1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
|
/*
* Copyright (C) 2005, 2006, 2007, 2008, 2011, 2012 Apple Inc. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#ifndef WTF_HashTraits_h
#define WTF_HashTraits_h
#include "wtf/HashFunctions.h"
#include "wtf/HashTableDeletedValueType.h"
#include "wtf/StdLibExtras.h"
#include "wtf/TypeTraits.h"
#include <limits>
#include <string.h> // For memset.
#include <utility>
namespace WTF {
class String;
template<typename T> class OwnPtr;
template<typename T> class PassOwnPtr;
template<typename T> struct HashTraits;
template<bool isInteger, typename T> struct GenericHashTraitsBase;
enum ShouldWeakPointersBeMarkedStrongly {
WeakPointersActStrong,
WeakPointersActWeak
};
template<typename T> struct GenericHashTraitsBase<false, T> {
// The emptyValueIsZero flag is used to optimize allocation of empty hash tables with zeroed memory.
static const bool emptyValueIsZero = false;
// The hasIsEmptyValueFunction flag allows the hash table to automatically generate code to check
// for the empty value when it can be done with the equality operator, but allows custom functions
// for cases like String that need them.
static const bool hasIsEmptyValueFunction = false;
// The needsDestruction flag is used to optimize destruction and rehashing.
static const bool needsDestruction = true;
// The starting table size. Can be overridden when we know beforehand that
// a hash table will have at least N entries.
#if defined(MEMORY_SANITIZER_INITIAL_SIZE)
static const unsigned minimumTableSize = 1;
#else
static const unsigned minimumTableSize = 8;
#endif
template<typename U = void>
struct NeedsTracingLazily {
static const bool value = NeedsTracing<T>::value;
};
static const WeakHandlingFlag weakHandlingFlag = IsWeak<T>::value ? WeakHandlingInCollections : NoWeakHandlingInCollections;
};
// Default integer traits disallow both 0 and -1 as keys (max value instead of -1 for unsigned).
template<typename T> struct GenericHashTraitsBase<true, T> : GenericHashTraitsBase<false, T> {
static const bool emptyValueIsZero = true;
static const bool needsDestruction = false;
static void constructDeletedValue(T& slot, bool) { slot = static_cast<T>(-1); }
static bool isDeletedValue(T value) { return value == static_cast<T>(-1); }
};
template<typename T> struct GenericHashTraits : GenericHashTraitsBase<IsInteger<T>::value, T> {
typedef T TraitType;
typedef T EmptyValueType;
static T emptyValue() { return T(); }
// Type for functions that do not take ownership, such as contains.
typedef const T& PeekInType;
typedef T* IteratorGetType;
typedef const T* IteratorConstGetType;
typedef T& IteratorReferenceType;
typedef const T& IteratorConstReferenceType;
static IteratorReferenceType getToReferenceConversion(IteratorGetType x) { return *x; }
static IteratorConstReferenceType getToReferenceConstConversion(IteratorConstGetType x) { return *x; }
// Type for functions that take ownership, such as add.
// The store function either not be called or called once to store something passed in.
// The value passed to the store function will be PassInType.
typedef const T& PassInType;
static void store(const T& value, T& storage) { storage = value; }
// Type for return value of functions that transfer ownership, such as take.
typedef T PassOutType;
static const T& passOut(const T& value) { return value; }
// Type for return value of functions that do not transfer ownership, such as get.
// FIXME: We could change this type to const T& for better performance if we figured out
// a way to handle the return value from emptyValue, which is a temporary.
typedef T PeekOutType;
static const T& peek(const T& value) { return value; }
};
template<typename T> struct HashTraits : GenericHashTraits<T> { };
template<typename T> struct FloatHashTraits : GenericHashTraits<T> {
static const bool needsDestruction = false;
static T emptyValue() { return std::numeric_limits<T>::infinity(); }
static void constructDeletedValue(T& slot, bool) { slot = -std::numeric_limits<T>::infinity(); }
static bool isDeletedValue(T value) { return value == -std::numeric_limits<T>::infinity(); }
};
template<> struct HashTraits<float> : FloatHashTraits<float> { };
template<> struct HashTraits<double> : FloatHashTraits<double> { };
// Default unsigned traits disallow both 0 and max as keys -- use these traits to allow zero and disallow max - 1.
