/JPEGImageDecoder.h"
#include "platform/PlatformInstrumentation.h"
#include "wtf/PassOwnPtr.h"
#include "wtf/dtoa/utils.h"
extern "C" {
#include <stdio.h> // jpeglib.h needs stdio FILE.
#include "jpeglib.h"
#if USE(ICCJPEG)
#include "iccjpeg.h"
#endif
#if USE(QCMSLIB)
#include "qcms.h"
#endif
#include <setjmp.h>
}
#if CPU(BIG_ENDIAN) || CPU(MIDDLE_ENDIAN)
#error Blink assumes a little-endian target.
#endif
#if defined(JCS_ALPHA_EXTENSIONS)
#define TURBO_JPEG_RGB_SWIZZLE
#if SK_B32_SHIFT // Output little-endian RGBA pixels (Android).
inline J_COLOR_SPACE rgbOutputColorSpace() { return JCS_EXT_RGBA; }
#else // Output little-endian BGRA pixels.
inline J_COLOR_SPACE rgbOutputColorSpace() { return JCS_EXT_BGRA; }
#endif
inline bool turboSwizzled(J_COLOR_SPACE colorSpace) { return colorSpace == JCS_EXT_RGBA || colorSpace == JCS_EXT_BGRA; }
inline bool colorSpaceHasAlpha(J_COLOR_SPACE colorSpace) { return turboSwizzled(colorSpace); }
#else
inline J_COLOR_SPACE rgbOutputColorSpace() { return JCS_RGB; }
inline bool colorSpaceHasAlpha(J_COLOR_SPACE) { return false; }
#endif
#if USE(LOW_QUALITY_IMAGE_NO_JPEG_DITHERING)
inline J_DCT_METHOD dctMethod() { return JDCT_IFAST; }
inline J_DITHER_MODE ditherMode() { return JDITHER_NONE; }
#else
inline J_DCT_METHOD dctMethod() { return JDCT_ISLOW; }
inline J_DITHER_MODE ditherMode() { return JDITHER_FS; }
#endif
#if USE(LOW_QUALITY_IMAGE_NO_JPEG_FANCY_UPSAMPLING)
inline bool doFancyUpsampling() { return false; }
#else
inline bool doFancyUpsampling() { return true; }
#endif
namespace {
const int exifMarker = JPEG_APP0 + 1;
// JPEG only supports a denominator of 8.
const unsigned scaleDenominator = 8;
} // namespace
namespace blink {
struct decoder_error_mgr {
struct jpeg_error_mgr pub; // "public" fields for IJG library
jmp_buf setjmp_buffer; // For handling catastropic errors
};
enum jstate {
JPEG_HEADER, // Reading JFIF headers
JPEG_START_DECOMPRESS,
JPEG_DECOMPRESS_PROGRESSIVE, // Output progressive pixels
JPEG_DECOMPRESS_SEQUENTIAL, // Output sequential pixels
JPEG_DONE,
JPEG_ERROR
};
enum yuv_subsampling {
YUV_UNKNOWN,
YUV_410,
YUV_411,
YUV_420,
YUV_422,
YUV_440,
YUV_444
};
void init_source(j_decompress_ptr jd);
boolean fill_input_buffer(j_decompress_ptr jd);
void skip_input_data(j_decompress_ptr jd, long num_bytes);
void term_source(j_decompress_ptr jd);
void error_exit(j_common_ptr cinfo);
// Implementation of a JPEG src object that understands our state machine
struct decoder_source_mgr {
// public fields; must be first in this struct!
struct jpeg_source_mgr pub;
JPEGImageReader* decoder;
};
static unsigned readUint16(JOCTET* data, bool isBigEndian)
{
if (isBigEndian)
return (GETJOCTET(data[0]) << 8) | GETJOCTET(data[1]);
return (GETJOCTET(data[1]) << 8) | GETJOCTET(data[0]);
}
static unsigned readUint32(JOCTET* data, bool isBigEndian)
{
if (isBigEndian)
return (GETJOCTET(data[0]) << 24) | (GETJOCTET(data[1]) << 16) | (GETJOCTET(data[2]) << 8) | GETJOCTET(data[3]);
return (GETJOCTET(data[3]) << 24) | (GETJOCTET(data[2]) << 16) | (GETJOCTET(data[1]) << 8) | GETJOCTET(data[0]);
}
static bool checkExifHeader(jpeg_saved_marker_ptr marker, bool& isBigEndian, unsigned& ifdOffset)
{
// For exif data, the APP1 block is followed by 'E', 'x', 'i', 'f', '\0',
// then a fill byte, and then a tiff file that contains the metadata.
