1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
|
/*
* Copyright (C) 2005, 2006, 2007, 2008, 2011, 2012 Apple Inc. All rights reserved.
* Copyright (C) 2011, Benjamin Poulain <ikipou@gmail.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#ifndef WTF_ListHashSet_h
#define WTF_ListHashSet_h
#include "wtf/DefaultAllocator.h"
#include "wtf/HashSet.h"
#include "wtf/OwnPtr.h"
#include "wtf/PassOwnPtr.h"
namespace WTF {
// ListHashSet: Just like HashSet, this class provides a Set
// interface - a collection of unique objects with O(1) insertion,
// removal and test for containership. However, it also has an
// order - iterating it will always give back values in the order
// in which they are added.
// Unlike iteration of most WTF Hash data structures, iteration is
// guaranteed safe against mutation of the ListHashSet, except for
// removal of the item currently pointed to by a given iterator.
template<typename Value, size_t inlineCapacity, typename HashFunctions, typename Allocator> class ListHashSet;
template<typename Set> class ListHashSetIterator;
template<typename Set> class ListHashSetConstIterator;
template<typename Set> class ListHashSetReverseIterator;
template<typename Set> class ListHashSetConstReverseIterator;
template<typename ValueArg> class ListHashSetNodeBase;
template<typename ValueArg, typename Allocator> class ListHashSetNode;
template<typename ValueArg, size_t inlineCapacity> struct ListHashSetAllocator;
template<typename HashArg> struct ListHashSetNodeHashFunctions;
template<typename HashArg> struct ListHashSetTranslator;
// Don't declare a destructor for HeapAllocated ListHashSet.
template<typename Derived, typename Allocator, bool isGarbageCollected>
class ListHashSetDestructorBase;
template<typename Derived, typename Allocator>
class ListHashSetDestructorBase<Derived, Allocator, true> {
protected:
typename Allocator::AllocatorProvider m_allocatorProvider;
};
template<typename Derived, typename Allocator>
class ListHashSetDestructorBase<Derived, Allocator, false> {
public:
~ListHashSetDestructorBase() { static_cast<Derived*>(this)->finalize(); }
protected:
typename Allocator::AllocatorProvider m_allocatorProvider;
};
// Note that for a ListHashSet you cannot specify the HashTraits as a
// template argument. It uses the default hash traits for the ValueArg
// type.
template<typename ValueArg, size_t inlineCapacity = 256, typename HashArg = typename DefaultHash<ValueArg>::Hash, typename AllocatorArg = ListHashSetAllocator<ValueArg, inlineCapacity>> class ListHashSet
: public ListHashSetDestructorBase<ListHashSet<ValueArg, inlineCapacity, HashArg, AllocatorArg>, AllocatorArg, AllocatorArg::isGarbageCollected> {
typedef AllocatorArg Allocator;
WTF_USE_ALLOCATOR(ListHashSet, Allocator);
typedef ListHashSetNode<ValueArg, Allocator> Node;
typedef HashTraits<Node*> NodeTraits;
typedef ListHashSetNodeHashFunctions<HashArg> NodeHash;
typedef ListHashSetTranslator<HashArg> BaseTranslator;
typedef HashTable<Node*, Node*, IdentityExtractor, NodeHash, NodeTraits, NodeTraits, typename Allocator::TableAllocator> ImplType;
typedef HashTableIterator<Node*, Node*, IdentityExtractor, NodeHash, NodeTraits, NodeTraits, typename Allocator::TableAllocator> ImplTypeIterator;
typedef HashTableConstIterator<Node*, Node*, IdentityExtractor, NodeHash, NodeTraits, NodeTraits, typename Allocator::TableAllocator> ImplTypeConstIterator;
typedef HashArg HashFunctions;
public:
typedef ValueArg ValueType;
typedef HashTraits<ValueType> ValueTraits;
typedef typename ValueTraits::PeekInType ValuePeekInType;
typedef typename ValueTraits::PassInType ValuePassInType;
typedef typename ValueTraits::PassOutType ValuePassOutType;
typedef ListHashSetIterator<ListHashSet> iterator;
typedef ListHashSetConstIterator<ListHashSet> const_iterator;
friend class ListHashSetIterator<ListHashSet>;
friend class ListHashSetConstIterator<ListHashSet>;
typedef ListHashSetReverseIterator<ListHashSet> reverse_iterator;
typedef ListHashSetConstReverseIterator<ListHashSet> const_reverse_iterator;
friend class ListHashSetReverseIterator<ListHashSet>;
