1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
|
/*
* Copyright (C) 2013 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef WTF_PartitionAlloc_h
#define WTF_PartitionAlloc_h
// DESCRIPTION
// partitionAlloc() / partitionAllocGeneric() and partitionFree() /
// partitionFreeGeneric() are approximately analagous to malloc() and free().
//
// The main difference is that a PartitionRoot / PartitionRootGeneric object
// must be supplied to these functions, representing a specific "heap partition"
// that will be used to satisfy the allocation. Different partitions are
// guaranteed to exist in separate address spaces, including being separate from
// the main system heap. If the contained objects are all freed, physical memory
// is returned to the system but the address space remains reserved.
//
// THE ONLY LEGITIMATE WAY TO OBTAIN A PartitionRoot IS THROUGH THE
// SizeSpecificPartitionAllocator / PartitionAllocatorGeneric classes. To
// minimize the instruction count to the fullest extent possible, the
// PartitonRoot is really just a header adjacent to other data areas provided
// by the allocator class.
//
// The partitionAlloc() variant of the API has the following caveats:
// - Allocations and frees against a single partition must be single threaded.
// - Allocations must not exceed a max size, chosen at compile-time via a
// templated parameter to PartitionAllocator.
// - Allocation sizes must be aligned to the system pointer size.
// - Allocations are bucketed exactly according to size.
//
// And for partitionAllocGeneric():
// - Multi-threaded use against a single partition is ok; locking is handled.
// - Allocations of any arbitrary size can be handled (subject to a limit of
// INT_MAX bytes for security reasons).
// - Bucketing is by approximate size, for example an allocation of 4000 bytes
// might be placed into a 4096-byte bucket. Bucket sizes are chosen to try and
// keep worst-case waste to ~10%.
//
// The allocators are designed to be extremely fast, thanks to the following
// properties and design:
// - Just a single (reasonably predicatable) branch in the hot / fast path for
// both allocating and (significantly) freeing.
// - A minimal number of operations in the hot / fast path, with the slow paths
// in separate functions, leading to the possibility of inlining.
// - Each partition page (which is usually multiple physical pages) has a
// metadata structure which allows fast mapping of free() address to an
// underlying bucket.
// - Supports a lock-free API for fast performance in single-threaded cases.
// - The freelist for a given bucket is split across a number of partition
// pages, enabling various simple tricks to try and minimize fragmentation.
// - Fine-grained bucket sizes leading to less waste and better packing.
//
// The following security properties are provided at this time:
// - Linear overflows cannot corrupt into the partition.
// - Linear overflows cannot corrupt out of the partition.
// - Freed pages will only be re-used within the partition.
// (exception: large allocations > ~1MB)
// - Freed pages will only hold same-sized objects when re-used.
// - Dereference of freelist pointer should fault.
// - Out-of-line main metadata: linear over or underflow cannot corrupt it.
// - Partial pointer overwrite of freelist pointer should fault.
// - Rudimentary double-free detection.
// - Large allocations (> ~1MB) are guard-paged at the beginning and end.
//
// The following security properties could be investigated in the future:
// - Per-object bucketing (instead of per-size) is mostly available at the API,
// but not used yet.
// - No randomness of freelist entries or bucket position.
// - Better checking for wild pointers in free().
// - Better freelist masking function to guarantee fault on 32-bit.
#include "wtf/Assertions.h"
#include "wtf/BitwiseOperations.h"
#include "wtf/ByteSwap.h"
#include "wtf/CPU.h"
#include "wtf/PageAllocator.h"
#include "wtf/SpinLock.h"
#include <limits.h>
#if defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
#include <stdlib.h>
#endif
#if ENABLE(ASSERT)
#include <string.h>
#endif
namespace WTF {
// Allocation granularity of sizeof(void*) bytes.
static const size_t kAllocationGranularity = sizeof(void*);
static const size_t kAllocationGranularityMask = kAllocationGranularity - 1;
static const size_t kBucketShift = (kAllocationGranularity == 8) ? 3 : 2;
// Underlying partition storage pages are a power-of-two size. It is typical
// for a partition page to be based on multiple system pages. Most references to
// "page" refer to partition pages.
// We also have the concept of "super pages" -- these are the underlying system
// allocations we make. Super pages contain multiple partition pages inside them
// and include space for a small amount of metadata per partition page.