// A tiff file starts with 'I', 'I' (intel / little endian byte order) or
// 'M', 'M' (motorola / big endian byte order), followed by (uint16_t)42,
// followed by an uint32_t with the offset to the tag block, relative to the
// tiff file start.
const unsigned exifHeaderSize = 14;
if (!(marker->marker == exifMarker
&& marker->data_length >= exifHeaderSize
&& marker->data[0] == 'E'
&& marker->data[1] == 'x'
&& marker->data[2] == 'i'
&& marker->data[3] == 'f'
&& marker->data[4] == '\0'
// data[5] is a fill byte
&& ((marker->data[6] == 'I' && marker->data[7] == 'I')
|| (marker->data[6] == 'M' && marker->data[7] == 'M'))))
return false;
isBigEndian = marker->data[6] == 'M';
if (readUint16(marker->data + 8, isBigEndian) != 42)
return false;
ifdOffset = readUint32(marker->data + 10, isBigEndian);
return true;
}
static ImageOrientation readImageOrientation(jpeg_decompress_struct* info)
{
// The JPEG decoder looks at EXIF metadata.
// FIXME: Possibly implement XMP and IPTC support.
const unsigned orientationTag = 0x112;
const unsigned shortType = 3;
for (jpeg_saved_marker_ptr marker = info->marker_list; marker; marker = marker->next) {
bool isBigEndian;
unsigned ifdOffset;
if (!checkExifHeader(marker, isBigEndian, ifdOffset))
continue;
const unsigned offsetToTiffData = 6; // Account for 'Exif\0<fill byte>' header.
if (marker->data_length < offsetToTiffData || ifdOffset >= marker->data_length - offsetToTiffData)
continue;
ifdOffset += offsetToTiffData;
// The jpeg exif container format contains a tiff block for metadata.
// A tiff image file directory (ifd) consists of a uint16_t describing
// the number of ifd entries, followed by that many entries.
// When touching this code, it's useful to look at the tiff spec:
// http://partners.adobe.com/public/developer/en/tiff/TIFF6.pdf
JOCTET* ifd = marker->data + ifdOffset;
JOCTET* end = marker->data + marker->data_length;
if (end - ifd < 2)
continue;
unsigned tagCount = readUint16(ifd, isBigEndian);
ifd += 2; // Skip over the uint16 that was just read.
// Every ifd entry is 2 bytes of tag, 2 bytes of contents datatype,
// 4 bytes of number-of-elements, and 4 bytes of either offset to the
// tag data, or if the data is small enough, the inlined data itself.
const int ifdEntrySize = 12;
for (unsigned i = 0; i < tagCount && end - ifd >= ifdEntrySize; ++i, ifd += ifdEntrySize) {
unsigned tag = readUint16(ifd, isBigEndian);
unsigned type = readUint16(ifd + 2, isBigEndian);
unsigned count = readUint32(ifd + 4, isBigEndian);
if (tag == orientationTag && type == shortType && count == 1)
return ImageOrientation::fromEXIFValue(readUint16(ifd + 8, isBigEndian));
}
}
return ImageOrientation();
}
#if USE(QCMSLIB)
static void readColorProfile(jpeg_decompress_struct* info, ColorProfile& colorProfile)
{
#if USE(ICCJPEG)
JOCTET* profile;
unsigned profileLength;
if (!read_icc_profile(info, &profile, &profileLength))
return;
// Only accept RGB color profiles from input class devices.