friend class ListHashSetConstReverseIterator<ListHashSet>;
template<typename ValueType> struct HashTableAddResult {
HashTableAddResult(Node* storedValue, bool isNewEntry) : storedValue(storedValue), isNewEntry(isNewEntry) { }
Node* storedValue;
bool isNewEntry;
};
typedef HashTableAddResult<ValueType> AddResult;
ListHashSet();
ListHashSet(const ListHashSet&);
ListHashSet& operator=(const ListHashSet&);
void finalize();
void swap(ListHashSet&);
unsigned size() const { return m_impl.size(); }
unsigned capacity() const { return m_impl.capacity(); }
bool isEmpty() const { return m_impl.isEmpty(); }
iterator begin() { return makeIterator(m_head); }
iterator end() { return makeIterator(0); }
const_iterator begin() const { return makeConstIterator(m_head); }
const_iterator end() const { return makeConstIterator(0); }
reverse_iterator rbegin() { return makeReverseIterator(m_tail); }
reverse_iterator rend() { return makeReverseIterator(0); }
const_reverse_iterator rbegin() const { return makeConstReverseIterator(m_tail); }
const_reverse_iterator rend() const { return makeConstReverseIterator(0); }
ValueType& first();
const ValueType& first() const;
void removeFirst();
ValueType& last();
const ValueType& last() const;
void removeLast();
iterator find(ValuePeekInType);
const_iterator find(ValuePeekInType) const;
bool contains(ValuePeekInType) const;
// An alternate version of find() that finds the object by hashing and comparing
// with some other type, to avoid the cost of type conversion.
// The HashTranslator interface is defined in HashSet.
template<typename HashTranslator, typename T> iterator find(const T&);
template<typename HashTranslator, typename T> const_iterator find(const T&) const;
template<typename HashTranslator, typename T> bool contains(const T&) const;
// The return value of add is a pair of a pointer to the stored value,
// and a bool that is true if an new entry was added.
AddResult add(ValuePassInType);
// Same as add() except that the return value is an
// iterator. Useful in cases where it's needed to have the
// same return value as find() and where it's not possible to
// use a pointer to the storedValue.
iterator addReturnIterator(ValuePassInType);
// Add the value to the end of the collection. If the value was already in
// the list, it is moved to the end.
AddResult appendOrMoveToLast(ValuePassInType);
// Add the value to the beginning of the collection. If the value was already in
// the list, it is moved to the beginning.
AddResult prependOrMoveToFirst(ValuePassInType);
AddResult insertBefore(ValuePeekInType beforeValue, ValuePassInType newValue);
AddResult insertBefore(iterator, ValuePassInType);
void remove(ValuePeekInType value) { return remove(find(value)); }
void remove(iterator);
void clear();
template<typename Collection>
void removeAll(const Collection& other) { WTF::removeAll(*this, other); }
ValuePassOutType take(iterator);
ValuePassOutType take(ValuePeekInType);
ValuePassOutType takeFirst();
void trace(typename Allocator::Visitor*);
private:
void unlink(Node*);
void unlinkAndDelete(Node*);
void appendNode(Node*);
void prependNode(Node*);
void insertNodeBefore(Node* beforeNode, Node* newNode);
void deleteAllNodes();
Allocator* allocator() const { return this->m_allocatorProvider.get(); }
void createAllocatorIfNeeded() { this->m_allocatorProvider.createAllocatorIfNeeded(); }
void deallocate(Node* node) const { this->m_allocatorProvider.deallocate(node); }
iterator makeIterator(Node* position) { return iterator(this, position); }
const_iterator makeConstIterator(Node* position) const { return const_iterator(this, position); }
reverse_iterator makeReverseIterator(Node* position) { return reverse_iterator(this, position); }
const_reverse_iterator makeConstReverseIterator(Node* position) const { return const_reverse_iterator(this, position); }
ImplType m_impl;
Node* m_head;
Node* m_tail;
};
// ListHashSetNode has this base class to hold the members because the MSVC
// compiler otherwise gets into circular template dependencies when trying
// to do sizeof on a node.