// Inside super pages, we store "slot spans". A slot span is a continguous range
// of one or more partition pages that stores allocations of the same size.
// Slot span sizes are adjusted depending on the allocation size, to make sure
// the packing does not lead to unused (wasted) space at the end of the last
// system page of the span. For our current max slot span size of 64k and other
// constant values, we pack _all_ partitionAllocGeneric() sizes perfectly up
// against the end of a system page.
static const size_t kPartitionPageShift = 14; // 16KB
static const size_t kPartitionPageSize = 1 << kPartitionPageShift;
static const size_t kPartitionPageOffsetMask = kPartitionPageSize - 1;
static const size_t kPartitionPageBaseMask = ~kPartitionPageOffsetMask;
static const size_t kMaxPartitionPagesPerSlotSpan = 4;
// To avoid fragmentation via never-used freelist entries, we hand out partition
// freelist sections gradually, in units of the dominant system page size.
// What we're actually doing is avoiding filling the full partition page
// (typically 16KB) will freelist pointers right away. Writing freelist
// pointers will fault and dirty a private page, which is very wasteful if we
// never actually store objects there.
static const size_t kNumSystemPagesPerPartitionPage = kPartitionPageSize / kSystemPageSize;
static const size_t kMaxSystemPagesPerSlotSpan = kNumSystemPagesPerPartitionPage * kMaxPartitionPagesPerSlotSpan;
// We reserve virtual address space in 2MB chunks (aligned to 2MB as well).
// These chunks are called "super pages". We do this so that we can store
// metadata in the first few pages of each 2MB aligned section. This leads to
// a very fast free(). We specifically choose 2MB because this virtual address
// block represents a full but single PTE allocation on ARM, ia32 and x64.
static const size_t kSuperPageShift = 21; // 2MB
static const size_t kSuperPageSize = 1 << kSuperPageShift;
static const size_t kSuperPageOffsetMask = kSuperPageSize - 1;
static const size_t kSuperPageBaseMask = ~kSuperPageOffsetMask;
static const size_t kNumPartitionPagesPerSuperPage = kSuperPageSize / kPartitionPageSize;
static const size_t kPageMetadataShift = 5; // 32 bytes per partition page.
static const size_t kPageMetadataSize = 1 << kPageMetadataShift;
// The following kGeneric* constants apply to the generic variants of the API.
// The "order" of an allocation is closely related to the power-of-two size of
// the allocation. More precisely, the order is the bit index of the
// most-significant-bit in the allocation size, where the bit numbers starts
// at index 1 for the least-significant-bit.
// In terms of allocation sizes, order 0 covers 0, order 1 covers 1, order 2
// covers 2->3, order 3 covers 4->7, order 4 covers 8->15.
static const size_t kGenericMinBucketedOrder = 4; // 8 bytes.
static const size_t kGenericMaxBucketedOrder = 20; // Largest bucketed order is 1<<(20-1) (storing 512KB -> almost 1MB)
static const size_t kGenericNumBucketedOrders = (kGenericMaxBucketedOrder - kGenericMinBucketedOrder) + 1;
static const size_t kGenericNumBucketsPerOrderBits = 3; // Eight buckets per order (for the higher orders), e.g. order 8 is 128, 144, 160, ..., 240
static const size_t kGenericNumBucketsPerOrder = 1 << kGenericNumBucketsPerOrderBits;
static const size_t kGenericSmallestBucket = 1 << (kGenericMinBucketedOrder - 1);
static const size_t kGenericMaxBucketSpacing = 1 << ((kGenericMaxBucketedOrder - 1) - kGenericNumBucketsPerOrderBits);
static const size_t kGenericMaxBucketed = (1 << (kGenericMaxBucketedOrder - 1)) + ((kGenericNumBucketsPerOrder - 1) * kGenericMaxBucketSpacing);
static const size_t kGenericMinDirectMappedDownsize = kGenericMaxBucketed + 1; // Limit when downsizing a direct mapping using realloc().
static const size_t kGenericMaxDirectMapped = INT_MAX - kSystemPageSize;
static const size_t kBitsPerSizet = sizeof(void*) * CHAR_BIT;
// Constants for the memory reclaim logic.
static const size_t kMaxFreeableSpans = 16;
// If the total size in bytes of allocated but not committed pages exceeds this
// value (probably it is a "out of virtual address space" crash),
// a special crash stack trace is generated at |partitionOutOfMemory|.