template<typename T> struct UnsignedWithZeroKeyHashTraits : GenericHashTraits<T> {
static const bool emptyValueIsZero = false;
static const bool needsDestruction = false;
static T emptyValue() { return std::numeric_limits<T>::max(); }
static void constructDeletedValue(T& slot, bool) { slot = std::numeric_limits<T>::max() - 1; }
static bool isDeletedValue(T value) { return value == std::numeric_limits<T>::max() - 1; }
};
template<typename P> struct HashTraits<P*> : GenericHashTraits<P*> {
static const bool emptyValueIsZero = true;
static const bool needsDestruction = false;
static void constructDeletedValue(P*& slot, bool) { slot = reinterpret_cast<P*>(-1); }
static bool isDeletedValue(P* value) { return value == reinterpret_cast<P*>(-1); }
};
template<typename T> struct SimpleClassHashTraits : GenericHashTraits<T> {
static const bool emptyValueIsZero = true;
static void constructDeletedValue(T& slot, bool) { new (NotNull, &slot) T(HashTableDeletedValue); }
static bool isDeletedValue(const T& value) { return value.isHashTableDeletedValue(); }
};
template<typename P> struct HashTraits<OwnPtr<P>> : SimpleClassHashTraits<OwnPtr<P>> {
typedef std::nullptr_t EmptyValueType;
static EmptyValueType emptyValue() { return nullptr; }
static const bool hasIsEmptyValueFunction = true;
static bool isEmptyValue(const OwnPtr<P>& value) { return !value; }
typedef typename OwnPtr<P>::PtrType PeekInType;
typedef PassOwnPtr<P> PassInType;
static void store(PassOwnPtr<P> value, OwnPtr<P>& storage) { storage = value; }
typedef PassOwnPtr<P> PassOutType;
static PassOwnPtr<P> passOut(OwnPtr<P>& value) { return value.release(); }
static PassOwnPtr<P> passOut(std::nullptr_t) { return nullptr; }
typedef typename OwnPtr<P>::PtrType PeekOutType;
static PeekOutType peek(const OwnPtr<P>& value) { return value.get(); }
static PeekOutType peek(std::nullptr_t) { return 0; }
};
template<typename P> struct HashTraits<RefPtr<P>> : SimpleClassHashTraits<RefPtr<P>> {
typedef std::nullptr_t EmptyValueType;
static EmptyValueType emptyValue() { return nullptr; }
static const bool hasIsEmptyValueFunction = true;
static bool isEmptyValue(const RefPtr<P>& value) { return !value; }
typedef RefPtrValuePeeker<P> PeekInType;
typedef RefPtr<P>* IteratorGetType;
typedef const RefPtr<P>* IteratorConstGetType;
typedef RefPtr<P>& IteratorReferenceType;
typedef const RefPtr<P>& IteratorConstReferenceType;
static IteratorReferenceType getToReferenceConversion(IteratorGetType x) { return *x; }
static IteratorConstReferenceType getToReferenceConstConversion(IteratorConstGetType x) { return *x; }
typedef PassRefPtr<P> PassInType;
static void store(PassRefPtr<P> value, RefPtr<P>& storage) { storage = value; }
typedef PassRefPtr<P> PassOutType;
static PassOutType passOut(RefPtr<P>& value) { return value.release(); }
static PassOutType passOut(std::nullptr_t) { return nullptr; }
typedef P* PeekOutType;
static PeekOutType peek(const RefPtr<P>& value) { return value.get(); }
static PeekOutType peek(std::nullptr_t) { return 0; }
};
template<typename T> struct HashTraits<RawPtr<T>> : HashTraits<T*> { };
template<> struct HashTraits<String> : SimpleClassHashTraits<String> {
static const bool hasIsEmptyValueFunction = true;
static bool isEmptyValue(const String&);
};
// This struct template is an implementation detail of the isHashTraitsEmptyValue function,
// which selects either the emptyValue function or the isEmptyValue function to check for empty values.
template<typename Traits, bool hasEmptyValueFunction> struct HashTraitsEmptyValueChecker;
template<typename Traits> struct HashTraitsEmptyValueChecker<Traits, true> {
template<typename T> static bool isEmptyValue(const T& value) { return Traits::isEmptyValue(value); }
};
template<typename Traits> struct HashTraitsEmptyValueChecker<Traits, false> {
template<typename T> static bool isEmptyValue(const T& value) { return value == Traits::emptyValue(); }
};
template<typename Traits, typename T> inline bool isHashTraitsEmptyValue(const T& value)
{
return HashTraitsEmptyValueChecker<Traits, Traits::hasIsEmptyValueFunction>::isEmptyValue(value);
}
template<typename FirstTraitsArg, typename SecondTraitsArg>
struct PairHashTraits : GenericHashTraits<std::pair<typename FirstTraitsArg::TraitType, typename SecondTraitsArg::TraitType>> {
typedef FirstTraitsArg FirstTraits;
typedef SecondTraitsArg SecondTraits;
typedef std::pair<typename FirstTraits::TraitType, typename SecondTraits::TraitType> TraitType;
typedef std::pair<typename FirstTraits::EmptyValueType, typename SecondTraits::EmptyValueType> EmptyValueType;
static const bool emptyValueIsZero = FirstTraits::emptyValueIsZero && SecondTraits::emptyValueIsZero;
static EmptyValueType emptyValue() { return std::make_pair(FirstTraits::emptyValue(), SecondTraits::emptyValue()); }
static const bool needsDestruction = FirstTraits::needsDestruction || SecondTraits::needsDestruction;
static const unsigned minimumTableSize = FirstTraits::minimumTableSize;
static void constructDeletedValue(TraitType& slot, bool zeroValue)
{
FirstTraits::constructDeletedValue(slot.first, zeroValue);
// For GC collections the memory for the backing is zeroed when it
// is allocated, and the constructors may take advantage of that,
// especially if a GC occurs during insertion of an entry into the
// table. This slot is being marked deleted, but If the slot is
// reused at a later point, the same assumptions around memory
// zeroing must hold as they did at the initial allocation.