template<typename ValueArg> class ListHashSetNodeBase {
protected:
ListHashSetNodeBase(const ValueArg& value)
: m_value(value)
, m_prev(0)
, m_next(0)
#if ENABLE(ASSERT)
, m_isAllocated(true)
#endif
{
}
template <typename U>
ListHashSetNodeBase(const U& value)
: m_value(value)
, m_prev(0)
, m_next(0)
#if ENABLE(ASSERT)
, m_isAllocated(true)
#endif
{
}
public:
ValueArg m_value;
ListHashSetNodeBase* m_prev;
ListHashSetNodeBase* m_next;
#if ENABLE(ASSERT)
bool m_isAllocated;
#endif
};
// This allocator is only used for non-Heap ListHashSets.
template<typename ValueArg, size_t inlineCapacity>
struct ListHashSetAllocator : public DefaultAllocator {
typedef DefaultAllocator TableAllocator;
typedef ListHashSetNode<ValueArg, ListHashSetAllocator> Node;
typedef ListHashSetNodeBase<ValueArg> NodeBase;
class AllocatorProvider {
public:
void createAllocatorIfNeeded()
{
if (!m_allocator)
m_allocator = adoptPtr(new ListHashSetAllocator);
}
void swap(AllocatorProvider& other)
{
m_allocator.swap(other.m_allocator);
}
void deallocate(Node* node) const
{
ASSERT(m_allocator);
m_allocator->deallocate(node);
}
ListHashSetAllocator* get() const
{
ASSERT(m_allocator);
return m_allocator.get();
}
private:
OwnPtr<ListHashSetAllocator> m_allocator;
};
ListHashSetAllocator()
: m_freeList(pool())
, m_isDoneWithInitialFreeList(false)
{
memset(m_pool.buffer, 0, sizeof(m_pool.buffer));
}
Node* allocateNode()
{
Node* result = m_freeList;
if (!result)
return static_cast<Node*>(fastMalloc(sizeof(NodeBase)));
ASSERT(!result->m_isAllocated);
Node* next = result->next();
ASSERT(!next || !next->m_isAllocated);
if (!next && !m_isDoneWithInitialFreeList) {
next = result + 1;
if (next == pastPool()) {
m_isDoneWithInitialFreeList = true;
next = 0;
} else {
ASSERT(inPool(next));
ASSERT(!next->m_isAllocated);
}
}
m_freeList = next;
return result;
}
void deallocate(Node* node)
{
if (inPool(node)) {
#if ENABLE(ASSERT)
node->m_isAllocated = false;
#endif
node->m_next = m_freeList;
m_freeList = node;
return;
}
fastFree(node);
}
bool inPool(Node* node)
{
return node >= pool() && node < pastPool();
}
static void traceValue(typename DefaultAllocator::Visitor* visitor, Node* node) { }
private:
Node* pool() { return reinterpret_cast_ptr<Node*>(m_pool.buffer); }
Node* pastPool() { return pool() + m_poolSize; }
Node* m_freeList;
bool m_isDoneWithInitialFreeList;
#if defined(MEMORY_SANITIZER_INITIAL_SIZE)
// The allocation pool for nodes is one big chunk that ASAN has no
// insight into, so it can cloak errors. Make it as small as possible
// to force nodes to be allocated individually where ASAN can see them.
static const size_t m_poolSize = 1;
#else
static const size_t m_poolSize = inlineCapacity;
#endif
AlignedBuffer<sizeof(NodeBase) * m_poolSize, WTF_ALIGN_OF(NodeBase)> m_pool;
};
template<typename ValueArg, typename AllocatorArg> class ListHashSetNode : public ListHashSetNodeBase<ValueArg> {
public:
typedef AllocatorArg NodeAllocator;
typedef ValueArg Value;
template <typename U>
ListHashSetNode(U value)
: ListHashSetNodeBase<ValueArg>(value) { }
void* operator new(size_t, NodeAllocator* allocator)
{
static_assert(sizeof(ListHashSetNode) == sizeof(ListHashSetNodeBase<ValueArg>), "please add any fields to the base");
return allocator->allocateNode();
}
void setWasAlreadyDestructed()
{
if (NodeAllocator::isGarbageCollected && HashTraits<ValueArg>::needsDestruction)
this->m_prev = unlinkedNodePointer();
}
bool wasAlreadyDestructed() const
{
ASSERT(NodeAllocator::isGarbageCollected);
return this->m_prev == unlinkedNodePointer();
}
static void finalize(void* pointer)
{
ASSERT(HashTraits<ValueArg>::needsDestruction); // No need to waste time calling finalize if it's not needed.
