1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
|
/*
* Copyright (C) 2013 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "wtf/PartitionAlloc.h"
#include <string.h>
#ifndef NDEBUG
#include <stdio.h>
#endif
// Two partition pages are used as guard / metadata page so make sure the super
// page size is bigger.
static_assert(WTF::kPartitionPageSize * 4 <= WTF::kSuperPageSize, "ok super page size");
static_assert(!(WTF::kSuperPageSize % WTF::kPartitionPageSize), "ok super page multiple");
// Four system pages gives us room to hack out a still-guard-paged piece
// of metadata in the middle of a guard partition page.
static_assert(WTF::kSystemPageSize * 4 <= WTF::kPartitionPageSize, "ok partition page size");
static_assert(!(WTF::kPartitionPageSize % WTF::kSystemPageSize), "ok partition page multiple");
static_assert(sizeof(WTF::PartitionPage) <= WTF::kPageMetadataSize, "PartitionPage should not be too big");
static_assert(sizeof(WTF::PartitionBucket) <= WTF::kPageMetadataSize, "PartitionBucket should not be too big");
static_assert(sizeof(WTF::PartitionSuperPageExtentEntry) <= WTF::kPageMetadataSize, "PartitionSuperPageExtentEntry should not be too big");
static_assert(WTF::kPageMetadataSize * WTF::kNumPartitionPagesPerSuperPage <= WTF::kSystemPageSize, "page metadata fits in hole");
// Check that some of our zanier calculations worked out as expected.
static_assert(WTF::kGenericSmallestBucket == 8, "generic smallest bucket");
static_assert(WTF::kGenericMaxBucketed == 983040, "generic max bucketed");
namespace WTF {
int PartitionRootBase::gInitializedLock = 0;
bool PartitionRootBase::gInitialized = false;
PartitionPage PartitionRootBase::gSeedPage;
PartitionBucket PartitionRootBase::gPagedBucket;
static uint16_t partitionBucketNumSystemPages(size_t size)
{
// This works out reasonably for the current bucket sizes of the generic
// allocator, and the current values of partition page size and constants.
// Specifically, we have enough room to always pack the slots perfectly into
// some number of system pages. The only waste is the waste associated with
// unfaulted pages (i.e. wasted address space).
// TODO: we end up using a lot of system pages for very small sizes. For
// example, we'll use 12 system pages for slot size 24. The slot size is
// so small that the waste would be tiny with just 4, or 1, system pages.
// Later, we can investigate whether there are anti-fragmentation benefits
// to using fewer system pages.
double bestWasteRatio = 1.0f;
uint16_t bestPages = 0;
if (size > kMaxSystemPagesPerSlotSpan * kSystemPageSize) {
ASSERT(!(size % kSystemPageSize));
return static_cast<uint16_t>(size / kSystemPageSize);
}
ASSERT(size <= kMaxSystemPagesPerSlotSpan * kSystemPageSize);
for (uint16_t i = kNumSystemPagesPerPartitionPage - 1; i <= kMaxSystemPagesPerSlotSpan; ++i) {
size_t pageSize = kSystemPageSize * i;
size_t numSlots = pageSize / size;
size_t waste = pageSize - (numSlots * size);
// Leaving a page unfaulted is not free; the page will occupy an empty page table entry.
// Make a simple attempt to account for that.
size_t numRemainderPages = i & (kNumSystemPagesPerPartitionPage - 1);
size_t numUnfaultedPages = numRemainderPages ? (kNumSystemPagesPerPartitionPage - numRemainderPages) : 0;
waste += sizeof(void*) * numUnfaultedPages;
double wasteRatio = (double) waste / (double) pageSize;
if (wasteRatio < bestWasteRatio) {
bestWasteRatio = wasteRatio;
bestPages = i;
}
}
ASSERT(bestPages > 0);
return bestPages;
}
static void parititonAllocBaseInit(PartitionRootBase* root)
{
ASSERT(!root->initialized);
spinLockLock(&PartitionRootBase::gInitializedLock);
if (!PartitionRootBase::gInitialized) {
PartitionRootBase::gInitialized = true;
// We mark the seed page as free to make sure it is skipped by our
// logic to find a new active page.
PartitionRootBase::gPagedBucket.activePagesHead = &PartitionRootGeneric::gSeedPage;
}
spinLockUnlock(&PartitionRootBase::gInitializedLock);
root->initialized = true;
root->totalSizeOfCommittedPages = 0;
root->totalSizeOfSuperPages = 0;
root->totalSizeOfDirectMappedPages = 0;
root->nextSuperPage = 0;
root->nextPartitionPage = 0;
root->nextPartitionPageEnd = 0;
root->firstExtent = 0;
root->currentExtent = 0;
memset(&root->globalEmptyPageRing, '\0', sizeof(root->globalEmptyPageRing));
root->globalEmptyPageRingIndex = 0;
// This is a "magic" value so we can test if a root pointer is valid.
root->invertedSelf = ~reinterpret_cast<uintptr_t>(root);
}
static void partitionBucketInitBase(PartitionBucket* bucket, PartitionRootBase* root)
{
bucket->activePagesHead = &PartitionRootGeneric::gSeedPage;
bucket->freePagesHead = 0;
bucket->numFullPages = 0;
bucket->numSystemPagesPerSlotSpan = partitionBucketNumSystemPages(bucket->slotSize);
}
void partitionAllocInit(PartitionRoot* root, size_t numBuckets, size_t maxAllocation)
{
parititonAllocBaseInit(root);
root->numBuckets = numBuckets;
root->maxAllocation = maxAllocation;
size_t i;
for (i = 0; i < root->numBuckets; ++i) {
PartitionBucket* bucket = &root->buckets()[i];
if (!i)
bucket->slotSize = kAllocationGranularity;
else
bucket->slotSize = i << kBucketShift;
partitionBucketInitBase(bucket, root);
}
}
void partitionAllocGenericInit(PartitionRootGeneric* root)
{
parititonAllocBaseInit(root);
root->lock = 0;
// Precalculate some shift and mask constants used in the hot path.