bool ignoreProfile = false;
char* profileData = reinterpret_cast<char*>(profile);
if (profileLength < ImageDecoder::iccColorProfileHeaderLength)
ignoreProfile = true;
else if (!ImageDecoder::rgbColorProfile(profileData, profileLength))
ignoreProfile = true;
else if (!ImageDecoder::inputDeviceColorProfile(profileData, profileLength))
ignoreProfile = true;
ASSERT(colorProfile.isEmpty());
if (!ignoreProfile)
colorProfile.append(profileData, profileLength);
free(profile);
#endif
}
#endif
static IntSize computeYUVSize(const jpeg_decompress_struct* info, int component, ImageDecoder::SizeType sizeType)
{
if (sizeType == ImageDecoder::SizeForMemoryAllocation) {
return IntSize(info->cur_comp_info[component]->width_in_blocks * DCTSIZE, info->cur_comp_info[component]->height_in_blocks * DCTSIZE);
}
return IntSize(info->cur_comp_info[component]->downsampled_width, info->cur_comp_info[component]->downsampled_height);
}
static yuv_subsampling yuvSubsampling(const jpeg_decompress_struct& info)
{
if ((DCTSIZE == 8)
&& (info.num_components == 3)
&& (info.comps_in_scan >= info.num_components)
&& (info.scale_denom <= 8)
&& (info.cur_comp_info[0])
&& (info.cur_comp_info[1])
&& (info.cur_comp_info[2])
&& (info.cur_comp_info[1]->h_samp_factor == 1)
&& (info.cur_comp_info[1]->v_samp_factor == 1)
&& (info.cur_comp_info[2]->h_samp_factor == 1)
&& (info.cur_comp_info[2]->v_samp_factor == 1)) {
int h = info.cur_comp_info[0]->h_samp_factor;
int v = info.cur_comp_info[0]->v_samp_factor;
// 4:4:4 : (h == 1) && (v == 1)
// 4:4:0 : (h == 1) && (v == 2)
// 4:2:2 : (h == 2) && (v == 1)
// 4:2:0 : (h == 2) && (v == 2)
// 4:1:1 : (h == 4) && (v == 1)
// 4:1:0 : (h == 4) && (v == 2)
if (v == 1) {
switch (h) {
case 1:
return YUV_444;
case 2:
return YUV_422;
case 4:
return YUV_411;
default:
break;
}
} else if (v == 2) {
switch (h) {
case 1:
return YUV_440;
case 2:
return YUV_420;
case 4:
return YUV_410;
default:
break;
}
}
}
return YUV_UNKNOWN;
}
class JPEGImageReader {
WTF_MAKE_FAST_ALLOCATED;
public:
JPEGImageReader(JPEGImageDecoder* decoder)
: m_decoder(decoder)
, m_bufferLength(0)
, m_bytesToSkip(0)
, m_state(JPEG_HEADER)
, m_samples(0)
#if USE(QCMSLIB)
, m_transform(0)
#endif
{
memset(&m_info, 0, sizeof(jpeg_decompress_struct));
// We set up the normal JPEG error routines, then override error_exit.
m_info.err = jpeg_std_error(&m_err.pub);
m_err.pub.error_exit = error_exit;
// Allocate and initialize JPEG decompression object.
jpeg_create_decompress(&m_info);
decoder_source_mgr* src = 0;
if (!m_info.src) {
src = (decoder_source_mgr*)fastZeroedMalloc(sizeof(decoder_source_mgr));
if (!src) {
m_state = JPEG_ERROR;
return;
}
}
m_info.src = (jpeg_source_mgr*)src;
// Set up callback functions.
src->pub.init_source = init_source;
src->pub.fill_input_buffer = fill_input_buffer;
src->pub.skip_input_data = skip_input_data;
src->pub.resync_to_restart = jpeg_resync_to_restart;
src->pub.term_source = term_source;
src->decoder = this;
#if USE(ICCJPEG)
// Retain ICC color profile markers for color management.
setup_read_icc_profile(&m_info);
#endif
// Keep APP1 blocks, for obtaining exif data.
jpeg_save_markers(&m_info, exifMarker, 0xFFFF);
}
~JPEGImageReader()
{
close();
}
void close()
{
decoder_source_mgr* src = (decoder_source_mgr*)m_info.src;
if (src)
fastFree(src);
m_info.src = 0;
#if USE(QCMSLIB)
clearColorTransform();
#endif
jpeg_destroy_decompress(&m_info);
}
void skipBytes(long numBytes)
{
decoder_source_mgr* src = (decoder_source_mgr*)m_info.src;
long bytesToSkip = std::min(numBytes, (long)src->pub.bytes_in_buffer);
src->pub.bytes_in_buffer -= (size_t)bytesToSkip;
src->pub.next_input_byte += bytesToSkip;
m_bytesToSkip = std::max(numBytes - bytesToSkip, static_cast<long>(0));
}
bool decode(const SharedBuffer& data, bool onlySize)
{
unsigned newByteCount = data.size() - m_bufferLength;
unsigned readOffset = m_bufferLength - m_info.src->bytes_in_buffer;
m_info.src->bytes_in_buffer += newByteCount;
m_info.src->next_input_byte = (JOCTET*)(data.data()) + readOffset;
// If we still have bytes to skip, try to skip those now.