ListHashSetNode* self = reinterpret_cast_ptr<ListHashSetNode*>(pointer);
// Check whether this node was already destructed before being
// unlinked from the collection.
if (self->wasAlreadyDestructed())
return;
self->m_value.~ValueArg();
}
void destroy(NodeAllocator* allocator)
{
this->~ListHashSetNode();
setWasAlreadyDestructed();
allocator->deallocate(this);
}
// This is not called in normal tracing, but it is called if we find a
// pointer to a node on the stack using conservative scanning. Since
// the original ListHashSet may no longer exist we make sure to mark
// the neighbours in the chain too.
void trace(typename NodeAllocator::Visitor* visitor)
{
// The conservative stack scan can find nodes that have been
// removed from the set and destructed. We don't need to trace
// these, and it would be wrong to do so, because the class will
// not expect the trace method to be called after the destructor.
// It's an error to remove a node from the ListHashSet while an
// iterator is positioned at that node, so there should be no valid
// pointers from the stack to a destructed node.
if (wasAlreadyDestructed())
return;
NodeAllocator::traceValue(visitor, this);
visitor->mark(next());
visitor->mark(prev());
}
ListHashSetNode* next() const { return reinterpret_cast<ListHashSetNode*>(this->m_next); }
ListHashSetNode* prev() const { return reinterpret_cast<ListHashSetNode*>(this->m_prev); }
// Don't add fields here, the ListHashSetNodeBase and this should have
// the same size.
static ListHashSetNode* unlinkedNodePointer() { return reinterpret_cast<ListHashSetNode*>(-1); }
template<typename HashArg>
friend struct ListHashSetNodeHashFunctions;
};
template<typename HashArg> struct ListHashSetNodeHashFunctions {
template<typename T> static unsigned hash(const T& key) { return HashArg::hash(key->m_value); }
template<typename T> static bool equal(const T& a, const T& b) { return HashArg::equal(a->m_value, b->m_value); }
static const bool safeToCompareToEmptyOrDeleted = false;
};
template<typename Set> class ListHashSetIterator {
private:
typedef typename Set::const_iterator const_iterator;
typedef typename Set::Node Node;
typedef typename Set::ValueType ValueType;
typedef ValueType& ReferenceType;
typedef ValueType* PointerType;
ListHashSetIterator(const Set* set, Node* position) : m_iterator(set, position) { }
public:
ListHashSetIterator() { }
// default copy, assignment and destructor are OK
PointerType get() const { return const_cast<PointerType>(m_iterator.get()); }
ReferenceType operator*() const { return *get(); }
PointerType operator->() const { return get(); }
ListHashSetIterator& operator++() { ++m_iterator; return *this; }
ListHashSetIterator& operator--() { --m_iterator; return *this; }
// Postfix ++ and -- intentionally omitted.
// Comparison.
bool operator==(const ListHashSetIterator& other) const { return m_iterator == other.m_iterator; }
bool operator!=(const ListHashSetIterator& other) const { return m_iterator != other.m_iterator; }
operator const_iterator() const { return m_iterator; }
private:
Node* node() { return m_iterator.node(); }
const_iterator m_iterator;
template<typename T, size_t inlineCapacity, typename U, typename V>
friend class ListHashSet;
};
template<typename Set>
class ListHashSetConstIterator {
private:
typedef typename Set::const_iterator const_iterator;
typedef typename Set::Node Node;
typedef typename Set::ValueType ValueType;
typedef const ValueType& ReferenceType;
typedef const ValueType* PointerType;
friend class ListHashSetIterator<Set>;
ListHashSetConstIterator(const Set* set, Node* position)
: m_set(set)
, m_position(position)
{
}
public:
ListHashSetConstIterator()
{
}
PointerType get() const
{
return &m_position->m_value;
}
ReferenceType operator*() const { return *get(); }
PointerType operator->() const { return get(); }
ListHashSetConstIterator& operator++()
{
ASSERT(m_position != 0);
m_position = m_position->next();
return *this;
}
ListHashSetConstIterator& operator--()
{
ASSERT(m_position != m_set->m_head);
if (!m_position)
m_position = m_set->m_tail;
else
m_position = m_position->prev();
return *this;
}
// Postfix ++ and -- intentionally omitted.