// Example: malloc(41) == 101001 binary.
// Order is 6 (1 << 6-1)==32 is highest bit set.
// orderIndex is the next three MSB == 010 == 2.
// subOrderIndexMask is a mask for the remaining bits == 11 (masking to 01 for the subOrderIndex).
size_t order;
for (order = 0; order <= kBitsPerSizet; ++order) {
size_t orderIndexShift;
if (order < kGenericNumBucketsPerOrderBits + 1)
orderIndexShift = 0;
else
orderIndexShift = order - (kGenericNumBucketsPerOrderBits + 1);
root->orderIndexShifts[order] = orderIndexShift;
size_t subOrderIndexMask;
if (order == kBitsPerSizet) {
// This avoids invoking undefined behavior for an excessive shift.
subOrderIndexMask = static_cast<size_t>(-1) >> (kGenericNumBucketsPerOrderBits + 1);
} else {
subOrderIndexMask = ((1 << order) - 1) >> (kGenericNumBucketsPerOrderBits + 1);
}
root->orderSubIndexMasks[order] = subOrderIndexMask;
}
// Set up the actual usable buckets first.
// Note that typical values (i.e. min allocation size of 8) will result in
// invalid buckets (size==9 etc. or more generally, size is not a multiple
// of the smallest allocation granularity).
// We avoid them in the bucket lookup map, but we tolerate them to keep the
// code simpler and the structures more generic.
size_t i, j;
size_t currentSize = kGenericSmallestBucket;
size_t currentIncrement = kGenericSmallestBucket >> kGenericNumBucketsPerOrderBits;
PartitionBucket* bucket = &root->buckets[0];
for (i = 0; i < kGenericNumBucketedOrders; ++i) {
for (j = 0; j < kGenericNumBucketsPerOrder; ++j) {
bucket->slotSize = currentSize;
partitionBucketInitBase(bucket, root);
// Disable invalid buckets so that touching them faults.
if (currentSize % kGenericSmallestBucket)
bucket->activePagesHead = 0;
currentSize += currentIncrement;
++bucket;
}
currentIncrement <<= 1;
}
ASSERT(currentSize == 1 << kGenericMaxBucketedOrder);
ASSERT(bucket == &root->buckets[0] + (kGenericNumBucketedOrders * kGenericNumBucketsPerOrder));
// Then set up the fast size -> bucket lookup table.
bucket = &root->buckets[0];
PartitionBucket** bucketPtr = &root->bucketLookups[0];
for (order = 0; order <= kBitsPerSizet; ++order) {
for (j = 0; j < kGenericNumBucketsPerOrder; ++j) {
if (order < kGenericMinBucketedOrder) {
// Use the bucket of finest granularity for malloc(0) etc.
*bucketPtr++ = &root->buckets[0];
} else if (order > kGenericMaxBucketedOrder) {
*bucketPtr++ = &PartitionRootGeneric::gPagedBucket;
} else {
PartitionBucket* validBucket = bucket;
// Skip over invalid buckets.
while (validBucket->slotSize % kGenericSmallestBucket)
validBucket++;
*bucketPtr++ = validBucket;
bucket++;
}
}
}
ASSERT(bucket == &root->buckets[0] + (kGenericNumBucketedOrders * kGenericNumBucketsPerOrder));
ASSERT(bucketPtr == &root->bucketLookups[0] + ((kBitsPerSizet + 1) * kGenericNumBucketsPerOrder));
// And there's one last bucket lookup that will be hit for e.g. malloc(-1),
// which tries to overflow to a non-existant order.
*bucketPtr = &PartitionRootGeneric::gPagedBucket;
}
static bool partitionAllocShutdownBucket(PartitionBucket* bucket)
{
// Failure here indicates a memory leak.
bool noLeaks = !bucket->numFullPages;
PartitionPage* page = bucket->activePagesHead;
while (page) {
if (page->numAllocatedSlots)
noLeaks = false;
page = page->nextPage;
}
return noLeaks;
}
static void partitionAllocBaseShutdown(PartitionRootBase* root)
{
ASSERT(root->initialized);
root->initialized = false;
// Now that we've examined all partition pages in all buckets, it's safe
// to free all our super pages. Since the super page extent entries are
// stored in the super pages, we need to be careful not to access them
// after we've released the corresponding super page.
