1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
|
/*
* SpanDSP - a series of DSP components for telephony
*
* g711.h - In line A-law and u-law conversion routines
*
* Written by Steve Underwood <steveu@coppice.org>
*
* Copyright (C) 2001 Steve Underwood
*
* Despite my general liking of the GPL, I place this code in the
* public domain for the benefit of all mankind - even the slimy
* ones who might try to proprietize my work and use it to my
* detriment.
*
* $Id: g711.h,v 1.1 2006/06/07 15:46:39 steveu Exp $
*
* Modifications for WebRtc, 2011/04/28, by tlegrand:
* -Changed to use WebRtc types
* -Changed __inline__ to __inline
* -Two changes to make implementation bitexact with ITU-T reference implementation
*/
/*! \page g711_page A-law and mu-law handling
Lookup tables for A-law and u-law look attractive, until you consider the impact
on the CPU cache. If it causes a substantial area of your processor cache to get
hit too often, cache sloshing will severely slow things down. The main reason
these routines are slow in C, is the lack of direct access to the CPU's "find
the first 1" instruction. A little in-line assembler fixes that, and the
conversion routines can be faster than lookup tables, in most real world usage.
A "find the first 1" instruction is available on most modern CPUs, and is a
much underused feature.
If an assembly language method of bit searching is not available, these routines
revert to a method that can be a little slow, so the cache thrashing might not
seem so bad :(
Feel free to submit patches to add fast "find the first 1" support for your own
favourite processor.
Look up tables are used for transcoding between A-law and u-law, since it is
difficult to achieve the precise transcoding procedure laid down in the G.711
specification by other means.
*/
#if !defined(_G711_H_)
#define _G711_H_
#ifdef __cplusplus
extern "C" {
#endif
#include "webrtc/typedefs.h"
#if defined(__i386__)
/*! \brief Find the bit position of the highest set bit in a word
\param bits The word to be searched
\return The bit number of the highest set bit, or -1 if the word is zero. */
static __inline__ int top_bit(unsigned int bits) {
int res;
__asm__ __volatile__(" movl $-1,%%edx;\n"
" bsrl %%eax,%%edx;\n"
: "=d" (res)
: "a" (bits));
return res;
}
/*! \brief Find the bit position of the lowest set bit in a word
\param bits The word to be searched
\return The bit number of the lowest set bit, or -1 if the word is zero. */
static __inline__ int bottom_bit(unsigned int bits) {
int res;
__asm__ __volatile__(" movl $-1,%%edx;\n"
" bsfl %%eax,%%edx;\n"
: "=d" (res)
: "a" (bits));
return res;
}
#elif defined(__x86_64__)
static __inline__ int top_bit(unsigned int bits) {
int res;
__asm__ __volatile__(" movq $-1,%%rdx;\n"
" bsrq %%rax,%%rdx;\n"
: "=d" (res)
: "a" (bits));
return res;
}
static __inline__ int bottom_bit(unsigned int bits) {
int res;
__asm__ __volatile__(" movq $-1,%%rdx;\n"
" bsfq %%rax,%%rdx;\n"
: "=d" (res)
: "a" (bits));
return res;
}
#else
static __inline int top_bit(unsigned int bits) {
int i;
if (bits == 0) {
return -1;
}
i = 0;
if (bits & 0xFFFF0000) {
bits &= 0xFFFF0000;
i += 16;
}
if (bits & 0xFF00FF00) {
bits &= 0xFF00FF00;
i += 8;
}
if (bits & 0xF0F0F0F0) {
bits &= 0xF0F0F0F0;
i += 4;
}
if (bits & 0xCCCCCCCC) {
bits &= 0xCCCCCCCC;
i += 2;
}
if (bits & 0xAAAAAAAA) {
bits &= 0xAAAAAAAA;
i += 1;
}
return i;
}
static __inline int bottom_bit(unsigned int bits) {
int i;
if (bits == 0) {
return -1;
}
i = 32;
if (bits & 0x0000FFFF) {
bits &= 0x0000FFFF;
i -= 16;
}
if (bits & 0x00FF00FF) {
bits &= 0x00FF00FF;
i -= 8;
}
if (bits & 0x0F0F0F0F) {
bits &= 0x0F0F0F0F;
i -= 4;
}
if (bits & 0x33333333) {
bits &= 0x33333333;
i -= 2;
}
if (bits & 0x55555555) {
bits &= 0x55555555;
i -= 1;
}
return i;
}
#endif
/* N.B. It is tempting to use look-up tables for A-law and u-law conversion.
* However, you should consider the cache footprint.
*
* A 64K byte table for linear to x-law and a 512 byte table for x-law to
* linear sound like peanuts these days, and shouldn't an array lookup be
* real fast? No! When the cache sloshes as badly as this one will, a tight
* calculation may be better. The messiest part is normally finding the
* segment, but a little inline assembly can fix that on an i386, x86_64 and
* many other modern processors.