// Comparison.
bool operator==(const ListHashSetConstIterator& other) const
{
return m_position == other.m_position;
}
bool operator!=(const ListHashSetConstIterator& other) const
{
return m_position != other.m_position;
}
private:
Node* node() { return m_position; }
const Set* m_set;
Node* m_position;
template<typename T, size_t inlineCapacity, typename U, typename V>
friend class ListHashSet;
};
template<typename Set>
class ListHashSetReverseIterator {
private:
typedef typename Set::const_reverse_iterator const_reverse_iterator;
typedef typename Set::Node Node;
typedef typename Set::ValueType ValueType;
typedef ValueType& ReferenceType;
typedef ValueType* PointerType;
ListHashSetReverseIterator(const Set* set, Node* position) : m_iterator(set, position) { }
public:
ListHashSetReverseIterator() { }
// default copy, assignment and destructor are OK
PointerType get() const { return const_cast<PointerType>(m_iterator.get()); }
ReferenceType operator*() const { return *get(); }
PointerType operator->() const { return get(); }
ListHashSetReverseIterator& operator++() { ++m_iterator; return *this; }
ListHashSetReverseIterator& operator--() { --m_iterator; return *this; }
// Postfix ++ and -- intentionally omitted.
// Comparison.
bool operator==(const ListHashSetReverseIterator& other) const { return m_iterator == other.m_iterator; }
bool operator!=(const ListHashSetReverseIterator& other) const { return m_iterator != other.m_iterator; }
operator const_reverse_iterator() const { return m_iterator; }
private:
Node* node() { return m_iterator.node(); }
const_reverse_iterator m_iterator;
template<typename T, size_t inlineCapacity, typename U, typename V>
friend class ListHashSet;
};
template<typename Set> class ListHashSetConstReverseIterator {
private:
typedef typename Set::reverse_iterator reverse_iterator;
typedef typename Set::Node Node;
typedef typename Set::ValueType ValueType;
typedef const ValueType& ReferenceType;
typedef const ValueType* PointerType;
friend class ListHashSetReverseIterator<Set>;
ListHashSetConstReverseIterator(const Set* set, Node* position)
: m_set(set)
, m_position(position)
{
}
public:
ListHashSetConstReverseIterator()
{
}
PointerType get() const
{
return &m_position->m_value;
}
ReferenceType operator*() const { return *get(); }
PointerType operator->() const { return get(); }
ListHashSetConstReverseIterator& operator++()
{
ASSERT(m_position != 0);
m_position = m_position->prev();
return *this;
}
ListHashSetConstReverseIterator& operator--()
{
ASSERT(m_position != m_set->m_tail);
if (!m_position)
m_position = m_set->m_head;
else
m_position = m_position->next();
return *this;
}
// Postfix ++ and -- intentionally omitted.
// Comparison.