PartitionSuperPageExtentEntry* entry = root->firstExtent;
while (entry) {
PartitionSuperPageExtentEntry* nextEntry = entry->next;
char* superPage = entry->superPageBase;
char* superPagesEnd = entry->superPagesEnd;
while (superPage < superPagesEnd) {
freePages(superPage, kSuperPageSize);
superPage += kSuperPageSize;
}
entry = nextEntry;
}
}
bool partitionAllocShutdown(PartitionRoot* root)
{
bool noLeaks = true;
size_t i;
for (i = 0; i < root->numBuckets; ++i) {
PartitionBucket* bucket = &root->buckets()[i];
if (!partitionAllocShutdownBucket(bucket))
noLeaks = false;
}
partitionAllocBaseShutdown(root);
return noLeaks;
}
bool partitionAllocGenericShutdown(PartitionRootGeneric* root)
{
bool noLeaks = true;
size_t i;
for (i = 0; i < kGenericNumBucketedOrders * kGenericNumBucketsPerOrder; ++i) {
PartitionBucket* bucket = &root->buckets[i];
if (!partitionAllocShutdownBucket(bucket))
noLeaks = false;
}
partitionAllocBaseShutdown(root);
return noLeaks;
}
#if !CPU(64BIT)
static NEVER_INLINE void partitionOutOfMemoryWithLotsOfUncommitedPages()
{
#if OS(WIN)
// Crash at a special address (0x9b)
// to be easily distinguished on crash reports.
// This is because crash stack traces are inaccurate on Windows and
// partitionOutOfMemoryWithLotsOfUncommitedPages might be not included
// in the stack traces.
reinterpret_cast<void(*)()>(0x9b)();
#endif
// On non-Windows environment, IMMEDIATE_CRASH is sufficient
// because partitionOutOfMemoryWithLotsOfUncommitedPages will appear
// in crash stack traces.
IMMEDIATE_CRASH();
}
#endif
static NEVER_INLINE void partitionOutOfMemory(const PartitionRootBase* root)
{
#if !CPU(64BIT)
// Check whether this OOM is due to a lot of super pages that are allocated
// but not committed, probably due to http://crbug.com/421387.
if (root->totalSizeOfSuperPages + root->totalSizeOfDirectMappedPages - root->totalSizeOfCommittedPages > kReasonableSizeOfUnusedPages) {
partitionOutOfMemoryWithLotsOfUncommitedPages();
}
#endif
IMMEDIATE_CRASH();
}
static ALWAYS_INLINE void partitionDecommitSystemPages(PartitionRootBase* root, void* addr, size_t len)
{
decommitSystemPages(addr, len);
ASSERT(root->totalSizeOfCommittedPages >= len);
root->totalSizeOfCommittedPages -= len;
}
static ALWAYS_INLINE void partitionRecommitSystemPages(PartitionRootBase* root, void* addr, size_t len)
{
recommitSystemPages(addr, len);
root->totalSizeOfCommittedPages += len;
ASSERT(root->totalSizeOfCommittedPages <= root->totalSizeOfSuperPages + root->totalSizeOfDirectMappedPages);
}
static ALWAYS_INLINE void* partitionAllocPartitionPages(PartitionRootBase* root, int flags, uint16_t numPartitionPages)
{
ASSERT(!(reinterpret_cast<uintptr_t>(root->nextPartitionPage) % kPartitionPageSize));
ASSERT(!(reinterpret_cast<uintptr_t>(root->nextPartitionPageEnd) % kPartitionPageSize));
RELEASE_ASSERT(numPartitionPages <= kNumPartitionPagesPerSuperPage);
size_t totalSize = kPartitionPageSize * numPartitionPages;
size_t numPartitionPagesLeft = (root->nextPartitionPageEnd - root->nextPartitionPage) >> kPartitionPageShift;
if (LIKELY(numPartitionPagesLeft >= numPartitionPages)) {
// In this case, we can still hand out pages from the current super page
// allocation.
char* ret = root->nextPartitionPage;
root->nextPartitionPage += totalSize;
root->totalSizeOfCommittedPages += totalSize;
ASSERT(root->totalSizeOfCommittedPages <= root->totalSizeOfSuperPages + root->totalSizeOfDirectMappedPages);
return ret;
}
// Need a new super page.
char* requestedAddress = root->nextSuperPage;
char* superPage = reinterpret_cast<char*>(allocPages(requestedAddress, kSuperPageSize, kSuperPageSize));
if (UNLIKELY(!superPage))
return 0;
root->totalSizeOfSuperPages += kSuperPageSize;
root->totalSizeOfCommittedPages += totalSize;
ASSERT(root->totalSizeOfCommittedPages <= root->totalSizeOfSuperPages + root->totalSizeOfDirectMappedPages);
root->nextSuperPage = superPage + kSuperPageSize;
char* ret = superPage + kPartitionPageSize;
root->nextPartitionPage = ret + totalSize;
root->nextPartitionPageEnd = root->nextSuperPage - kPartitionPageSize;
// Make the first partition page in the super page a guard page, but leave a
// hole in the middle.
// This is where we put page metadata and also a tiny amount of extent
// metadata.
setSystemPagesInaccessible(superPage, kSystemPageSize);
setSystemPagesInaccessible(superPage + (kSystemPageSize * 2), kPartitionPageSize - (kSystemPageSize * 2));
// Also make the last partition page a guard page.
setSystemPagesInaccessible(superPage + (kSuperPageSize - kPartitionPageSize), kPartitionPageSize);
// If we were after a specific address, but didn't get it, assume that
// the system chose a lousy address and re-randomize the next
// allocation.
if (requestedAddress && requestedAddress != superPage)
root->nextSuperPage = 0;
// We allocated a new super page so update super page metadata.
// First check if this is a new extent or not.