if (m_bytesToSkip)
skipBytes(m_bytesToSkip);
m_bufferLength = data.size();
// We need to do the setjmp here. Otherwise bad things will happen
if (setjmp(m_err.setjmp_buffer))
return m_decoder->setFailed();
J_COLOR_SPACE overrideColorSpace = JCS_UNKNOWN;
switch (m_state) {
case JPEG_HEADER:
// Read file parameters with jpeg_read_header().
if (jpeg_read_header(&m_info, true) == JPEG_SUSPENDED)
return false; // I/O suspension.
switch (m_info.jpeg_color_space) {
case JCS_YCbCr:
// libjpeg can convert YCbCr image pixels to RGB.
m_info.out_color_space = rgbOutputColorSpace();
if (m_decoder->hasImagePlanes() && (yuvSubsampling(m_info) != YUV_UNKNOWN))
overrideColorSpace = JCS_YCbCr;
break;
case JCS_GRAYSCALE:
case JCS_RGB:
// libjpeg can convert GRAYSCALE image pixels to RGB.
m_info.out_color_space = rgbOutputColorSpace();
#if defined(TURBO_JPEG_RGB_SWIZZLE)
if (m_info.saw_JFIF_marker)
break;
// FIXME: Swizzle decoding does not support Adobe transform=0
// images (yet), so revert to using JSC_RGB in that case.
if (m_info.saw_Adobe_marker && !m_info.Adobe_transform)
m_info.out_color_space = JCS_RGB;
#endif
break;
case JCS_CMYK:
case JCS_YCCK:
// libjpeg can convert YCCK to CMYK, but neither to RGB, so we
// manually convert CMKY to RGB.
m_info.out_color_space = JCS_CMYK;
break;
default:
return m_decoder->setFailed();
}
m_state = JPEG_START_DECOMPRESS;
// We can fill in the size now that the header is available.
if (!m_decoder->setSize(m_info.image_width, m_info.image_height))
return false;
// Calculate and set decoded size.
m_info.scale_num = m_decoder->desiredScaleNumerator();
m_info.scale_denom = scaleDenominator;
jpeg_calc_output_dimensions(&m_info);
m_decoder->setDecodedSize(m_info.output_width, m_info.output_height);
m_decoder->setOrientation(readImageOrientation(info()));
#if USE(QCMSLIB)
// Allow color management of the decoded RGBA pixels if possible.
if (!m_decoder->ignoresGammaAndColorProfile()) {
ColorProfile colorProfile;
readColorProfile(info(), colorProfile);
createColorTransform(colorProfile, colorSpaceHasAlpha(m_info.out_color_space));
if (m_transform) {
overrideColorSpace = JCS_UNKNOWN;
#if defined(TURBO_JPEG_RGB_SWIZZLE)
// Input RGBA data to qcms. Note: restored to BGRA on output.
if (m_info.out_color_space == JCS_EXT_BGRA)
m_info.out_color_space = JCS_EXT_RGBA;
#endif
}
m_decoder->setHasColorProfile(!!m_transform);
}
#endif
if (overrideColorSpace == JCS_YCbCr) {
m_info.out_color_space = JCS_YCbCr;
m_info.raw_data_out = TRUE;
m_uvSize = computeYUVSize(&m_info, 1, ImageDecoder::SizeForMemoryAllocation); // U size and V size have to be the same if we got here
}
// Don't allocate a giant and superfluous memory buffer when the
// image is a sequential JPEG.
m_info.buffered_image = jpeg_has_multiple_scans(&m_info);
if (onlySize) {
// We can stop here. Reduce our buffer length and available data.
m_bufferLength -= m_info.src->bytes_in_buffer;
m_info.src->bytes_in_buffer = 0;
return true;
}
// FALL THROUGH
case JPEG_START_DECOMPRESS:
// Set parameters for decompression.
// FIXME -- Should reset dct_method and dither mode for final pass
// of progressive JPEG.
m_info.dct_method = dctMethod();
m_info.dither_mode = ditherMode();
m_info.do_fancy_upsampling = doFancyUpsampling();
m_info.enable_2pass_quant = false;
m_info.do_block_smoothing = true;
// Make a one-row-high sample array that will go away when done with
// image. Always make it big enough to hold an RGB row. Since this
// uses the IJG memory manager, it must be allocated before the call
// to jpeg_start_compress().
// FIXME: note that some output color spaces do not need the samples
// buffer. Remove this allocation for those color spaces.