// This is to distinguish "out of virtual address space" from
// "out of physical memory" in crash reports.
static const size_t kReasonableSizeOfUnusedPages = 1024 * 1024 * 1024; // 1GiB
#if ENABLE(ASSERT)
// These two byte values match tcmalloc.
static const unsigned char kUninitializedByte = 0xAB;
static const unsigned char kFreedByte = 0xCD;
static const uint32_t kCookieValue = 0xDEADBEEFu;
static const size_t kCookieSize = 16; // Handles alignment up to XMM instructions on Intel.
#endif
struct PartitionBucket;
struct PartitionRootBase;
struct PartitionFreelistEntry {
PartitionFreelistEntry* next;
};
// Some notes on page states. A page can be in one of three major states:
// 1) Active.
// 2) Full.
// 3) Free.
// An active page has available free slots. A full page has no free slots. A
// free page has had its backing memory released back to the system.
// There are two linked lists tracking the pages. The "active page" list is an
// approximation of a list of active pages. It is an approximation because both
// free and full pages may briefly be present in the list until we next do a
// scan over it. The "free page" list is an accurate list of pages which have
// been returned back to the system.
// The significant page transitions are:
// - free() will detect when a full page has a slot free()'d and immediately
// return the page to the head of the active list.
// - free() will detect when a page is fully emptied. It _may_ add it to the
// free list and it _may_ leave it on the active list until a future list scan.
// - malloc() _may_ scan the active page list in order to fulfil the request.
// If it does this, full and free pages encountered will be booted out of the
// active list. If there are no suitable active pages found, a free page (if one
// exists) will be pulled from the free list on to the active list.
struct PartitionPage {
PartitionFreelistEntry* freelistHead;
PartitionPage* nextPage;
PartitionBucket* bucket;
int16_t numAllocatedSlots; // Deliberately signed, -1 for free page, -n for full pages.
uint16_t numUnprovisionedSlots;
uint16_t pageOffset;
int16_t freeCacheIndex; // -1 if not in the free cache.
};
struct PartitionBucket {
PartitionPage* activePagesHead; // Accessed most in hot path => goes first.
PartitionPage* freePagesHead;
uint32_t slotSize;
uint16_t numSystemPagesPerSlotSpan;
uint16_t numFullPages;
};
// An "extent" is a span of consecutive superpages. We link to the partition's
// next extent (if there is one) at the very start of a superpage's metadata
// area.
struct PartitionSuperPageExtentEntry {
PartitionRootBase* root;
char* superPageBase;
char* superPagesEnd;
PartitionSuperPageExtentEntry* next;
};
struct WTF_EXPORT PartitionRootBase {
size_t totalSizeOfCommittedPages;
size_t totalSizeOfSuperPages;
size_t totalSizeOfDirectMappedPages;
// Invariant: totalSizeOfCommittedPages <= totalSizeOfSuperPages + totalSizeOfDirectMappedPages.
unsigned numBuckets;
unsigned maxAllocation;
bool initialized;
char* nextSuperPage;
char* nextPartitionPage;
char* nextPartitionPageEnd;
PartitionSuperPageExtentEntry* currentExtent;
PartitionSuperPageExtentEntry* firstExtent;
PartitionPage* globalEmptyPageRing[kMaxFreeableSpans];
int16_t globalEmptyPageRingIndex;
uintptr_t invertedSelf;
static int gInitializedLock;
static bool gInitialized;
static PartitionPage gSeedPage;
static PartitionBucket gPagedBucket;
};
// Never instantiate a PartitionRoot directly, instead use PartitionAlloc.
struct PartitionRoot : public PartitionRootBase {
// The PartitionAlloc templated class ensures the following is correct.
ALWAYS_INLINE PartitionBucket* buckets() { return reinterpret_cast<PartitionBucket*>(this + 1); }
ALWAYS_INLINE const PartitionBucket* buckets() const { return reinterpret_cast<const PartitionBucket*>(this + 1); }
};
// Never instantiate a PartitionRootGeneric directly, instead use PartitionAllocatorGeneric.
struct PartitionRootGeneric : public PartitionRootBase {
int lock;
// Some pre-computed constants.
size_t orderIndexShifts[kBitsPerSizet + 1];
size_t orderSubIndexMasks[kBitsPerSizet + 1];
// The bucket lookup table lets us map a size_t to a bucket quickly.