// Therefore we zero the value part of the slot here for GC
// collections.
if (zeroValue)
memset(reinterpret_cast<void*>(&slot.second), 0, sizeof(slot.second));
}
static bool isDeletedValue(const TraitType& value) { return FirstTraits::isDeletedValue(value.first); }
};
template<typename First, typename Second>
struct HashTraits<std::pair<First, Second>> : public PairHashTraits<HashTraits<First>, HashTraits<Second>> { };
template<typename KeyTypeArg, typename ValueTypeArg>
struct KeyValuePair {
typedef KeyTypeArg KeyType;
KeyValuePair(const KeyTypeArg& _key, const ValueTypeArg& _value)
: key(_key)
, value(_value)
{
}
template <typename OtherKeyType, typename OtherValueType>
KeyValuePair(const KeyValuePair<OtherKeyType, OtherValueType>& other)
: key(other.key)
, value(other.value)
{
}
KeyTypeArg key;
ValueTypeArg value;
};
template<typename KeyTraitsArg, typename ValueTraitsArg>
struct KeyValuePairHashTraits : GenericHashTraits<KeyValuePair<typename KeyTraitsArg::TraitType, typename ValueTraitsArg::TraitType>> {
typedef KeyTraitsArg KeyTraits;
typedef ValueTraitsArg ValueTraits;
typedef KeyValuePair<typename KeyTraits::TraitType, typename ValueTraits::TraitType> TraitType;
typedef KeyValuePair<typename KeyTraits::EmptyValueType, typename ValueTraits::EmptyValueType> EmptyValueType;
static const bool emptyValueIsZero = KeyTraits::emptyValueIsZero && ValueTraits::emptyValueIsZero;
static EmptyValueType emptyValue() { return KeyValuePair<typename KeyTraits::EmptyValueType, typename ValueTraits::EmptyValueType>(KeyTraits::emptyValue(), ValueTraits::emptyValue()); }
static const bool needsDestruction = KeyTraits::needsDestruction || ValueTraits::needsDestruction;
template<typename U = void>
struct NeedsTracingLazily {
static const bool value = ShouldBeTraced<KeyTraits>::value || ShouldBeTraced<ValueTraits>::value;
};
static const WeakHandlingFlag weakHandlingFlag = (KeyTraits::weakHandlingFlag == WeakHandlingInCollections || ValueTraits::weakHandlingFlag == WeakHandlingInCollections) ? WeakHandlingInCollections : NoWeakHandlingInCollections;
static const unsigned minimumTableSize = KeyTraits::minimumTableSize;
static void constructDeletedValue(TraitType& slot, bool zeroValue)
{
KeyTraits::constructDeletedValue(slot.key, zeroValue);
// See similar code in this file for why we need to do this.
if (zeroValue)
memset(reinterpret_cast<void*>(&slot.value), 0, sizeof(slot.value));
}
static bool isDeletedValue(const TraitType& value) { return KeyTraits::isDeletedValue(value.key); }
};
template<typename Key, typename Value>
struct HashTraits<KeyValuePair<Key, Value>> : public KeyValuePairHashTraits<HashTraits<Key>, HashTraits<Value>> { };
template<typename T>
struct NullableHashTraits : public HashTraits<T> {
static const bool emptyValueIsZero = false;
static T emptyValue() { return reinterpret_cast<T>(1); }
};
// This is for tracing inside collections that have special support for weak
// pointers. The trait has a trace method which returns true if there are weak
// pointers to things that have not (yet) been marked live. Returning true
// indicates that the entry in the collection may yet be removed by weak
// handling. Default implementation for non-weak types is to use the regular
// non-weak TraceTrait. Default implementation for types with weakness is to
// call traceInCollection on the type's trait.
template<WeakHandlingFlag weakHandlingFlag, ShouldWeakPointersBeMarkedStrongly strongify, typename T, typename Traits>
struct TraceInCollectionTrait;
} // namespace WTF
using WTF::HashTraits;
using WTF::PairHashTraits;
using WTF::NullableHashTraits;
using WTF::SimpleClassHashTraits;
#endif // WTF_HashTraits_h
|