bool operator==(const ListHashSetConstReverseIterator& other) const
{
return m_position == other.m_position;
}
bool operator!=(const ListHashSetConstReverseIterator& other) const
{
return m_position != other.m_position;
}
private:
Node* node() { return m_position; }
const Set* m_set;
Node* m_position;
template<typename T, size_t inlineCapacity, typename U, typename V>
friend class ListHashSet;
};
template<typename HashFunctions>
struct ListHashSetTranslator {
template<typename T> static unsigned hash(const T& key) { return HashFunctions::hash(key); }
template<typename T, typename U> static bool equal(const T& a, const U& b) { return HashFunctions::equal(a->m_value, b); }
template<typename T, typename U, typename V> static void translate(T*& location, const U& key, const V& allocator)
{
location = new (const_cast<V*>(&allocator)) T(key);
}
};
template<typename T, size_t inlineCapacity, typename U, typename V>
inline ListHashSet<T, inlineCapacity, U, V>::ListHashSet()
: m_head(0)
, m_tail(0)
{
}
template<typename T, size_t inlineCapacity, typename U, typename V>
inline ListHashSet<T, inlineCapacity, U, V>::ListHashSet(const ListHashSet& other)
: m_head(0)
, m_tail(0)
{
const_iterator end = other.end();
for (const_iterator it = other.begin(); it != end; ++it)
add(*it);
}
template<typename T, size_t inlineCapacity, typename U, typename V>
inline ListHashSet<T, inlineCapacity, U, V>& ListHashSet<T, inlineCapacity, U, V>::operator=(const ListHashSet& other)
{
ListHashSet tmp(other);
swap(tmp);
return *this;
}
template<typename T, size_t inlineCapacity, typename U, typename V>
inline void ListHashSet<T, inlineCapacity, U, V>::swap(ListHashSet& other)
{
m_impl.swap(other.m_impl);
std::swap(m_head, other.m_head);
std::swap(m_tail, other.m_tail);
this->m_allocatorProvider.swap(other.m_allocatorProvider);
}
template<typename T, size_t inlineCapacity, typename U, typename V>
inline void ListHashSet<T, inlineCapacity, U, V>::finalize()
{
static_assert(!Allocator::isGarbageCollected, "heap allocated ListHashSet should never call finalize()");
deleteAllNodes();
}
template<typename T, size_t inlineCapacity, typename U, typename V>
inline T& ListHashSet<T, inlineCapacity, U, V>::first()
{
ASSERT(!isEmpty());
return m_head->m_value;
}
template<typename T, size_t inlineCapacity, typename U, typename V>
inline void ListHashSet<T, inlineCapacity, U, V>::removeFirst()
{
ASSERT(!isEmpty());
m_impl.remove(m_head);
unlinkAndDelete(m_head);
}
template<typename T, size_t inlineCapacity, typename U, typename V>
inline const T& ListHashSet<T, inlineCapacity, U, V>::first() const
{
ASSERT(!isEmpty());
return m_head->m_value;
}
template<typename T, size_t inlineCapacity, typename U, typename V>
inline T& ListHashSet<T, inlineCapacity, U, V>::last()
{
ASSERT(!isEmpty());
return m_tail->m_value;
}
template<typename T, size_t inlineCapacity, typename U, typename V>
inline const T& ListHashSet<T, inlineCapacity, U, V>::last() const
{
ASSERT(!isEmpty());
return m_tail->m_value;
}
template<typename T, size_t inlineCapacity, typename U, typename V>
inline void ListHashSet<T, inlineCapacity, U, V>::removeLast()
{
ASSERT(!isEmpty());
m_impl.remove(m_tail);
unlinkAndDelete(m_tail);
}
template<typename T, size_t inlineCapacity, typename U, typename V>
inline typename ListHashSet<T, inlineCapacity, U, V>::iterator ListHashSet<T, inlineCapacity, U, V>::find(ValuePeekInType value)
{
ImplTypeIterator it = m_impl.template find<BaseTranslator>(value);
if (it == m_impl.end())
return end();
return makeIterator(*it);
}
template<typename T, size_t inlineCapacity, typename U, typename V>
inline typename ListHashSet<T, inlineCapacity, U, V>::const_iterator ListHashSet<T, inlineCapacity, U, V>::find(ValuePeekInType value) const
{
ImplTypeConstIterator it = m_impl.template find<BaseTranslator>(value);
if (it == m_impl.end())
return end();
return makeConstIterator(*it);
}
template<typename Translator>
struct ListHashSetTranslatorAdapter {
template<typename T> static unsigned hash(const T& key) { return Translator::hash(key); }