// The trailing +1 caters for the overflow case for very large allocation sizes.
// It is one flat array instead of a 2D array because in the 2D world, we'd
// need to index array[blah][max+1] which risks undefined behavior.
PartitionBucket* bucketLookups[((kBitsPerSizet + 1) * kGenericNumBucketsPerOrder) + 1];
PartitionBucket buckets[kGenericNumBucketedOrders * kGenericNumBucketsPerOrder];
};
// Flags for partitionAllocGenericFlags.
enum PartitionAllocFlags {
PartitionAllocReturnNull = 1 << 0,
};
WTF_EXPORT void partitionAllocInit(PartitionRoot*, size_t numBuckets, size_t maxAllocation);
WTF_EXPORT bool partitionAllocShutdown(PartitionRoot*);
WTF_EXPORT void partitionAllocGenericInit(PartitionRootGeneric*);
WTF_EXPORT bool partitionAllocGenericShutdown(PartitionRootGeneric*);
WTF_EXPORT NEVER_INLINE void* partitionAllocSlowPath(PartitionRootBase*, int, size_t, PartitionBucket*);
WTF_EXPORT NEVER_INLINE void partitionFreeSlowPath(PartitionPage*);
WTF_EXPORT NEVER_INLINE void* partitionReallocGeneric(PartitionRootGeneric*, void*, size_t);
#ifndef NDEBUG
WTF_EXPORT void partitionDumpStats(const PartitionRoot&);
#endif
ALWAYS_INLINE PartitionFreelistEntry* partitionFreelistMask(PartitionFreelistEntry* ptr)
{
// We use bswap on little endian as a fast mask for two reasons:
// 1) If an object is freed and its vtable used where the attacker doesn't
// get the chance to run allocations between the free and use, the vtable
// dereference is likely to fault.
// 2) If the attacker has a linear buffer overflow and elects to try and
// corrupt a freelist pointer, partial pointer overwrite attacks are
// thwarted.
// For big endian, similar guarantees are arrived at with a negation.
#if CPU(BIG_ENDIAN)
uintptr_t masked = ~reinterpret_cast<uintptr_t>(ptr);
#else
uintptr_t masked = bswapuintptrt(reinterpret_cast<uintptr_t>(ptr));
#endif
return reinterpret_cast<PartitionFreelistEntry*>(masked);
}
ALWAYS_INLINE size_t partitionCookieSizeAdjustAdd(size_t size)
{
#if ENABLE(ASSERT)
// Add space for cookies, checking for integer overflow.
ASSERT(size + (2 * kCookieSize) > size);
size += 2 * kCookieSize;
#endif
return size;
}
ALWAYS_INLINE size_t partitionCookieSizeAdjustSubtract(size_t size)
{
#if ENABLE(ASSERT)
// Remove space for cookies.
ASSERT(size >= 2 * kCookieSize);
size -= 2 * kCookieSize;
#endif
return size;
}
ALWAYS_INLINE void* partitionCookieFreePointerAdjust(void* ptr)
{
#if ENABLE(ASSERT)
// The value given to the application is actually just after the cookie.
ptr = static_cast<char*>(ptr) - kCookieSize;
#endif
return ptr;
}
ALWAYS_INLINE void partitionCookieWriteValue(void* ptr)
{
#if ENABLE(ASSERT)
uint32_t* cookiePtr = reinterpret_cast<uint32_t*>(ptr);
for (size_t i = 0; i < kCookieSize / sizeof(kCookieValue); ++i, ++cookiePtr)
*cookiePtr = kCookieValue;
#endif
}
ALWAYS_INLINE void partitionCookieCheckValue(void* ptr)
{
#if ENABLE(ASSERT)
uint32_t* cookiePtr = reinterpret_cast<uint32_t*>(ptr);
for (size_t i = 0; i < kCookieSize / sizeof(kCookieValue); ++i, ++cookiePtr)
ASSERT(*cookiePtr == kCookieValue);
#endif
}
ALWAYS_INLINE char* partitionSuperPageToMetadataArea(char* ptr)
{
uintptr_t pointerAsUint = reinterpret_cast<uintptr_t>(ptr);
ASSERT(!(pointerAsUint & kSuperPageOffsetMask));
// The metadata area is exactly one system page (the guard page) into the
// super page.