{
int samplesWidth = (m_info.out_color_space == JCS_YCbCr) ? computeYUVSize(&m_info, 0, ImageDecoder::SizeForMemoryAllocation).width() : m_info.output_width;
m_samples = (*m_info.mem->alloc_sarray)(reinterpret_cast<j_common_ptr>(&m_info), JPOOL_IMAGE, samplesWidth * 4, 1);
}
// Start decompressor.
if (!jpeg_start_decompress(&m_info))
return false; // I/O suspension.
// If this is a progressive JPEG ...
m_state = (m_info.buffered_image) ? JPEG_DECOMPRESS_PROGRESSIVE : JPEG_DECOMPRESS_SEQUENTIAL;
// FALL THROUGH
case JPEG_DECOMPRESS_SEQUENTIAL:
if (m_state == JPEG_DECOMPRESS_SEQUENTIAL) {
if (!m_decoder->outputScanlines())
return false; // I/O suspension.
// If we've completed image output...
ASSERT(m_info.output_scanline == m_info.output_height);
m_state = JPEG_DONE;
}
// FALL THROUGH
case JPEG_DECOMPRESS_PROGRESSIVE:
if (m_state == JPEG_DECOMPRESS_PROGRESSIVE) {
int status;
do {
status = jpeg_consume_input(&m_info);
} while ((status != JPEG_SUSPENDED) && (status != JPEG_REACHED_EOI));
for (;;) {
if (!m_info.output_scanline) {
int scan = m_info.input_scan_number;
// If we haven't displayed anything yet
// (output_scan_number == 0) and we have enough data for
// a complete scan, force output of the last full scan.
if (!m_info.output_scan_number && (scan > 1) && (status != JPEG_REACHED_EOI))
--scan;
if (!jpeg_start_output(&m_info, scan))
return false; // I/O suspension.
}
if (m_info.output_scanline == 0xffffff)
m_info.output_scanline = 0;
// If outputScanlines() fails, it deletes |this|. Therefore,
// copy the decoder pointer and use it to check for failure
// to avoid member access in the failure case.
JPEGImageDecoder* decoder = m_decoder;
if (!decoder->outputScanlines()) {
if (decoder->failed()) // Careful; |this| is deleted.
return false;
if (!m_info.output_scanline)
// Didn't manage to read any lines - flag so we
// don't call jpeg_start_output() multiple times for
// the same scan.
m_info.output_scanline = 0xffffff;
return false; // I/O suspension.
}
if (m_info.output_scanline == m_info.output_height) {
if (!jpeg_finish_output(&m_info))
return false; // I/O suspension.
if (jpeg_input_complete(&m_info) && (m_info.input_scan_number == m_info.output_scan_number))
break;
m_info.output_scanline = 0;
}
}
m_state = JPEG_DONE;
}
// FALL THROUGH
case JPEG_DONE:
// Finish decompression.
return jpeg_finish_decompress(&m_info);
case JPEG_ERROR:
// We can get here if the constructor failed.
return m_decoder->setFailed();
}
return true;
}
jpeg_decompress_struct* info() { return &m_info; }
JSAMPARRAY samples() const { return m_samples; }
JPEGImageDecoder* decoder() { return m_decoder; }
IntSize uvSize() const { return m_uvSize; }
#if USE(QCMSLIB)
qcms_transform* colorTransform() const { return m_transform; }
void clearColorTransform()
{
if (m_transform)
qcms_transform_release(m_transform);
m_transform = 0;
}
void createColorTransform(const ColorProfile& colorProfile, bool hasAlpha)
{
clearColorTransform();
if (colorProfile.isEmpty())
return;
qcms_profile* deviceProfile = ImageDecoder::qcmsOutputDeviceProfile();
if (!deviceProfile)
return;
qcms_profile* inputProfile = qcms_profile_from_memory(colorProfile.data(), colorProfile.size());
if (!inputProfile)
return;
// We currently only support color profiles for RGB profiled images.
ASSERT(icSigRgbData == qcms_profile_get_color_space(inputProfile));
qcms_data_type dataFormat = hasAlpha ? QCMS_DATA_RGBA_8 : QCMS_DATA_RGB_8;
// FIXME: Don't force perceptual intent if the image profile contains an intent.
m_transform = qcms_transform_create(inputProfile, dataFormat, deviceProfile, dataFormat, QCMS_INTENT_PERCEPTUAL);
qcms_profile_release(inputProfile);
}
#endif
private:
JPEGImageDecoder* m_decoder;
unsigned m_bufferLength;
int m_bytesToSkip;
jpeg_decompress_struct m_info;
decoder_error_mgr m_err;
jstate m_state;
JSAMPARRAY m_samples;
IntSize m_uvSize;
#if USE(QCMSLIB)
qcms_transform* m_transform;
#endif
};
// Override the standard error method in the IJG JPEG decoder code.