template<typename T, typename U> static bool equal(const T& a, const U& b) { return Translator::equal(a->m_value, b); }
};
template<typename ValueType, size_t inlineCapacity, typename U, typename V>
template<typename HashTranslator, typename T>
inline typename ListHashSet<ValueType, inlineCapacity, U, V>::iterator ListHashSet<ValueType, inlineCapacity, U, V>::find(const T& value)
{
ImplTypeConstIterator it = m_impl.template find<ListHashSetTranslatorAdapter<HashTranslator>>(value);
if (it == m_impl.end())
return end();
return makeIterator(*it);
}
template<typename ValueType, size_t inlineCapacity, typename U, typename V>
template<typename HashTranslator, typename T>
inline typename ListHashSet<ValueType, inlineCapacity, U, V>::const_iterator ListHashSet<ValueType, inlineCapacity, U, V>::find(const T& value) const
{
ImplTypeConstIterator it = m_impl.template find<ListHashSetTranslatorAdapter<HashTranslator>>(value);
if (it == m_impl.end())
return end();
return makeConstIterator(*it);
}
template<typename ValueType, size_t inlineCapacity, typename U, typename V>
template<typename HashTranslator, typename T>
inline bool ListHashSet<ValueType, inlineCapacity, U, V>::contains(const T& value) const
{
return m_impl.template contains<ListHashSetTranslatorAdapter<HashTranslator>>(value);
}
template<typename T, size_t inlineCapacity, typename U, typename V>
inline bool ListHashSet<T, inlineCapacity, U, V>::contains(ValuePeekInType value) const
{
return m_impl.template contains<BaseTranslator>(value);
}
template<typename T, size_t inlineCapacity, typename U, typename V>
typename ListHashSet<T, inlineCapacity, U, V>::AddResult ListHashSet<T, inlineCapacity, U, V>::add(ValuePassInType value)
{
createAllocatorIfNeeded();
// The second argument is a const ref. This is useful for the HashTable
// because it lets it take lvalues by reference, but for our purposes
// it's inconvenient, since it constrains us to be const, whereas the
// allocator actually changes when it does allocations.
typename ImplType::AddResult result = m_impl.template add<BaseTranslator>(value, *this->allocator());
if (result.isNewEntry)
appendNode(*result.storedValue);
return AddResult(*result.storedValue, result.isNewEntry);
}
template<typename T, size_t inlineCapacity, typename U, typename V>
typename ListHashSet<T, inlineCapacity, U, V>::iterator ListHashSet<T, inlineCapacity, U, V>::addReturnIterator(ValuePassInType value)
{
return makeIterator(add(value).storedValue);
}
template<typename T, size_t inlineCapacity, typename U, typename V>
typename ListHashSet<T, inlineCapacity, U, V>::AddResult ListHashSet<T, inlineCapacity, U, V>::appendOrMoveToLast(ValuePassInType value)
{
createAllocatorIfNeeded();
typename ImplType::AddResult result = m_impl.template add<BaseTranslator>(value, *this->allocator());
Node* node = *result.storedValue;
if (!result.isNewEntry)
unlink(node);
appendNode(node);
return AddResult(*result.storedValue, result.isNewEntry);
}
template<typename T, size_t inlineCapacity, typename U, typename V>
typename ListHashSet<T, inlineCapacity, U, V>::AddResult ListHashSet<T, inlineCapacity, U, V>::prependOrMoveToFirst(ValuePassInType value)
{
createAllocatorIfNeeded();
typename ImplType::AddResult result = m_impl.template add<BaseTranslator>(value, *this->allocator());
Node* node = *result.storedValue;
if (!result.isNewEntry)
unlink(node);
prependNode(node);
return AddResult(*result.storedValue, result.isNewEntry);
}
template<typename T, size_t inlineCapacity, typename U, typename V>
typename ListHashSet<T, inlineCapacity, U, V>::AddResult ListHashSet<T, inlineCapacity, U, V>::insertBefore(iterator it, ValuePassInType newValue)
{
createAllocatorIfNeeded();
typename ImplType::AddResult result = m_impl.template add<BaseTranslator>(newValue, *this->allocator());
if (result.isNewEntry)
insertNodeBefore(it.node(), *result.storedValue);
return AddResult(*result.storedValue, result.isNewEntry);
}
template<typename T, size_t inlineCapacity, typename U, typename V>
typename ListHashSet<T, inlineCapacity, U, V>::AddResult ListHashSet<T, inlineCapacity, U, V>::insertBefore(ValuePeekInType beforeValue, ValuePassInType newValue)