return reinterpret_cast<char*>(pointerAsUint + kSystemPageSize);
}
ALWAYS_INLINE PartitionPage* partitionPointerToPageNoAlignmentCheck(void* ptr)
{
uintptr_t pointerAsUint = reinterpret_cast<uintptr_t>(ptr);
char* superPagePtr = reinterpret_cast<char*>(pointerAsUint & kSuperPageBaseMask);
uintptr_t partitionPageIndex = (pointerAsUint & kSuperPageOffsetMask) >> kPartitionPageShift;
// Index 0 is invalid because it is the metadata area and the last index is invalid because it is a guard page.
ASSERT(partitionPageIndex);
ASSERT(partitionPageIndex < kNumPartitionPagesPerSuperPage - 1);
PartitionPage* page = reinterpret_cast<PartitionPage*>(partitionSuperPageToMetadataArea(superPagePtr) + (partitionPageIndex << kPageMetadataShift));
// Many partition pages can share the same page object. Adjust for that.
size_t delta = page->pageOffset << kPageMetadataShift;
page = reinterpret_cast<PartitionPage*>(reinterpret_cast<char*>(page) - delta);
return page;
}
ALWAYS_INLINE void* partitionPageToPointer(PartitionPage* page)
{
uintptr_t pointerAsUint = reinterpret_cast<uintptr_t>(page);
uintptr_t superPageOffset = (pointerAsUint & kSuperPageOffsetMask);
ASSERT(superPageOffset > kSystemPageSize);
ASSERT(superPageOffset < kSystemPageSize + (kNumPartitionPagesPerSuperPage * kPageMetadataSize));
uintptr_t partitionPageIndex = (superPageOffset - kSystemPageSize) >> kPageMetadataShift;
// Index 0 is invalid because it is the metadata area and the last index is invalid because it is a guard page.
ASSERT(partitionPageIndex);
ASSERT(partitionPageIndex < kNumPartitionPagesPerSuperPage - 1);
uintptr_t superPageBase = (pointerAsUint & kSuperPageBaseMask);
void* ret = reinterpret_cast<void*>(superPageBase + (partitionPageIndex << kPartitionPageShift));
return ret;
}
ALWAYS_INLINE PartitionPage* partitionPointerToPage(void* ptr)
{
PartitionPage* page = partitionPointerToPageNoAlignmentCheck(ptr);
// Checks that the pointer is a multiple of bucket size.
ASSERT(!((reinterpret_cast<uintptr_t>(ptr) - reinterpret_cast<uintptr_t>(partitionPageToPointer(page))) % page->bucket->slotSize));
return page;
}
ALWAYS_INLINE PartitionRootBase* partitionPageToRoot(PartitionPage* page)
{
PartitionSuperPageExtentEntry* extentEntry = reinterpret_cast<PartitionSuperPageExtentEntry*>(reinterpret_cast<uintptr_t>(page) & kSystemPageBaseMask);
return extentEntry->root;
}
ALWAYS_INLINE bool partitionPointerIsValid(void* ptr)
{
PartitionPage* page = partitionPointerToPage(ptr);
PartitionRootBase* root = partitionPageToRoot(page);
return root->invertedSelf == ~reinterpret_cast<uintptr_t>(root);
}
ALWAYS_INLINE void* partitionBucketAlloc(PartitionRootBase* root, int flags, size_t size, PartitionBucket* bucket)
{
PartitionPage* page = bucket->activePagesHead;
ASSERT(page->numAllocatedSlots >= 0);
void* ret = page->freelistHead;
if (LIKELY(ret != 0)) {
// If these asserts fire, you probably corrupted memory.