PartitionSuperPageExtentEntry* latestExtent = reinterpret_cast<PartitionSuperPageExtentEntry*>(partitionSuperPageToMetadataArea(superPage));
PartitionSuperPageExtentEntry* currentExtent = root->currentExtent;
bool isNewExtent = (superPage != requestedAddress);
if (UNLIKELY(isNewExtent)) {
latestExtent->next = 0;
if (UNLIKELY(!currentExtent)) {
root->firstExtent = latestExtent;
} else {
ASSERT(currentExtent->superPageBase);
currentExtent->next = latestExtent;
}
root->currentExtent = latestExtent;
currentExtent = latestExtent;
currentExtent->superPageBase = superPage;
currentExtent->superPagesEnd = superPage + kSuperPageSize;
} else {
// We allocated next to an existing extent so just nudge the size up a little.
currentExtent->superPagesEnd += kSuperPageSize;
ASSERT(ret >= currentExtent->superPageBase && ret < currentExtent->superPagesEnd);
}
// By storing the root in every extent metadata object, we have a fast way
// to go from a pointer within the partition to the root object.
latestExtent->root = root;
return ret;
}
static ALWAYS_INLINE void partitionUnusePage(PartitionRootBase* root, PartitionPage* page)
{
ASSERT(page->bucket->numSystemPagesPerSlotSpan);
void* addr = partitionPageToPointer(page);
partitionDecommitSystemPages(root, addr, page->bucket->numSystemPagesPerSlotSpan * kSystemPageSize);
}
static ALWAYS_INLINE uint16_t partitionBucketSlots(const PartitionBucket* bucket)
{
return static_cast<uint16_t>((bucket->numSystemPagesPerSlotSpan * kSystemPageSize) / bucket->slotSize);
}
static ALWAYS_INLINE uint16_t partitionBucketPartitionPages(const PartitionBucket* bucket)
{
return (bucket->numSystemPagesPerSlotSpan + (kNumSystemPagesPerPartitionPage - 1)) / kNumSystemPagesPerPartitionPage;
}
static ALWAYS_INLINE void partitionPageReset(PartitionPage* page, PartitionBucket* bucket)
{
ASSERT(page != &PartitionRootGeneric::gSeedPage);
page->numAllocatedSlots = 0;
page->numUnprovisionedSlots = partitionBucketSlots(bucket);
ASSERT(page->numUnprovisionedSlots);
page->bucket = bucket;
page->nextPage = 0;
// NULLing the freelist is not strictly necessary but it makes an ASSERT in partitionPageFillFreelist simpler.
page->freelistHead = 0;
page->pageOffset = 0;
page->freeCacheIndex = -1;
uint16_t numPartitionPages = partitionBucketPartitionPages(bucket);
char* pageCharPtr = reinterpret_cast<char*>(page);
for (uint16_t i = 1; i < numPartitionPages; ++i) {
pageCharPtr += kPageMetadataSize;
PartitionPage* secondaryPage = reinterpret_cast<PartitionPage*>(pageCharPtr);
secondaryPage->pageOffset = i;
}
}
static ALWAYS_INLINE char* partitionPageAllocAndFillFreelist(PartitionPage* page)
{
ASSERT(page != &PartitionRootGeneric::gSeedPage);
uint16_t numSlots = page->numUnprovisionedSlots;
ASSERT(numSlots);
PartitionBucket* bucket = page->bucket;
// We should only get here when _every_ slot is either used or unprovisioned.
// (The third state is "on the freelist". If we have a non-empty freelist, we should not get here.)
ASSERT(numSlots + page->numAllocatedSlots == partitionBucketSlots(bucket));
// Similarly, make explicitly sure that the freelist is empty.
ASSERT(!page->freelistHead);
ASSERT(page->numAllocatedSlots >= 0);
size_t size = bucket->slotSize;
char* base = reinterpret_cast<char*>(partitionPageToPointer(page));
char* returnObject = base + (size * page->numAllocatedSlots);
char* firstFreelistPointer = returnObject + size;
char* firstFreelistPointerExtent = firstFreelistPointer + sizeof(PartitionFreelistEntry*);
// Our goal is to fault as few system pages as possible. We calculate the
// page containing the "end" of the returned slot, and then allow freelist
// pointers to be written up to the end of that page.
char* subPageLimit = reinterpret_cast<char*>((reinterpret_cast<uintptr_t>(firstFreelistPointer) + kSystemPageOffsetMask) & kSystemPageBaseMask);
char* slotsLimit = returnObject + (size * page->numUnprovisionedSlots);
char* freelistLimit = subPageLimit;
if (UNLIKELY(slotsLimit < freelistLimit))
freelistLimit = slotsLimit;
uint16_t numNewFreelistEntries = 0;
if (LIKELY(firstFreelistPointerExtent <= freelistLimit)) {
// Only consider used space in the slot span. If we consider wasted
// space, we may get an off-by-one when a freelist pointer fits in the
// wasted space, but a slot does not.
// We know we can fit at least one freelist pointer.
numNewFreelistEntries = 1;
// Any further entries require space for the whole slot span.
numNewFreelistEntries += static_cast<uint16_t>((freelistLimit - firstFreelistPointerExtent) / size);
}
// We always return an object slot -- that's the +1 below.
// We do not neccessarily create any new freelist entries, because we cross sub page boundaries frequently for large bucket sizes.