void error_exit(j_common_ptr cinfo)
{
// Return control to the setjmp point.
decoder_error_mgr *err = reinterpret_cast_ptr<decoder_error_mgr *>(cinfo->err);
longjmp(err->setjmp_buffer, -1);
}
void init_source(j_decompress_ptr)
{
}
void skip_input_data(j_decompress_ptr jd, long num_bytes)
{
decoder_source_mgr *src = (decoder_source_mgr *)jd->src;
src->decoder->skipBytes(num_bytes);
}
boolean fill_input_buffer(j_decompress_ptr)
{
// Our decode step always sets things up properly, so if this method is ever
// called, then we have hit the end of the buffer. A return value of false
// indicates that we have no data to supply yet.
return false;
}
void term_source(j_decompress_ptr jd)
{
decoder_source_mgr *src = (decoder_source_mgr *)jd->src;
src->decoder->decoder()->jpegComplete();
}
JPEGImageDecoder::JPEGImageDecoder(ImageSource::AlphaOption alphaOption,
ImageSource::GammaAndColorProfileOption gammaAndColorProfileOption,
size_t maxDecodedBytes)
: ImageDecoder(alphaOption, gammaAndColorProfileOption, maxDecodedBytes)
, m_hasColorProfile(false)
{
}
JPEGImageDecoder::~JPEGImageDecoder()
{
}
bool JPEGImageDecoder::isSizeAvailable()
{
if (!ImageDecoder::isSizeAvailable())
decode(true);
return ImageDecoder::isSizeAvailable();
}
bool JPEGImageDecoder::setSize(unsigned width, unsigned height)
{
if (!ImageDecoder::setSize(width, height))
return false;
if (!desiredScaleNumerator())
return setFailed();
setDecodedSize(width, height);
return true;
}
void JPEGImageDecoder::setDecodedSize(unsigned width, unsigned height)
{
m_decodedSize = IntSize(width, height);
}
IntSize JPEGImageDecoder::decodedYUVSize(int component, ImageDecoder::SizeType sizeType) const
{
ASSERT((component >= 0) && (component <= 2) && m_reader);
const jpeg_decompress_struct* info = m_reader->info();
ASSERT(info->out_color_space == JCS_YCbCr);
return computeYUVSize(info, component, sizeType);
}
unsigned JPEGImageDecoder::desiredScaleNumerator() const
{
size_t originalBytes = size().width() * size().height() * 4;
if (originalBytes <= m_maxDecodedBytes) {
return scaleDenominator;
}
// Downsample according to the maximum decoded size.
unsigned scaleNumerator = static_cast<unsigned>(floor(sqrt(
// MSVC needs explicit parameter type for sqrt().
static_cast<float>(m_maxDecodedBytes * scaleDenominator * scaleDenominator / originalBytes))));
return scaleNumerator;
}
bool JPEGImageDecoder::canDecodeToYUV() const
{
ASSERT(ImageDecoder::isSizeAvailable() && m_reader);
return m_reader->info()->out_color_space == JCS_YCbCr;
}
bool JPEGImageDecoder::decodeToYUV()
{
if (!hasImagePlanes())
return false;
PlatformInstrumentation::willDecodeImage("JPEG");
decode(false);
PlatformInstrumentation::didDecodeImage();
return !failed();
}
ImageFrame* JPEGImageDecoder::frameBufferAtIndex(size_t index)
{
if (index)
return 0;
if (m_frameBufferCache.isEmpty()) {
m_frameBufferCache.resize(1);
m_frameBufferCache[0].setPremultiplyAlpha(m_premultiplyAlpha);
}
ImageFrame& frame = m_frameBufferCache[0];
if (frame.status() != ImageFrame::FrameComplete) {
PlatformInstrumentation::willDecodeImage("JPEG");
decode(false);
PlatformInstrumentation::didDecodeImage();
}
frame.notifyBitmapIfPixelsChanged();
return &frame;
}
bool JPEGImageDecoder::setFailed()
{
m_reader.clear();
return ImageDecoder::setFailed();
}
void JPEGImageDecoder::setImagePlanes(PassOwnPtr<ImagePlanes> imagePlanes)
{
m_imagePlanes = imagePlanes;
}
template <J_COLOR_SPACE colorSpace> void setPixel(ImageFrame& buffer, ImageFrame::PixelData* pixel, JSAMPARRAY samples, int column)
{
ASSERT_NOT_REACHED();
}
template <> void setPixel<JCS_RGB>(ImageFrame& buffer, ImageFrame::PixelData* pixel, JSAMPARRAY samples, int column)
{
JSAMPLE* jsample = *samples + column * 3;
buffer.setRGBARaw(pixel, jsample[0], jsample[1], jsample[2], 255);
}
template <> void setPixel<JCS_CMYK>(ImageFrame& buffer, ImageFrame::PixelData* pixel, JSAMPARRAY samples, int column)
{
JSAMPLE* jsample = *samples + column * 4;
// Source is 'Inverted CMYK', output is RGB.