ASSERT(partitionPointerIsValid(ret));
PartitionFreelistEntry* newHead = partitionFreelistMask(static_cast<PartitionFreelistEntry*>(ret)->next);
page->freelistHead = newHead;
ASSERT(!ret || partitionPointerIsValid(ret));
page->numAllocatedSlots++;
} else {
ret = partitionAllocSlowPath(root, flags, size, bucket);
}
#if ENABLE(ASSERT)
if (!ret)
return 0;
// Fill the uninitialized pattern. and write the cookies.
page = partitionPointerToPage(ret);
size_t bucketSize = page->bucket->slotSize;
memset(ret, kUninitializedByte, bucketSize);
partitionCookieWriteValue(ret);
partitionCookieWriteValue(reinterpret_cast<char*>(ret) + bucketSize - kCookieSize);
// The value given to the application is actually just after the cookie.
ret = static_cast<char*>(ret) + kCookieSize;
#endif
return ret;
}
ALWAYS_INLINE void* partitionAlloc(PartitionRoot* root, size_t size)
{
#if defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
void* result = malloc(size);
RELEASE_ASSERT(result);
return result;
#else
size = partitionCookieSizeAdjustAdd(size);
ASSERT(root->initialized);
size_t index = size >> kBucketShift;
ASSERT(index < root->numBuckets);
ASSERT(size == index << kBucketShift);
PartitionBucket* bucket = &root->buckets()[index];
return partitionBucketAlloc(root, 0, size, bucket);
#endif // defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
}
ALWAYS_INLINE void partitionFreeWithPage(void* ptr, PartitionPage* page)
{
// If these asserts fire, you probably corrupted memory.
#if ENABLE(ASSERT)
size_t bucketSize = page->bucket->slotSize;
partitionCookieCheckValue(ptr);
partitionCookieCheckValue(reinterpret_cast<char*>(ptr) + bucketSize - kCookieSize);
memset(ptr, kFreedByte, bucketSize);
#endif
ASSERT(page->numAllocatedSlots);
PartitionFreelistEntry* freelistHead = page->freelistHead;
ASSERT(!freelistHead || partitionPointerIsValid(freelistHead));
RELEASE_ASSERT(ptr != freelistHead); // Catches an immediate double free.
ASSERT(!freelistHead || ptr != partitionFreelistMask(freelistHead->next)); // Look for double free one level deeper in debug.
PartitionFreelistEntry* entry = static_cast<PartitionFreelistEntry*>(ptr);
entry->next = partitionFreelistMask(freelistHead);
page->freelistHead = entry;
--page->numAllocatedSlots;
if (UNLIKELY(page->numAllocatedSlots <= 0))
partitionFreeSlowPath(page);
}
ALWAYS_INLINE void partitionFree(void* ptr)
{
#if defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
free(ptr);
#else
ptr = partitionCookieFreePointerAdjust(ptr);
ASSERT(partitionPointerIsValid(ptr));
PartitionPage* page = partitionPointerToPage(ptr);
partitionFreeWithPage(ptr, page);
#endif
}
ALWAYS_INLINE PartitionBucket* partitionGenericSizeToBucket(PartitionRootGeneric* root, size_t size)
{
size_t order = kBitsPerSizet - countLeadingZerosSizet(size);
// The order index is simply the next few bits after the most significant bit.
size_t orderIndex = (size >> root->orderIndexShifts[order]) & (kGenericNumBucketsPerOrder - 1);
// And if the remaining bits are non-zero we must bump the bucket up.
size_t subOrderIndex = size & root->orderSubIndexMasks[order];
PartitionBucket* bucket = root->bucketLookups[(order << kGenericNumBucketsPerOrderBits) + orderIndex + !!subOrderIndex];
ASSERT(!bucket->slotSize || bucket->slotSize >= size);
ASSERT(!(bucket->slotSize % kGenericSmallestBucket));
return bucket;
}
ALWAYS_INLINE void* partitionAllocGenericFlags(PartitionRootGeneric* root, int flags, size_t size)
{
#if defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
void* result = malloc(size);
RELEASE_ASSERT(result);
return result;
#else
ASSERT(root->initialized);
size = partitionCookieSizeAdjustAdd(size);
PartitionBucket* bucket = partitionGenericSizeToBucket(root, size);
spinLockLock(&root->lock);
void* ret = partitionBucketAlloc(root, flags, size, bucket);
spinLockUnlock(&root->lock);
return ret;
#endif
}
ALWAYS_INLINE void* partitionAllocGeneric(PartitionRootGeneric* root, size_t size)
{
return partitionAllocGenericFlags(root, 0, size);
}
ALWAYS_INLINE void partitionFreeGeneric(PartitionRootGeneric* root, void* ptr)
{
#if defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
free(ptr);
#else
ASSERT(root->initialized);
if (UNLIKELY(!ptr))
return;
ptr = partitionCookieFreePointerAdjust(ptr);
ASSERT(partitionPointerIsValid(ptr));
PartitionPage* page = partitionPointerToPage(ptr);
spinLockLock(&root->lock);
partitionFreeWithPage(ptr, page);
spinLockUnlock(&root->lock);
#endif
}
ALWAYS_INLINE bool partitionBucketIsDirectMapped(PartitionBucket* bucket)
{
return !bucket->numSystemPagesPerSlotSpan;
}
ALWAYS_INLINE size_t partitionDirectMapSize(size_t size)
{
// Caller must check that the size is not above the kGenericMaxDirectMapped
// limit before calling. This also guards against integer overflow in the
// calculation here.