ASSERT(numNewFreelistEntries + 1 <= numSlots);
numSlots -= (numNewFreelistEntries + 1);
page->numUnprovisionedSlots = numSlots;
page->numAllocatedSlots++;
if (LIKELY(numNewFreelistEntries)) {
char* freelistPointer = firstFreelistPointer;
PartitionFreelistEntry* entry = reinterpret_cast<PartitionFreelistEntry*>(freelistPointer);
page->freelistHead = entry;
while (--numNewFreelistEntries) {
freelistPointer += size;
PartitionFreelistEntry* nextEntry = reinterpret_cast<PartitionFreelistEntry*>(freelistPointer);
entry->next = partitionFreelistMask(nextEntry);
entry = nextEntry;
}
entry->next = partitionFreelistMask(0);
} else {
page->freelistHead = 0;
}
return returnObject;
}
// This helper function scans the active page list for a suitable new active
// page, starting at the passed in page.
// When it finds a suitable new active page (one that has free slots), it is
// set as the new active page and true is returned. If there is no suitable new
// active page, false is returned and the current active page is set to null.
// As potential pages are scanned, they are tidied up according to their state.
// Freed pages are swept on to the free page list and full pages are unlinked
// from any list.
static ALWAYS_INLINE bool partitionSetNewActivePage(PartitionPage* page)
{
if (page == &PartitionRootBase::gSeedPage) {
ASSERT(!page->nextPage);
return false;
}
PartitionPage* nextPage = 0;
PartitionBucket* bucket = page->bucket;
for (; page; page = nextPage) {
nextPage = page->nextPage;
ASSERT(page->bucket == bucket);
ASSERT(page != bucket->freePagesHead);
ASSERT(!bucket->freePagesHead || page != bucket->freePagesHead->nextPage);
// Page is usable if it has something on the freelist, or unprovisioned
// slots that can be turned into a freelist.
if (LIKELY(page->freelistHead != 0) || LIKELY(page->numUnprovisionedSlots)) {
bucket->activePagesHead = page;
return true;
}
ASSERT(page->numAllocatedSlots >= 0);
if (LIKELY(page->numAllocatedSlots == 0)) {
ASSERT(page->freeCacheIndex == -1);
// We hit a free page, so shepherd it on to the free page list.
page->nextPage = bucket->freePagesHead;
bucket->freePagesHead = page;
} else {
// If we get here, we found a full page. Skip over it too, and also
// tag it as full (via a negative value). We need it tagged so that
// free'ing can tell, and move it back into the active page list.
ASSERT(page->numAllocatedSlots == partitionBucketSlots(bucket));
page->numAllocatedSlots = -page->numAllocatedSlots;
++bucket->numFullPages;
// numFullPages is a uint16_t for efficient packing so guard against
// overflow to be safe.
RELEASE_ASSERT(bucket->numFullPages);
// Not necessary but might help stop accidents.
page->nextPage = 0;
}
}
bucket->activePagesHead = 0;
return false;
}
struct PartitionDirectMapExtent {
size_t mapSize; // Mapped size, not including guard pages and meta-data.
};
static ALWAYS_INLINE PartitionDirectMapExtent* partitionPageToDirectMapExtent(PartitionPage* page)
{
ASSERT(partitionBucketIsDirectMapped(page->bucket));
return reinterpret_cast<PartitionDirectMapExtent*>(reinterpret_cast<char*>(page) + 2 * kPageMetadataSize);
}
static ALWAYS_INLINE void* partitionDirectMap(PartitionRootBase* root, int flags, size_t size)
{
size = partitionDirectMapSize(size);
// Because we need to fake looking like a super page, We need to allocate
// a bunch of system pages more than "size":
// - The first few system pages are the partition page in which the super
// page metadata is stored. We fault just one system page out of a partition
// page sized clump.
// - We add a trailing guard page.
size_t mapSize = size + kPartitionPageSize + kSystemPageSize;
// Round up to the allocation granularity.
mapSize += kPageAllocationGranularityOffsetMask;
mapSize &= kPageAllocationGranularityBaseMask;
size_t committedPageSize = size + kSystemPageSize;
root->totalSizeOfCommittedPages += committedPageSize;
root->totalSizeOfDirectMappedPages += committedPageSize;
ASSERT(root->totalSizeOfCommittedPages <= root->totalSizeOfSuperPages + root->totalSizeOfDirectMappedPages);
// TODO: we may want to let the operating system place these allocations
// where it pleases. On 32-bit, this might limit address space
// fragmentation and on 64-bit, this might have useful savings for TLB
// and page table overhead.
// TODO: if upsizing realloc()s are common on large sizes, we could
// consider over-allocating address space on 64-bit, "just in case".
// TODO: consider pre-populating page tables (e.g. MAP_POPULATE on Linux,
// MADV_WILLNEED on POSIX).
// TODO: these pages will be zero-filled. Consider internalizing an
// allocZeroed() API so we can avoid a memset() entirely in this case.
char* ptr = reinterpret_cast<char*>(allocPages(0, mapSize, kSuperPageSize));
if (UNLIKELY(!ptr))
return 0;
char* ret = ptr + kPartitionPageSize;
// TODO: due to all the guard paging, this arrangement creates 4 mappings.