{
createAllocatorIfNeeded();
return insertBefore(find(beforeValue), newValue);
}
template<typename T, size_t inlineCapacity, typename U, typename V>
inline void ListHashSet<T, inlineCapacity, U, V>::remove(iterator it)
{
if (it == end())
return;
m_impl.remove(it.node());
unlinkAndDelete(it.node());
}
template<typename T, size_t inlineCapacity, typename U, typename V>
inline void ListHashSet<T, inlineCapacity, U, V>::clear()
{
deleteAllNodes();
m_impl.clear();
m_head = 0;
m_tail = 0;
}
template<typename T, size_t inlineCapacity, typename U, typename V>
typename ListHashSet<T, inlineCapacity, U, V>::ValuePassOutType ListHashSet<T, inlineCapacity, U, V>::take(iterator it)
{
if (it == end())
return ValueTraits::emptyValue();
m_impl.remove(it.node());
ValuePassOutType result = ValueTraits::passOut(it.node()->m_value);
unlinkAndDelete(it.node());
return result;
}
template<typename T, size_t inlineCapacity, typename U, typename V>
typename ListHashSet<T, inlineCapacity, U, V>::ValuePassOutType ListHashSet<T, inlineCapacity, U, V>::take(ValuePeekInType value)
{
return take(find(value));
}
template<typename T, size_t inlineCapacity, typename U, typename V>
typename ListHashSet<T, inlineCapacity, U, V>::ValuePassOutType ListHashSet<T, inlineCapacity, U, V>::takeFirst()
{
ASSERT(!isEmpty());
m_impl.remove(m_head);
ValuePassOutType result = ValueTraits::passOut(m_head->m_value);
unlinkAndDelete(m_head);
return result;
}
template<typename T, size_t inlineCapacity, typename U, typename Allocator>
void ListHashSet<T, inlineCapacity, U, Allocator>::unlink(Node* node)
{
if (!node->m_prev) {
ASSERT(node == m_head);
m_head = node->next();
} else {
ASSERT(node != m_head);
node->m_prev->m_next = node->m_next;
}
if (!node->m_next) {
ASSERT(node == m_tail);
m_tail = node->prev();
} else {
ASSERT(node != m_tail);
node->m_next->m_prev = node->m_prev;
}
}
template<typename T, size_t inlineCapacity, typename U, typename V>
void ListHashSet<T, inlineCapacity, U, V>::unlinkAndDelete(Node* node)
{
unlink(node);
node->destroy(this->allocator());
}
template<typename T, size_t inlineCapacity, typename U, typename V>
void ListHashSet<T, inlineCapacity, U, V>::appendNode(Node* node)
{
node->m_prev = m_tail;
node->m_next = 0;
if (m_tail) {
ASSERT(m_head);
m_tail->m_next = node;
} else {
ASSERT(!m_head);
m_head = node;
}
m_tail = node;
}
template<typename T, size_t inlineCapacity, typename U, typename V>
void ListHashSet<T, inlineCapacity, U, V>::prependNode(Node* node)
{
node->m_prev = 0;
node->m_next = m_head;
if (m_head)
m_head->m_prev = node;
else
m_tail = node;
m_head = node;
}
template<typename T, size_t inlineCapacity, typename U, typename V>
void ListHashSet<T, inlineCapacity, U, V>::insertNodeBefore(Node* beforeNode, Node* newNode)
{
if (!beforeNode)
return appendNode(newNode);
newNode->m_next = beforeNode;
newNode->m_prev = beforeNode->m_prev;
if (beforeNode->m_prev)
beforeNode->m_prev->m_next = newNode;
beforeNode->m_prev = newNode;
if (!newNode->m_prev)
m_head = newNode;
}
template<typename T, size_t inlineCapacity, typename U, typename V>
void ListHashSet<T, inlineCapacity, U, V>::deleteAllNodes()
{
if (!m_head)
return;
for (Node* node = m_head, *next = m_head->next(); node; node = next, next = node ? node->next() : 0)
node->destroy(this->allocator());
}
template<typename T, size_t inlineCapacity, typename U, typename V>
void ListHashSet<T, inlineCapacity, U, V>::trace(typename Allocator::Visitor* visitor)
{
static_assert(HashTraits<T>::weakHandlingFlag == NoWeakHandlingInCollections, "ListHashSet does not support weakness");
// This marks all the nodes and their contents live that can be
// accessed through the HashTable. That includes m_head and m_tail
// so we do not have to explicitly trace them here.
m_impl.trace(visitor);
}
#if !ENABLE(OILPAN)
template<typename T, size_t U, typename V>
struct NeedsTracing<ListHashSet<T, U, V>> {
static const bool value = false;
};
#endif
} // namespace WTF
using WTF::ListHashSet;
#endif /* WTF_ListHashSet_h */
|