ASSERT(size <= kGenericMaxDirectMapped);
return (size + kSystemPageOffsetMask) & kSystemPageBaseMask;
}
ALWAYS_INLINE size_t partitionAllocActualSize(PartitionRootGeneric* root, size_t size)
{
#if defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
return size;
#else
ASSERT(root->initialized);
size = partitionCookieSizeAdjustAdd(size);
PartitionBucket* bucket = partitionGenericSizeToBucket(root, size);
if (LIKELY(!partitionBucketIsDirectMapped(bucket))) {
size = bucket->slotSize;
} else if (size > kGenericMaxDirectMapped) {
// Too large to allocate => return the size unchanged.
} else {
ASSERT(bucket == &PartitionRootBase::gPagedBucket);
size = partitionDirectMapSize(size);
}
return partitionCookieSizeAdjustSubtract(size);
#endif
}
ALWAYS_INLINE bool partitionAllocSupportsGetSize()
{
#if defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
return false;
#else
return true;
#endif
}
ALWAYS_INLINE size_t partitionAllocGetSize(void* ptr)
{
// No need to lock here. Only 'ptr' being freed by another thread could
// cause trouble, and the caller is responsible for that not happening.
ASSERT(partitionAllocSupportsGetSize());
ptr = partitionCookieFreePointerAdjust(ptr);
ASSERT(partitionPointerIsValid(ptr));
PartitionPage* page = partitionPointerToPage(ptr);
size_t size = page->bucket->slotSize;
return partitionCookieSizeAdjustSubtract(size);
}
// N (or more accurately, N - sizeof(void*)) represents the largest size in
// bytes that will be handled by a SizeSpecificPartitionAllocator.
// Attempts to partitionAlloc() more than this amount will fail.
template <size_t N>
class SizeSpecificPartitionAllocator {
public:
static const size_t kMaxAllocation = N - kAllocationGranularity;
static const size_t kNumBuckets = N / kAllocationGranularity;
void init() { partitionAllocInit(&m_partitionRoot, kNumBuckets, kMaxAllocation); }
bool shutdown() { return partitionAllocShutdown(&m_partitionRoot); }
ALWAYS_INLINE PartitionRoot* root() { return &m_partitionRoot; }
private:
PartitionRoot m_partitionRoot;
PartitionBucket m_actualBuckets[kNumBuckets];
};
class PartitionAllocatorGeneric {
public:
void init() { partitionAllocGenericInit(&m_partitionRoot); }
bool shutdown() { return partitionAllocGenericShutdown(&m_partitionRoot); }
ALWAYS_INLINE PartitionRootGeneric* root() { return &m_partitionRoot; }
private:
PartitionRootGeneric m_partitionRoot;
};
} // namespace WTF
using WTF::SizeSpecificPartitionAllocator;
using WTF::PartitionAllocatorGeneric;
using WTF::PartitionRoot;
using WTF::partitionAllocInit;
using WTF::partitionAllocShutdown;
using WTF::partitionAlloc;
using WTF::partitionFree;
using WTF::partitionAllocGeneric;
using WTF::partitionFreeGeneric;
using WTF::partitionReallocGeneric;
using WTF::partitionAllocActualSize;
using WTF::partitionAllocSupportsGetSize;
using WTF::partitionAllocGetSize;
#endif // WTF_PartitionAlloc_h
|