// We could get it down to three by using read-only for the metadata page,
// or perhaps two by leaving out the trailing guard page on 64-bit.
setSystemPagesInaccessible(ptr, kSystemPageSize);
setSystemPagesInaccessible(ptr + (kSystemPageSize * 2), kPartitionPageSize - (kSystemPageSize * 2));
setSystemPagesInaccessible(ret + size, kSystemPageSize);
PartitionSuperPageExtentEntry* extent = reinterpret_cast<PartitionSuperPageExtentEntry*>(partitionSuperPageToMetadataArea(ptr));
extent->root = root;
PartitionPage* page = partitionPointerToPageNoAlignmentCheck(ret);
PartitionBucket* bucket = reinterpret_cast<PartitionBucket*>(reinterpret_cast<char*>(page) + kPageMetadataSize);
page->freelistHead = 0;
page->nextPage = 0;
page->bucket = bucket;
page->numAllocatedSlots = 1;
page->numUnprovisionedSlots = 0;
page->pageOffset = 0;
page->freeCacheIndex = 0;
bucket->activePagesHead = 0;
bucket->freePagesHead = 0;
bucket->slotSize = size;
bucket->numSystemPagesPerSlotSpan = 0;
bucket->numFullPages = 0;
PartitionDirectMapExtent* mapExtent = partitionPageToDirectMapExtent(page);
mapExtent->mapSize = mapSize - kPartitionPageSize - kSystemPageSize;
return ret;
}
static ALWAYS_INLINE void partitionDirectUnmap(PartitionPage* page)
{
size_t unmapSize = partitionPageToDirectMapExtent(page)->mapSize;
// Add on the size of the trailing guard page and preceeding partition
// page.
unmapSize += kPartitionPageSize + kSystemPageSize;
PartitionRootBase* root = partitionPageToRoot(page);
size_t uncommittedPageSize = page->bucket->slotSize + kSystemPageSize;
ASSERT(root->totalSizeOfCommittedPages >= uncommittedPageSize);
root->totalSizeOfCommittedPages -= uncommittedPageSize;
ASSERT(root->totalSizeOfDirectMappedPages >= uncommittedPageSize);
root->totalSizeOfDirectMappedPages -= uncommittedPageSize;
ASSERT(!(unmapSize & kPageAllocationGranularityOffsetMask));
char* ptr = reinterpret_cast<char*>(partitionPageToPointer(page));
// Account for the mapping starting a partition page before the actual
// allocation address.
ptr -= kPartitionPageSize;
freePages(ptr, unmapSize);
}
void* partitionAllocSlowPath(PartitionRootBase* root, int flags, size_t size, PartitionBucket* bucket)
{
// The slow path is called when the freelist is empty.
ASSERT(!bucket->activePagesHead->freelistHead);
PartitionPage* newPage = nullptr;
// For the partitionAllocGeneric API, we have a bunch of buckets marked
// as special cases. We bounce them through to the slow path so that we
// can still have a blazing fast hot path due to lack of corner-case
// branches.
bool returnNull = flags & PartitionAllocReturnNull;
if (UNLIKELY(partitionBucketIsDirectMapped(bucket))) {
ASSERT(size > kGenericMaxBucketed);
ASSERT(bucket == &PartitionRootBase::gPagedBucket);
if (size > kGenericMaxDirectMapped) {
if (returnNull)
return 0;
RELEASE_ASSERT(false);
}
void* ptr = partitionDirectMap(root, flags, size);
if (ptr)
return ptr;
goto partitionAllocSlowPathFailed;
}
// First, look for a usable page in the existing active pages list.
// Change active page, accepting the current page as a candidate.
if (LIKELY(partitionSetNewActivePage(bucket->activePagesHead))) {
newPage = bucket->activePagesHead;
if (LIKELY(newPage->freelistHead != 0)) {
PartitionFreelistEntry* ret = newPage->freelistHead;
newPage->freelistHead = partitionFreelistMask(ret->next);
newPage->numAllocatedSlots++;
return ret;
}
ASSERT(newPage->numUnprovisionedSlots);
return partitionPageAllocAndFillFreelist(newPage);
}
// Second, look in our list of freed but reserved pages.
newPage = bucket->freePagesHead;
if (LIKELY(newPage != 0)) {
ASSERT(newPage != &PartitionRootGeneric::gSeedPage);
ASSERT(!newPage->freelistHead);
ASSERT(!newPage->numAllocatedSlots);
ASSERT(!newPage->numUnprovisionedSlots);
ASSERT(newPage->freeCacheIndex == -1);
bucket->freePagesHead = newPage->nextPage;
void* addr = partitionPageToPointer(newPage);
partitionRecommitSystemPages(root, addr, newPage->bucket->numSystemPagesPerSlotSpan * kSystemPageSize);
} else {
// Third. If we get here, we need a brand new page.
uint16_t numPartitionPages = partitionBucketPartitionPages(bucket);
void* rawNewPage = partitionAllocPartitionPages(root, flags, numPartitionPages);
if (UNLIKELY(!rawNewPage))
goto partitionAllocSlowPathFailed;
// Skip the alignment check because it depends on page->bucket, which is not yet set.
newPage = partitionPointerToPageNoAlignmentCheck(rawNewPage);
}
partitionPageReset(newPage, bucket);
bucket->activePagesHead = newPage;
return partitionPageAllocAndFillFreelist(newPage);
partitionAllocSlowPathFailed:
if (returnNull) {
// If we get here, we will set the active page to null, which is an
// invalid state. To support continued use of this bucket, we need to
// restore a valid state, by setting the active page to the seed page.
bucket->activePagesHead = &PartitionRootGeneric::gSeedPage;
return nullptr;
}
partitionOutOfMemory(root);
return nullptr;
}
static ALWAYS_INLINE void partitionFreePage(PartitionRootBase* root, PartitionPage* page)
{
ASSERT(page->freelistHead);
ASSERT(!page->numAllocatedSlots);
partitionUnusePage(root, page);
// We actually leave the freed page in the active list. We'll sweep it on
// to the free page list when we next walk the active page list. Pulling
// this trick enables us to use a singly-linked page list for all cases,
// which is critical in keeping the page metadata structure down to 32
// bytes in size.