// See: http://www.easyrgb.com/math.php?MATH=M12#text12
// Or: http://www.ilkeratalay.com/colorspacesfaq.php#rgb
// From CMYK to CMY:
// X = X * (1 - K ) + K [for X = C, M, or Y]
// Thus, from Inverted CMYK to CMY is:
// X = (1-iX) * (1 - (1-iK)) + (1-iK) => 1 - iX*iK
// From CMY (0..1) to RGB (0..1):
// R = 1 - C => 1 - (1 - iC*iK) => iC*iK [G and B similar]
unsigned k = jsample[3];
buffer.setRGBARaw(pixel, jsample[0] * k / 255, jsample[1] * k / 255, jsample[2] * k / 255, 255);
}
template <J_COLOR_SPACE colorSpace> bool outputRows(JPEGImageReader* reader, ImageFrame& buffer)
{
JSAMPARRAY samples = reader->samples();
jpeg_decompress_struct* info = reader->info();
int width = info->output_width;
while (info->output_scanline < info->output_height) {
// jpeg_read_scanlines will increase the scanline counter, so we
// save the scanline before calling it.
int y = info->output_scanline;
// Request one scanline: returns 0 or 1 scanlines.
if (jpeg_read_scanlines(info, samples, 1) != 1)
return false;
#if USE(QCMSLIB)
if (reader->colorTransform() && colorSpace == JCS_RGB)
qcms_transform_data(reader->colorTransform(), *samples, *samples, width);
#endif
ImageFrame::PixelData* pixel = buffer.getAddr(0, y);
for (int x = 0; x < width; ++pixel, ++x)
setPixel<colorSpace>(buffer, pixel, samples, x);
}
buffer.setPixelsChanged(true);
return true;
}
static bool outputRawData(JPEGImageReader* reader, ImagePlanes* imagePlanes)
{
JSAMPARRAY samples = reader->samples();
jpeg_decompress_struct* info = reader->info();
JSAMPARRAY bufferraw[3];
JSAMPROW bufferraw2[32];
bufferraw[0] = &bufferraw2[0]; // Y channel rows (8 or 16)
bufferraw[1] = &bufferraw2[16]; // U channel rows (8)
bufferraw[2] = &bufferraw2[24]; // V channel rows (8)
int yWidth = info->output_width;
int yHeight = info->output_height;
int yMaxH = yHeight - 1;
int v = info->cur_comp_info[0]->v_samp_factor;
IntSize uvSize = reader->uvSize();
int uvMaxH = uvSize.height() - 1;
JSAMPROW outputY = static_cast<JSAMPROW>(imagePlanes->plane(0));
JSAMPROW outputU = static_cast<JSAMPROW>(imagePlanes->plane(1));
JSAMPROW outputV = static_cast<JSAMPROW>(imagePlanes->plane(2));
size_t rowBytesY = imagePlanes->rowBytes(0);
size_t rowBytesU = imagePlanes->rowBytes(1);
size_t rowBytesV = imagePlanes->rowBytes(2);
int yScanlinesToRead = DCTSIZE * v;
JSAMPROW yLastRow = *samples;
JSAMPROW uLastRow = yLastRow + rowBytesY;
JSAMPROW vLastRow = uLastRow + rowBytesY;
JSAMPROW dummyRow = vLastRow + rowBytesY;
while (info->output_scanline < info->output_height) {
// Request 8 or 16 scanlines: returns 0 or more scanlines.
bool hasYLastRow(false), hasUVLastRow(false);
// Assign 8 or 16 rows of memory to read the Y channel.
for (int i = 0; i < yScanlinesToRead; ++i) {
int scanline = (info->output_scanline + i);
if (scanline < yMaxH) {
bufferraw2[i] = &outputY[scanline * rowBytesY];
} else if (scanline == yMaxH) {
bufferraw2[i] = yLastRow;
hasYLastRow = true;
} else {
bufferraw2[i] = dummyRow;
}
}
int scaledScanline = info->output_scanline / v;
// Assign 8 rows of memory to read the U and V channels.