*/
/*
* Mu-law is basically as follows:
*
* Biased Linear Input Code Compressed Code
* ------------------------ ---------------
* 00000001wxyza 000wxyz
* 0000001wxyzab 001wxyz
* 000001wxyzabc 010wxyz
* 00001wxyzabcd 011wxyz
* 0001wxyzabcde 100wxyz
* 001wxyzabcdef 101wxyz
* 01wxyzabcdefg 110wxyz
* 1wxyzabcdefgh 111wxyz
*
* Each biased linear code has a leading 1 which identifies the segment
* number. The value of the segment number is equal to 7 minus the number
* of leading 0's. The quantization interval is directly available as the
* four bits wxyz. * The trailing bits (a - h) are ignored.
*
* Ordinarily the complement of the resulting code word is used for
* transmission, and so the code word is complemented before it is returned.
*
* For further information see John C. Bellamy's Digital Telephony, 1982,
* John Wiley & Sons, pps 98-111 and 472-476.
*/
//#define ULAW_ZEROTRAP /* turn on the trap as per the MIL-STD */
#define ULAW_BIAS 0x84 /* Bias for linear code. */
/*! \brief Encode a linear sample to u-law
\param linear The sample to encode.
\return The u-law value.
*/
static __inline uint8_t linear_to_ulaw(int linear) {
uint8_t u_val;
int mask;
int seg;
/* Get the sign and the magnitude of the value. */
if (linear < 0) {
/* WebRtc, tlegrand: -1 added to get bitexact to reference implementation */
linear = ULAW_BIAS - linear - 1;
mask = 0x7F;
} else {
linear = ULAW_BIAS + linear;
mask = 0xFF;
}
seg = top_bit(linear | 0xFF) - 7;
/*
* Combine the sign, segment, quantization bits,
* and complement the code word.
*/
if (seg >= 8)
u_val = (uint8_t)(0x7F ^ mask);
else
u_val = (uint8_t)(((seg << 4) | ((linear >> (seg + 3)) & 0xF)) ^ mask);
#ifdef ULAW_ZEROTRAP
/* Optional ITU trap */
if (u_val == 0)
u_val = 0x02;
#endif
return u_val;
}
/*! \brief Decode an u-law sample to a linear value.
\param ulaw The u-law sample to decode.
\return The linear value.
*/
static __inline int16_t ulaw_to_linear(uint8_t ulaw) {
int t;
/* Complement to obtain normal u-law value. */
ulaw = ~ulaw;
/*
* Extract and bias the quantization bits. Then
* shift up by the segment number and subtract out the bias.
*/
t = (((ulaw & 0x0F) << 3) + ULAW_BIAS) << (((int) ulaw & 0x70) >> 4);
return (int16_t)((ulaw & 0x80) ? (ULAW_BIAS - t) : (t - ULAW_BIAS));
}
/*
* A-law is basically as follows:
*
* Linear Input Code Compressed Code
* ----------------- ---------------
* 0000000wxyza 000wxyz
* 0000001wxyza 001wxyz
* 000001wxyzab 010wxyz
* 00001wxyzabc 011wxyz
* 0001wxyzabcd 100wxyz
* 001wxyzabcde 101wxyz
* 01wxyzabcdef 110wxyz
* 1wxyzabcdefg 111wxyz
*
* For further information see John C. Bellamy's Digital Telephony, 1982,
* John Wiley & Sons, pps 98-111 and 472-476.
*/
#define ALAW_AMI_MASK 0x55
/*! \brief Encode a linear sample to A-law
\param linear The sample to encode.
\return The A-law value.
*/
static __inline uint8_t linear_to_alaw(int linear) {
int mask;
int seg;
if (linear >= 0) {
/* Sign (bit 7) bit = 1 */
mask = ALAW_AMI_MASK | 0x80;
} else {
/* Sign (bit 7) bit = 0 */
mask = ALAW_AMI_MASK;
/* WebRtc, tlegrand: Changed from -8 to -1 to get bitexact to reference
* implementation */
linear = -linear - 1;
}
/* Convert the scaled magnitude to segment number. */
seg = top_bit(linear | 0xFF) - 7;
if (seg >= 8) {
if (linear >= 0) {
/* Out of range. Return maximum value. */
return (uint8_t)(0x7F ^ mask);
}
/* We must be just a tiny step below zero */
return (uint8_t)(0x00 ^ mask);
}
/* Combine the sign, segment, and quantization bits. */
return (uint8_t)(((seg << 4) | ((linear >> ((seg) ? (seg + 3) : 4)) & 0x0F)) ^
mask);
}
/*! \brief Decode an A-law sample to a linear value.
\param alaw The A-law sample to decode.
\return The linear value.
*/
static __inline int16_t alaw_to_linear(uint8_t alaw) {
int i;
int seg;
alaw ^= ALAW_AMI_MASK;
i = ((alaw & 0x0F) << 4);
seg = (((int) alaw & 0x70) >> 4);
if (seg)
i = (i + 0x108) << (seg - 1);
else
i += 8;
return (int16_t)((alaw & 0x80) ? i : -i);
}
/*! \brief Transcode from A-law to u-law, using the procedure defined in G.711.
\param alaw The A-law sample to transcode.
\return The best matching u-law value.
*/
uint8_t alaw_to_ulaw(uint8_t alaw);
/*! \brief Transcode from u-law to A-law, using the procedure defined in G.711.
\param alaw The u-law sample to transcode.
\return The best matching A-law value.
*/
uint8_t ulaw_to_alaw(uint8_t ulaw);
#ifdef __cplusplus
}
#endif
#endif
|