page->freelistHead = 0;
page->numUnprovisionedSlots = 0;
}
static ALWAYS_INLINE void partitionRegisterEmptyPage(PartitionPage* page)
{
PartitionRootBase* root = partitionPageToRoot(page);
// If the page is already registered as empty, give it another life.
if (page->freeCacheIndex != -1) {
ASSERT(page->freeCacheIndex >= 0);
ASSERT(static_cast<unsigned>(page->freeCacheIndex) < kMaxFreeableSpans);
ASSERT(root->globalEmptyPageRing[page->freeCacheIndex] == page);
root->globalEmptyPageRing[page->freeCacheIndex] = 0;
}
int16_t currentIndex = root->globalEmptyPageRingIndex;
PartitionPage* pageToFree = root->globalEmptyPageRing[currentIndex];
// The page might well have been re-activated, filled up, etc. before we get
// around to looking at it here.
if (pageToFree) {
ASSERT(pageToFree != &PartitionRootBase::gSeedPage);
ASSERT(pageToFree->freeCacheIndex >= 0);
ASSERT(static_cast<unsigned>(pageToFree->freeCacheIndex) < kMaxFreeableSpans);
ASSERT(pageToFree == root->globalEmptyPageRing[pageToFree->freeCacheIndex]);
if (!pageToFree->numAllocatedSlots && pageToFree->freelistHead) {
// The page is still empty, and not freed, so _really_ free it.
partitionFreePage(root, pageToFree);
}
pageToFree->freeCacheIndex = -1;
}
// We put the empty slot span on our global list of "pages that were once
// empty". thus providing it a bit of breathing room to get re-used before
// we really free it. This improves performance, particularly on Mac OS X
// which has subpar memory management performance.
root->globalEmptyPageRing[currentIndex] = page;
page->freeCacheIndex = currentIndex;
++currentIndex;
if (currentIndex == kMaxFreeableSpans)
currentIndex = 0;
root->globalEmptyPageRingIndex = currentIndex;
}
void partitionFreeSlowPath(PartitionPage* page)
{
PartitionBucket* bucket = page->bucket;
ASSERT(page != &PartitionRootGeneric::gSeedPage);
if (LIKELY(page->numAllocatedSlots == 0)) {
// Page became fully unused.
if (UNLIKELY(partitionBucketIsDirectMapped(bucket))) {
partitionDirectUnmap(page);
return;
}
// If it's the current active page, attempt to change it. We'd prefer to leave
// the page empty as a gentle force towards defragmentation.
if (LIKELY(page == bucket->activePagesHead) && page->nextPage) {
if (partitionSetNewActivePage(page->nextPage)) {
ASSERT(bucket->activePagesHead != page);
// Link the empty page back in after the new current page, to
// avoid losing a reference to it.
// TODO: consider walking the list to link the empty page after
// all non-empty pages?
PartitionPage* currentPage = bucket->activePagesHead;
page->nextPage = currentPage->nextPage;
currentPage->nextPage = page;
} else {
bucket->activePagesHead = page;
page->nextPage = 0;
}
}
partitionRegisterEmptyPage(page);
} else {
// Ensure that the page is full. That's the only valid case if we
// arrive here.
ASSERT(page->numAllocatedSlots < 0);
// A transition of numAllocatedSlots from 0 to -1 is not legal, and
// likely indicates a double-free.
RELEASE_ASSERT(page->numAllocatedSlots != -1);
page->numAllocatedSlots = -page->numAllocatedSlots - 2;
ASSERT(page->numAllocatedSlots == partitionBucketSlots(bucket) - 1);
// Fully used page became partially used. It must be put back on the
// non-full page list. Also make it the current page to increase the
// chances of it being filled up again. The old current page will be
// the next page.
if (UNLIKELY(bucket->activePagesHead == &PartitionRootGeneric::gSeedPage))
page->nextPage = 0;
else
page->nextPage = bucket->activePagesHead;
bucket->activePagesHead = page;
--bucket->numFullPages;
// Special case: for a partition page with just a single slot, it may
// now be empty and we want to run it through the empty logic.
if (UNLIKELY(page->numAllocatedSlots == 0))
partitionFreeSlowPath(page);
}
}
bool partitionReallocDirectMappedInPlace(PartitionRootGeneric* root, PartitionPage* page, size_t newSize)
{
ASSERT(partitionBucketIsDirectMapped(page->bucket));
newSize = partitionCookieSizeAdjustAdd(newSize);
// Note that the new size might be a bucketed size; this function is called
// whenever we're reallocating a direct mapped allocation.
newSize = partitionDirectMapSize(newSize);
if (newSize < kGenericMinDirectMappedDownsize)
return false;
// bucket->slotSize is the current size of the allocation.
size_t currentSize = page->bucket->slotSize;
if (newSize == currentSize)
return true;
char* charPtr = static_cast<char*>(partitionPageToPointer(page));
if (newSize < currentSize) {
size_t mapSize = partitionPageToDirectMapExtent(page)->mapSize;
// Don't reallocate in-place if new size is less than 80 % of the full
// map size, to avoid holding on to too much unused address space.
if ((newSize / kSystemPageSize) * 5 < (mapSize / kSystemPageSize) * 4)
return false;
// Shrink by decommitting unneeded pages and making them inaccessible.
size_t decommitSize = currentSize - newSize;
partitionDecommitSystemPages(root, charPtr + newSize, decommitSize);
setSystemPagesInaccessible(charPtr + newSize, decommitSize);
} else if (newSize <= partitionPageToDirectMapExtent(page)->mapSize) {
// Grow within the actually allocated memory. Just need to make the
// pages accessible again.
size_t recommitSize = newSize - currentSize;
setSystemPagesAccessible(charPtr + currentSize, recommitSize);
partitionRecommitSystemPages(root, charPtr + currentSize, recommitSize);
#if ENABLE(ASSERT)
memset(charPtr + currentSize, kUninitializedByte, recommitSize);
#endif
} else {
// We can't perform the realloc in-place.