for (int i = 0; i < 8; ++i) {
int scanline = (scaledScanline + i);
if (scanline < uvMaxH) {
bufferraw2[16 + i] = &outputU[scanline * rowBytesU];
bufferraw2[24 + i] = &outputV[scanline * rowBytesV];
} else if (scanline == uvMaxH) {
bufferraw2[16 + i] = uLastRow;
bufferraw2[24 + i] = vLastRow;
hasUVLastRow = true;
} else {
bufferraw2[16 + i] = dummyRow;
bufferraw2[24 + i] = dummyRow;
}
}
JDIMENSION scanlinesRead = jpeg_read_raw_data(info, bufferraw, yScanlinesToRead);
if (scanlinesRead == 0)
return false;
if (hasYLastRow) {
memcpy(&outputY[yMaxH * rowBytesY], yLastRow, yWidth);
}
if (hasUVLastRow) {
memcpy(&outputU[uvMaxH * rowBytesU], uLastRow, uvSize.width());
memcpy(&outputV[uvMaxH * rowBytesV], vLastRow, uvSize.width());
}
}
info->output_scanline = std::min(info->output_scanline, info->output_height);
return true;
}
bool JPEGImageDecoder::outputScanlines()
{
if (hasImagePlanes()) {
return outputRawData(m_reader.get(), m_imagePlanes.get());
}
if (m_frameBufferCache.isEmpty())
return false;
jpeg_decompress_struct* info = m_reader->info();
// Initialize the framebuffer if needed.
ImageFrame& buffer = m_frameBufferCache[0];
if (buffer.status() == ImageFrame::FrameEmpty) {
ASSERT(info->output_width == static_cast<JDIMENSION>(m_decodedSize.width()));
ASSERT(info->output_height == static_cast<JDIMENSION>(m_decodedSize.height()));
if (!buffer.setSize(info->output_width, info->output_height))
return setFailed();
buffer.setStatus(ImageFrame::FramePartial);
// The buffer is transparent outside the decoded area while the image is
// loading. The completed image will be marked fully opaque in jpegComplete().
buffer.setHasAlpha(true);
// For JPEGs, the frame always fills the entire image.
buffer.setOriginalFrameRect(IntRect(IntPoint(), size()));
}
#if defined(TURBO_JPEG_RGB_SWIZZLE)
if (turboSwizzled(info->out_color_space)) {
while (info->output_scanline < info->output_height) {
unsigned char* row = reinterpret_cast<unsigned char*>(buffer.getAddr(0, info->output_scanline));
if (jpeg_read_scanlines(info, &row, 1) != 1)
return false;
#if USE(QCMSLIB)
if (qcms_transform* transform = m_reader->colorTransform())
qcms_transform_data_type(transform, row, row, info->output_width, rgbOutputColorSpace() == JCS_EXT_BGRA ? QCMS_OUTPUT_BGRX : QCMS_OUTPUT_RGBX);
#endif
}
buffer.setPixelsChanged(true);
return true;
}
#endif
switch (info->out_color_space) {
case JCS_RGB:
return outputRows<JCS_RGB>(m_reader.get(), buffer);
case JCS_CMYK:
return outputRows<JCS_CMYK>(m_reader.get(), buffer);
default:
ASSERT_NOT_REACHED();
}
return setFailed();
}
void JPEGImageDecoder::jpegComplete()
{
if (m_frameBufferCache.isEmpty())
return;
// Hand back an appropriately sized buffer, even if the image ended up being
// empty.
ImageFrame& buffer = m_frameBufferCache[0];
buffer.setHasAlpha(false);
buffer.setStatus(ImageFrame::FrameComplete);
}
void JPEGImageDecoder::decode(bool onlySize)
{
if (failed())
return;
if (!m_reader) {
m_reader = adoptPtr(new JPEGImageReader(this));
}
// If we couldn't decode the image but we've received all the data, decoding
// has failed.
if (!m_reader->decode(*m_data, onlySize) && isAllDataReceived())
setFailed();
// If we're done decoding the image, we don't need the JPEGImageReader
// anymore. (If we failed, |m_reader| has already been cleared.)
else if ((!m_frameBufferCache.isEmpty() && (m_frameBufferCache[0].status() == ImageFrame::FrameComplete)) || (hasImagePlanes() && !onlySize))
m_reader.clear();
}
}
|