// TODO: support this too when possible.
return false;
}
#if ENABLE(ASSERT)
// Write a new trailing cookie.
partitionCookieWriteValue(charPtr + newSize - kCookieSize);
#endif
page->bucket->slotSize = newSize;
return true;
}
void* partitionReallocGeneric(PartitionRootGeneric* root, void* ptr, size_t newSize)
{
#if defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
return realloc(ptr, newSize);
#else
if (UNLIKELY(!ptr))
return partitionAllocGeneric(root, newSize);
if (UNLIKELY(!newSize)) {
partitionFreeGeneric(root, ptr);
return 0;
}
RELEASE_ASSERT(newSize <= kGenericMaxDirectMapped);
ASSERT(partitionPointerIsValid(partitionCookieFreePointerAdjust(ptr)));
PartitionPage* page = partitionPointerToPage(partitionCookieFreePointerAdjust(ptr));
if (UNLIKELY(partitionBucketIsDirectMapped(page->bucket))) {
// We may be able to perform the realloc in place by changing the
// accessibility of memory pages and, if reducing the size, decommitting
// them.
if (partitionReallocDirectMappedInPlace(root, page, newSize))
return ptr;
}
size_t actualNewSize = partitionAllocActualSize(root, newSize);
size_t actualOldSize = partitionAllocGetSize(ptr);
// TODO: note that tcmalloc will "ignore" a downsizing realloc() unless the
// new size is a significant percentage smaller. We could do the same if we
// determine it is a win.
if (actualNewSize == actualOldSize) {
// Trying to allocate a block of size newSize would give us a block of
// the same size as the one we've already got, so no point in doing
// anything here.
return ptr;
}
// This realloc cannot be resized in-place. Sadness.
void* ret = partitionAllocGeneric(root, newSize);
size_t copySize = actualOldSize;
if (newSize < copySize)
copySize = newSize;
memcpy(ret, ptr, copySize);
partitionFreeGeneric(root, ptr);
return ret;
#endif
}
#ifndef NDEBUG
void partitionDumpStats(const PartitionRoot& root)
{
size_t i;
size_t totalLive = 0;
size_t totalResident = 0;
size_t totalFreeable = 0;
for (i = 0; i < root.numBuckets; ++i) {
const PartitionBucket& bucket = root.buckets()[i];
if (bucket.activePagesHead == &PartitionRootGeneric::gSeedPage && !bucket.freePagesHead && !bucket.numFullPages) {
// Empty bucket with no freelist or full pages. Skip reporting it.
continue;
}
size_t numFreePages = 0;
PartitionPage* freePages = bucket.freePagesHead;
while (freePages) {
++numFreePages;
freePages = freePages->nextPage;
}
size_t bucketSlotSize = bucket.slotSize;
uint16_t bucketNumSlots = partitionBucketSlots(&bucket);
size_t bucketUsefulStorage = bucketSlotSize * bucketNumSlots;
size_t bucketPageSize = bucket.numSystemPagesPerSlotSpan * kSystemPageSize;
size_t bucketWaste = bucketPageSize - bucketUsefulStorage;
size_t numActiveBytes = bucket.numFullPages * bucketUsefulStorage;
size_t numResidentBytes = bucket.numFullPages * bucketPageSize;
size_t numFreeableBytes = 0;
size_t numActivePages = 0;
const PartitionPage* page = bucket.activePagesHead;
while (page) {
ASSERT(page != &PartitionRootGeneric::gSeedPage);
// A page may be on the active list but freed and not yet swept.
if (!page->freelistHead && !page->numUnprovisionedSlots && !page->numAllocatedSlots) {
++numFreePages;
} else {
++numActivePages;
numActiveBytes += (page->numAllocatedSlots * bucketSlotSize);
size_t pageBytesResident = (bucketNumSlots - page->numUnprovisionedSlots) * bucketSlotSize;
// Round up to system page size.
pageBytesResident = (pageBytesResident + kSystemPageOffsetMask) & kSystemPageBaseMask;
numResidentBytes += pageBytesResident;
if (!page->numAllocatedSlots)
numFreeableBytes += pageBytesResident;
}
page = page->nextPage;
}
totalLive += numActiveBytes;
totalResident += numResidentBytes;
totalFreeable += numFreeableBytes;
printf("bucket size %zu (pageSize %zu waste %zu): %zu alloc/%zu commit/%zu freeable bytes, %zu/%zu/%zu full/active/free pages\n", bucketSlotSize, bucketPageSize, bucketWaste, numActiveBytes, numResidentBytes, numFreeableBytes, static_cast<size_t>(bucket.numFullPages), numActivePages, numFreePages);
}
printf("total live: %zu bytes\n", totalLive);
printf("total resident: %zu bytes\n", totalResident);
printf("total freeable: %zu bytes\n", totalFreeable);
fflush(stdout);
}
#endif // !NDEBUG
} // namespace WTF
|